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ABSTRACT

Aberrant dopamine (DA) signaling is associated with several psy-
chiatric disorders, such as autism, bipolar disorder, addiction,
and Parkinson’s disease, and several medications that target the
DA transporter (DAT) can induce or treat these disorders. In addi-
tion, psychostimulants, such as cocaine and D-amphetamine
(AMPH), rely on the competitive interactions with the transport-
er's substrate binding site to produce their rewarding effects.
Agents that exhibit noncompetitive, allosteric modulation of DAT
remain an important topic of investigation due to their potential
therapeutic applications. We previously identified a novel alloste-
ric modulator of human DAT, KM822, that can decrease the
affinity of cocaine for DAT and attenuate cocaine-elicited behav-
iors; however, whether DAT is the sole mediator of KM822
actions in vivo is unproven given the large number of potential
off-target sites. Here, we provide in silico and in vitro evidence
that the allosteric site engaged by KM822 is conserved between
human DAT and Caenorhabditis elegans DAT-1. KM822 binds to
a similar pocket in DAT-1 as previously identified in human DAT.
In functional dopamine uptake assays, KM822 affects the inter-
action between AMPH and DAT-1 by reducing the affinity of

AMPH for DAT-1. Finally, through a combination of genetic and
pharmacological in vivo approaches we provide evidence that
KM822 diminishes the behavioral actions of AMPH on swim-
ming-induced paralysis through a direct allosteric modulation of
DAT-1. More broadly, our findings demonstrate allosteric modu-
lation of DAT as a behavior modifying strategy and suggests that
Caenorhabditis elegans can be operationalized to identify and
investigate the interactions of DAT allosteric modulators.

SIGNIFICANCE STATEMENT

We previously demonstrated that the dopamine transporter
(DAT) allosteric modulator KM822 decreases cocaine affinity
for human DAT. Here, using in silico and in vivo genetic
approaches, we extend this finding to interactions with amphet-
amine, demonstrating evolutionary conservation of the DAT
allosteric site. In Caenorhabditis elegans, we report that KM822
suppresses amphetamine behavioral effects via specific inter-
actions with DAT-1. Our findings reveal Caenorhabditis elegans
as a new tool to study allosteric modulation of DAT and its
behavioral consequences.

Introduction

Dopamine (DA) is a conserved neurotransmitter that regulates
a variety of complex behaviors across phylogeny (McDonald
et al., 2007; Yamamoto & Vernier, 2011). The DA transporter
(DAT) regulates DA signaling by restricting DA actions spatially
and temporally (Kaya et al., 2018; J. Zhu & Reith, 2008; S.
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Zhu et al., 2015). Altered DAT function is associated with multi-
ple brain disorders including schizophrenia, Parkinsonism/dysto-
nia, autism, and addiction (Aguilar et al., 2021; Belovich et al.,
2021; Bowton et al., 2014; Del Campo et al., 2011; DiCarlo et al.,
2019; Hamilton et al., 2013; Hornykiewicz, 2006; Keiflin &
Janak, 2015; Kurian et al., 2009; Mazei-Robison et al., 2005; Sal-
atino-Oliveira et al., 2018; J. Zhu & Reith, 2008).

Our understanding of DAT function has been facilitated by the
elucidation of the structures of bacterial homologs (Yamashita
et al., 2005), the Drosophila DAT (Penmatsa et al., 2015), and
several mammalian members of the same transporter family
(Coleman et al., 2016; Cuboni & Hausch, 2014). Computational
modeling has also improved our understanding of the mechanism
of function of DAT (Beuming et al., 2008; Cheng et al., 2015a;

ABBREVIATIONS: AMPH, amphetamine; Cl, confidence interval; DA, dopamine; DAT, dopamine transporter; IFo, inward-facing open; OFo,

outward-facing open; Swip, swimming-induced paralysis.
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Cheng & Bahar, 2015; Kaya et al., 2018; Khelashvili et al., 2015).
These studies agree on a central orthosteric site, S1, that
binds the substrate DA and competitive inhibitors/sub-
strates such as cocaine and amphetamine (APMH) (Aggar-
wal et al., 2021; Cheng & Bahar, 2019). Some studies have
also suggested the existence of allosteric sites in the extra-
cellular vestibule of DAT (Aggarwal & Mortensen, 2017,
Navratna et al., 2018; Zhen & Reith, 2016) in the related
serotonin transporter (Chen et al., 2005; Coleman et al.,
2016; Niello et al., 2020; Plenge et al., 2020, 2021) and in
the bacterial homolog LeuT (Beuming et al., 2008; Cheng
& Bahar, 2013; Shan et al., 2011; Shi et al., 2008; Zhao
et al., 2011). We have previously used structure/function
studies to identify one allosteric site that we termed A2
(Aggarwal et al., 2019, 2021). We identified a specific com-
pound, KM822, that interacts with this site and have dem-
onstrated that it interferes with the interaction of cocaine
with DAT and attenuates cocaine-elicited locomotion in
planaria (Aggarwal et al., 2019).

Drugs of abuse, such as cocaine and AMPH, act by target-
ing DAT, leading to substantial elevation of extra-synaptic
DA levels (Belovich et al., 2021; Di Chiara & Imperato, 1988;
Mayer et al., 2021; Mortensen & Amara, 2003; Saunders
et al., 2000; J. Zhu & Reith, 2008). Recent reports suggest
that mechanisms that govern human addiction are phyloge-
netically conserved (Engleman et al., 2016). The nematode
Caenorhabditis (C.) elegans has a simple nervous system
with highly conserved genes that regulate neuronal develop-
ment, maintenance, and function (Hobert, 2010; McDonald
et al., 2006; Refai et al., 2013; Serrano-Saiz et al., 2017; Sul-
ston et al., 1975). We and others have made use of the nema-
tode model to study DAT-dependent DA signaling
(Bermingham et al., 2017; Carvelli et al., 2010; J. A. Hard-
away et al., 2012; Nass et al., 2002; Refai & Blakely, 2019;
Robinson et al., 2019).

Mutations in C. elegans DAT/DAT-1 result in a robust, con-
ditional immobility phenotype that we designated swimming-
induced paralysis (Swip), where animals lose their natural
ability to swim in water (McDonald et al., 2007). Treatment
of worms with the DAT-1 competitive substrate and DA
releaser AMPH (Carvelli et al., 2010) or the high-affinity
DAT-1 inhibitor nisoxetine (Bermingham et al., 2016),
results in Swip that can be blocked by genetic or pharmaco-
logical blockade of DOP-3 (Carvelli et al., 2010; Refai &
Blakely, 2019). Moreover, Swip phenotype has proven effec-
tive in studying the structural and functional characteristics
of the human DAT (hDAT) (McDonald et al., 2007; Nass
et al., 2005; Robinson et al., 2017).

Here, we capitalize on the power of a C. elegans model to
characterize the action and specificity of the allosteric DAT
modulator KM822 in vivo. Our data from molecular modeling
studies support the binding of KM822 to a similar allosteric
site in DAT-1 as in hDAT. Our pharmacological studies dem-
onstrate that KM822 can both antagonize DAT-1 and reduce
the inhibitory actions of AMPH in vitro. Consistent with
these findings, KM822 attenuates the ability of AMPH to
induce Swip at concentrations that do not impact DAT-1. Fol-
low-up genetic and pharmacological studies support the tar-
geting of DAT-1 by KM822 over other AMPH targets in vivo.
We discuss our findings with respect to use of the worm
model as a model for further evaluation of KM822 and other
DAT allosteric modulators, which provide a novel therapeutic

strategy for the treatment of disorders that feature DAT sig-
naling perturbations.

Materials and Methods

Reagents and Drugs. Radiolabeled substrates [°H]-dopa-
mine (32.6 Ci/mmol) and [*H]-serotonin (23.9 Ci/mmol) were
purchased from PerkinElmer (Boston, MA, USA). Cell cul-
ture media and supplements, including penicillin/streptomy-
cin, Dulbecco’s phosphate-buffered saline (DPBS), Dulbecco’s
modified Eagle’s medium with glucose, and scintillation fluid,
were obtained from Thermo Fisher Scientific (Waltham, MA,
USA). Transfection reagents TransIT-LT1 were from Mirus
Bio, LLC (Madison, WI, USA). Reagents for uptake assays
and non-radiolabeled substrates were purchased from Sigma-
Aldrich (St. Louis, MO, USA).

Structural Models of C. elegans DAT. The structural
models of C. elegans DAT-1 (residues R40 to K594; UniProt
ID Q03614)) in the outward-facing open (OFo) and inward-
facing open (IFo) states were generated using the OFo Dro-
sophila melanogaster DAT structure [Protein Data Bank
(PDB): 4M48] (Penmatsa et al., 2013) and IFo human seroto-
nin transporter (PDB: 6DZZ) (Coleman et al., 2019) as the
template, respectively. We used the homology modeling pro-
tocol described earlier (Cheng & Bahar, 2015). Briefly, an
ensemble of homology models was generated using MOD-
ELER (Fiser & Sali, 2003), and the model with the lowest
(MODELER objective function) score was selected for further
docking simulations.

Docking Simulations. The molecular structure of
KM822 was taken from a previous study (Aggarwal et al.,
2019). The binding sites and poses of KM822 onto C. elegans
DAT (DAT-1) were assessed using the protein-ligand docking
software AutoDock (Trott & Olson, 2009). Docking simula-
tions were performed following the previous protocols (Cheng
et al., 2015b). Briefly, a Lamarckian genetic algorithm with
default parameters was employed, with the maximal number
of energy evaluations set to 2.5 x 10”. The binding energy
was estimated from the weighted average of multiple binding
poses at a given site observed in 100 independent runs.

Cell Culture and Transfections. COS-7 cells were
maintained in Dulbecco’s modified Eagle’s medium (3.5-g/L
glucose) supplemented with 10% FBS and 1% penicillin/
streptomycin at 37°C with 5% CO2. For transient transfec-
tions, COS-7 cells were transfected using the TransIT-LT1
transfection reagent (Mirus Bio, LLC, Madison, WI, USA).

Transport Inhibition Assays Using COS-7 Cells.
Transiently transfected COS-7 cells (expressing DAT-1) were
plated in 24-well plates. Uptake experiments were performed
2 days later. The medium was removed, and the cells were
washed with PBS (137 mM of NaCl, 2.7 mM of KCI, 4.3 mM
of NaoHPO,, and 1.4 mM of KH,PO,4, pH 7.4) containing 0.1
mM of CaCl,, 1 mM of MgCl,, 5§ mM of RO 41-0960, and 100
mM of ascorbic acid. Following washing, the cells were incu-
bated for 10 minutes with various concentrations of KM822,
and the uptake was initiated by adding [*H]DA to a final con-
centration of 50 nM. Uptake was allowed to continue for 10
minutes at room temperature and was terminated by wash-
ing twice with ascorbic. Cells were solubilized in a scintilla-
tion cocktail and counted on a microplate scintillation and
luminescence counter (PerkinElmer, Waltham, MA, USA). A



Hill equation was fitted to data by a nonlinear regression
analysis to obtain the ICs, values.

C. elegans Strains. C. elegans strains were cultured on
OP50 or NA22 bacterial lawns and maintained at 13-20°C
using standard protocols (Brenner, 1974). Worm strain N2
Bristol was obtained from the Caenorhabditis Genetics Cen-
ter (University of Minnesota, Minneapolis, MN) and used as
the wild-type strain. The dat-1(ok157) strain was used as the
DAT-1 loss of function allele, whereas a loss of function allele
of the LGC-55 ion channel (Igc-55(n4331)) and the double KO
strain dat-1; Igc-55 (a kind gift from Dr. Lucia Carvelli, Flo-
rida Atlantic University) were used to assess a role of LGC-
55 versus DAT-1 dependence of KM822 inhibition of AMPH
actions.

C. elegans Swip Assays. Swip assays were performed as
previously described (J. A. Hardaway et al., 2012; McDonald
et al., 2007). Briefly, worms were grown on NA22 plates,
with synchronization achieved by lysis of gravid adults using
4%(ml) hypochlorite treatment. Synchronized L1 animals
were plated into OP50 plates until the L4 stage. All Swip
assays were initiated by placing ten L4 hermaphrodites into
a well of 100 ul of distilled water (note Swip does not occur in
isotonic M9 medium) containing vehicle, plus or minus drug.
Animals were scored as the number of paralyzed versus
swimming worms after a 10-minute incubation. For each
genotype and/or treatment, eight wells were scored, and
every experiment was repeated on at least three separate
days for an n = 24. For drug treatments, KM822 was dis-
solved in DMSO to generate a 50 mM stock solution, which
was used to generate dilutions in distilled water for Swip
assays. The final concentration of DMSO in drug solutions of
50 uM, 250 uM, and 500 M of KM822 equals 0.1%, 0.25%,
and 0.5%, respectively. Vehicle controls used the same
DMSO concentrations in the absence of drug. AMPH (Sigma-
Aldrich, St. Louis, MO) was prepared as 50 mM-100 mM
stock solutions and used at serial dilutions at 300 uM.
B-phenylethylamine (Sigma-Aldrich, St. Louis, MO; a gift
from Lucia Carvelli, Florida Atlantic University) was pre-
pared as a stock solution in distilled water at 10 mM and
used at a final concentration of 1 mM, as previously described
(Safratowich et al., 2014). For the drug mixtures, AMPH was
added to KM822 or f-PEA final concentration solutions,
mixed vigorously by vortexing and shaking, and used imme-
diately after preparation. Drug solutions were used as a
swimming medium for the total time of the Swip assay, to
achieve acute treatment.

Statistical Analyses. Swip data were analyzed statisti-
cally and graphed using Prism version 7.0 (GraphPad, Inc.,
La Jolla, CA). For the Swip assays, the sample size for each
group is 10 animals per well, for eight wells tested per assay
(n = 80) per genotype, following the previously described pro-
tocol (see above). Unless otherwise stated, data were ana-
lyzed by Student’s ¢ tests, one-way ANOVAs and two-way
ANOVAs followed by Sudak, Dunnet’s post-hoc, or Bonferroni
multiple comparison tests. Statistical significance was con-
sidered achieved for P < 0.05 in all cases. Error bars were
plotted to represent the mean with SD, unless otherwise
mentioned. Statistical inter-group comparisons were decided
after data were observed. Our experiments were carried out
in an exploratory manner; therefore, the calculated P values
shall be interpreted as such, rather than a hypothesis-testing
approach.
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Results

Computational modeling and functional uptake
assays indicate KM822 interacts with DAT-1. Struc-
tural models of DAT-1 in the OFo and IFo states were gener-
ated using the OFo Drosophila melanogaster DAT (PDB:
4M48) (Penmatsa et al., 2013) and IFo human serotonin
transporter (PDB: 6DZZ) (Coleman et al., 2019) as the tem-
plate, respectively. DAT-1 has 47% sequence identity to
hDAT and human serotonin transporter. In DAT-1, the con-
served EC gating residues include R65-E466 and Y137-F313,
whose homologous EC gates in hDAT are R85-D476 and
Y156-F320 (see Fig. 1). The potential binding poses of
KM822 and its interactions with DAT-1 in different confor-
mation states were analyzed by a series of docking simula-
tions. Similar to that observed in hDAT (Aggarwal et al,,
2019, 2021), the most favorable binding site for KM822
bound to DAT-1 was within the EC vestibule in the OFo con-
former, and no high affinity binding site was observed in the
case of the IFo conformer. Therefore, we propose that KM822
would predominantly bind to the EC vestibule of OFo DAT-1.
Two slightly different binding poses of KM822 (I and II) were
identified within the A2 site of DAT-1 (Fig. 1), in agreement
with those observed in MD simulations of KM822 binding to
hDAT (Aggarwal et al., 2019, 2021). In DAT-1, KM822 pose
I site is composed by e.g., Y137, E466, W475, and Y541
(Fig. 1a), which is comparatively deeper inside the EC vesti-
bule than the pose II site. The KIM822 pose II site is near the
EC vestibule entrance (Fig. 1A), composed of e.g., W64, R65,
E378, P380, E466, and Y541 (Fig. 1B). Overall, docking simu-
lations indicated that KM822 exhibited high-affinity binding
(—8.1£1.1 kcal/mol) to the A2 pocket located in close proximity
to salt bridge formed by amino acids R65 and E466 (Fig. 1).
The homologous salt bridge forms an external gate/lid in the
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Fig. 1. KM822 binds to Caenorhabditis elegans dopamine transporter-1
at an allosteric site that closely overlaps with the KM822-binding site
onto human dopamine transporter. Structural modeling and docking
analysis suggest KM822 (space-filling; cyan, with N-, O-, and S-atoms
in blue, red, and yellow, respectively) may bind to dopamine trans-
porter-1 with two different poses (panels A and B), comparable to those
at the allosteric site A2 previously described for hDAT (panels C and
D), see (Aggarwal et al., 2021). Residues that coordinate KM822 in all
four cases are shown in sticks and labeled.
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allosteric site is centrally positioned to interfere with confor-
mational changes during the transport cycle, altering the
interactions of ligands with the orthosteric site.
Functional studies on DA uptake confirmed the computa-
tional predictions as concentration-response inhibition curves
751 ~e- hDAT showed that KM822 inhibited the DAT-1 consistent with a
-2 ceDAT single binding site, albeit with a higher ICs, compared with
50- KM822 inhibition of hDAT. The ICsq for inhibiting DAT-1
was 10.4 uM; 95% CI [6.3; 17.0] versus 2.2 uM; 95% CI [1.6;
3.2] for hDAT (Fig. 2). These findings encouraged us to deter-
254 mine whether KM822 affects DAT-1 function or its interac-
1 tions with an orthosteric inhibitor in vivo.
0 ' ' . ' ; r . KM822 Interferes with the Interaction of DAT-1
10- 102 10-' 10° 10' 102 10° 10¢ With AMPH. In our previous studies, we found that KM822
interferes with the interaction of cocaine with hDAT, reducing
KM822 (uM) the affinity of cocaine (Aggarwal et al., 2019). Here, we studied

Fig. 2. KM822 suppresses the activity of both human and Caenorhab-  the effect of KM822 on the interaction of the two psychostimu-
ditis elegans dopamine transporters (DATs). Radioactive dopamine : : _ iy
transport inhibition assay using KM822 against human (hDAT) and lants, AMPH and cocaine, with DAT-1. Additionally, we tested

Caenorhabditis elegans (DAT-1) DAT in transiently transfected COS-7 nisoxetine as, _unlike_ Focaine.’ it eXhibiFs both a. highly potent
cells. KM822 IC5, mean values for hDAT and DAT-1 are 2.2 uM, 95% and DAT-specific ability to induce Swip (Bermingham et al.,

confidence interval [1.6; 3.2] and 10.4 M, 95% confidence interval [6.3;  2016; Carvelli et al., 2010; Valladares et al., 2021). First, we
17.0], respectively. Nonlinear regression was used to obtain a curve

consistent with a single binding site. ICs, mean values and correspond- p.erfonned m vitro concentration-response DA transport 1nh-1b1-
ing 95% confidence intervals are calculated using an average of five tion assays in transfected COS-7 cells using AMPH, cocaine,
independent experiments. and nisoxetine in the absence or presence of 20 pM of KM822

(Fig. 3). Our results demonstrate that KIM822 shifts the con-

centration-response curve of AMPH-mediated inhibition to the
occluded conformation transiently stabilized during the trans- right, indicating that KM822 affects AMPH interactions with
port cycle of hDAT (review see, (Cheng & Bahar, 2019)), sug- DAT-1 (Fig. 3A, B). In contrast, little or no KM822 effect was
gesting that KM822 through its interaction with the A2 observed on nisoxetine (Fig. 3C, D). The statistically significant
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Fig. 3. KM822 affects dopamine transporter-1 interactions with amphetamine (AMPH) but has no effect on nisoxetine or cocaine actions. Two
depictions of each representative dopamine uptake experiment are displayed. One of actual dopamine uptake (A, C, and E) and one with uptake
values normalized relative to vehicle control (B, D, and F). (A, B) Radioactive dopamine (DA) transport inhibition assay of AMPH in the absence
and presence of 20 uM of KM822 in dopamine transporter-1-transfected COS-7 cells. IC5o mean values of AMPH are 1.1 uM, 95% confidence inter-
val (CI) [0.84; 1.4] for the vehicle and 3.4 uM, 95% CI [2.9; 3.9] in the presence of 20 pM of KM822 (**, p < 0.01). The concentration-response of
AMPH-mediated inhibition was shifted to the right due to KM822 treatment. (C, D) Radioactive DA transport inhibition assay of nisoxetine in
the absence and presence of 20 pM of KM822 in dopamine transporter-1-transfected COS-7 cells. IC5o mean values of nisoxetine in the absence
and presence of 20 uM of KM822 are 0.04 M, 95% CI [0.029; 0.055] and 0.03 uM, 95% CI [0.021; 0.042], respectively. No statistically significant
change was observed in nisoxetine-mediated inhibition. (E, F') Radioactive DA transport inhibition assay of cocaine in the absence and presence of
20 pM of KM822 in dopamine transporter-1-transfected COS-7 cells. IC5¢ mean values of cocaine are 9.6 uM, 95% CI [8.1; 11] for the vehicle and
128 uM, 95% CI [61; 268] in the presence of 20 pM of KM822 (*, p < 0.05). The concentration-response of cocaine-mediated inhibition was shifted
to the right due to KM822 treatment. IC5y mean values and 95% confidence intervals were calculated using the average of three independent
experiments. Statistical analysis was performed using Student’s ¢ test.



effect of KM822 on the interaction of AMPH with DAT-1 is
similar to what we observed previously with the interaction of
hDAT with cocaine (Aggarwal et al., 2019). Similar to what we
found in those previous studies, we observed that KM822 also
shifts the concentration-response curve of cocaine-mediated
inhibition of DAT-1 to the right (Fig. 3E, F). Taken together,
these results support the hypothesis that KM822 interacts
with the A2 allosteric site of DAT-1 in a manner that can
attenuate the action of psychostimulants like cocaine and
AMPH, reinforcing our decision to examine potential in vivo
consequences of this.

Acute KM822 Treatment Suppresses AMPH-induced
Swip. The effects of KM822 on AMPH-binding to DAT-1
in vitro suggested that KM822 may limit the action of AMPH
in producing Swip, analogous to our findings that KM822 can
diminish the actions of AMPH in the planeria model. As dis-
cussed earlier, the swimming behavior of C. elegans is tightly
controlled by the activity of DAT-1, where loss-of-function
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mutations in DAT-1 result in the Swip phenotype (McDonald
et al., 2007). As with a loss-of-function dat-1 allele, wild-type
animals incubated in water with specific concentrations of
AMPH exhibit Swip within a few minutes of incubation (Car-
velli et al., 2010; Valladares et al., 2021). First, we analyzed
the swimming activity of wild-type N2 animals in solutions
containing increasing concentrations of KM822, ranging
between 10 and 500 uM. Swip data recorded after 10 minutes
of incubation in KM822 solutions indicated no statistically
significant effect on swimming behavior of N2 (Fig. 4A). In
contrast, and as expected, worms treated with AMPH demon-
strated concentration-dependent induction of Swip up to
300uM, where a ceiling effect was observed (Fig. 4B). In con-
trast, animals treated with an AMPH/KM822 mixture exhib-
ited clearly higher levels of swimming than observed with
AMPH alone (Fig. 4B). The effect of KM822 on AMPH-
induced Swip reached its peak at 300 uM AMPH and dimin-
ished at higher concentrations (500 uM AMPH), possibly due
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Fig. 4. KM288 suppresses amphetamine (AMPH)-induced swimming-induced paralysis (Swip) in wild-type Caenorhabditis elegans: (A) concentra-
tion-response profile of wild-type (N2) to KM822 treatments indicating no statistically significant change in the animals’ swimming behavior
(N = 240). No statistical significance was observed comparing the swimming behavior of KM822 to vehicle treated animals of the same concentra-
tion point (P value < 0.05; F-value = 0.4368). Data were analyzed by a two-way ANOVA with Bonferroni multiple comparison tests between
KM822 and vehicle treatments at each concentration. (B) KM288 (250 uM) suppresses AMPH-induced Swip phenotype at various AMPH concen-
trations. Swip assays were performed for animals incubated in distilled water solutions containing the depicted concentrations of AMPH or
AMPH + KM822 (250 uM), N = 240. Data were analyzed by a two-way ANOVA with Bonferroni multiple comparison tests, comparing AMPH
and AMPH + KM822 treatments at each concentration point. Statistically significant differences were observed at 250 pM, 300 uM and 500 uM
AMPH concentrations (**** = P value < 0.0001; F-value = 43.05). No statistically significant changes in the swimming profile of control or vehi-
cle groups, as indicated in A (not shown for simplicity). (C) KM822 reversal of Swip is dopamine transporter-1 dependent. A representation of the
10-min Swip assay, depicting the swimming behavior of animals after 10 min of incubation in control (vehicle) or drug conditions (N = 240). No
statistically significant differences were observed comparing N2 in vehicle versus 250 yM KM822 conditions (ns, P value < 0.05). Whereas N2 ani-
mals incubated in 300 xM 0f AMPH demonstrated significant Swip paralysis compared to the 250 M of KM822 and AMPH/KM822 mixture (****
= P value < 0.0001, F-value = 192.4). A dose of 250 uM of KM822 demonstrated no statistically significant effect on the Swip paralysis of dat-1
mutants compared to the condition (ns, P value < 0.05). Data were analyzed by a one-way ANOVA with Bonferroni multiple comparison tests.
(D) KM822 has no statistically significant effect on nisoxetine-induced Swip at 2.5 uM and 5 uM of nisoxetine concentration (ns, P value < 0.05).
Data were evaluated using one-way ANOVA or two-way ANOVA with selected Bonferroni’s multiple comparisons tests, comparing different treat-
ments with (**** = P value < 0.0001; F-value = 156.4). N = 240. For all data, means and SDs are displayed.
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to competition between the two drugs for the target (Fig. 4C).
Therefore, we used the concentrations 300 uM AMPH and
250 uM KM822 for subsequent experiments.

If the ability of KM822 to diminish AMPH-induced Swip is
due to DAT-1 interactions, no reduction in Swip should occur
in animals that lack DAT-1, i.e., in dat-1(0ok157) mutants.
Indeed, unlike KM822 effects on AMPH-induced Swip, we
observed no ability of KM822 to diminish Swip in dat-
1(ok157) animals (Fig. 4C). Additionally, and consistent with
our in vitro pharmacological assays, KM822 displayed no sta-
tistically significant effect on nisoxetine-induced Swip, at
either 2.5 uM or 5 uM concentrations (Fig. 4D).

KM822 Suppresses DAT-specific Actions of AMPH to
Produce Swip. Although a substantial portion of AMPH-
induced Swip has been found to be dependent of DAT-1 inter-
actions, with effects attenuated when synthesis of DA is
precluded or when expression of the DOP-3 receptor is pre-
vented, a portion of AMPH-induced Swip has been reported
to arise from the drug’s interaction with an amine-gated
chloride channel LGC-55 (Safratowich et al., 2013, 2014).
We therefore asked whether the loss of function strain
lge-55(n4331) alters the ability of KM822 to attenuate
AMPH-induced Swip. We found that lge-55 mutant animals
display swimming behavior like that of N2 (Fig. 5A). More-
over, lgc-55 animals displayed an equivalent ability to sup-
port AMPH-induced Swip as N2. Importantly, KM822
suppressed AMPH-induced Swip in [gc-55 mutants even bet-
ter than in N2. These effects indicate that the LGC-55 chan-
nel is not required for KM822 to diminish AMPH-induced
Swip, in contrast to an essential requirement observed for
DAT-1 (Fig. 4b, 5a). Indeed, loss of LGC-55 appears to render
the effect of KM822 more penetrant (Fig. 5a), although the
mechanism for this effect is unclear at present. Importantly,
no ability of KM822 to rescue AMPH-induced Swip was evi-
dent in dat-1; lgc-55 mutants, consistent with DAT-1 but not
LGC-55 as responsible for the AMPH-related actions of
KMS822. Consistent with this idea, the paralytic action of
p-phenylethylamine, which mimics the effect of AMPH on C.

elegans by activating the LGC-55 channels and induces DA
signaling-independent Swip (Refai & Blakely, 2019), was
insensitive to KM822 (Fig. 5B).

Discussion

The results of our present study reveals an evolutionary
conservation in the ability of KM822 to allosterically modu-
late DAT proteins, ranging from invertebrates to hDAT
(Aggarwal et al., 2019). Our conclusion is supported by in sil-
ico structural modeling and docking analysis, in vitro phar-
macological studies, and in vivo genetic and behavioral
assays. Computational modeling of KM822 within DAT-1
shows that KM822 binds to the OFo of DAT-1 and preferen-
tially occupies a region in the EC vestibule corresponding to
the A2 pocket of hDAT. Both charged (e.g., E378 in DAT-1
and D385 in hDAT) and aromatic residues (e.g., W64 in
DAT-1 and W85 in hDAT) within the allosteric binding site
are conserved between hDAT and DAT-1. Consistent with
what was found for hDAT, KM822 sits in the allosteric
domain of DAT-1 close to the R65-E466 salt bridge and may
thereby influence affinity of ligands bound at the orthosteric
site by interfering with conformations needed to inhibit the
transport cycle. Based on the computational predictions,
future structure/functions studies will be important to iden-
tify specific residues within DAT-1 that are important for
mediating the interaction with KM822. Determination of
in vitro activity of KM822 in DAT-1-transfected COS-7 cells
revealed that KM822 potently inhibits DAT-1 transport func-
tion as was previously observed for hDAT. Interestingly,
KM822 effectively reduced the transport inhibition potency
of AMPH- and cocaine-mediated DAT-1 function but had no
effect on the potency of the DAT-1 inhibitor nisoxetine. These
results are similar to our observation in previous studies,
where we have shown that KM822 attenuated the inhibitory
potency of cocaine in hDAT-mediated DA transport assay
(Aggarwal et al., 2019). Collectively, these results prove that
KM822 binds to an allosteric site of DAT-1 that is separate
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Fig 5. KM822 suppresses dopamine transporter (DAT)-specific swimming-induced paralysis (Swip) behavior, but not LGC-55 induced Swip. A)
KM822 suppresses DAT-1 dependent Swip, but not LGC-55 induced Swip, in response to amphetamine (AMPH) treatment. Depicted are 10-min
Swip assays for N2, lgc-55, dat-1, and dat-1; lgc-55 animals (N = 240). KM822 suppresses AMPH-induced Swip in N2 animals and /gc-55 mutants
(**** P value < 0.0001; F-value = 80.82), with KM822 suppression of AMPH-induced Swip found to be significantly greater in [gc-55 than in N2
background (**# P value < 0.0001; F-value = 80.82). KM822 has no statistically significant effect on AMPH-induced Swip of dat-1 and dat-1; lgc-
55 mutant backgrounds (ns, P value < 0.05). Data were analyzed using two-way ANOVA with selected Bonferroni’s multiple comparisons tests,
comparing KM822 treatments over conditions and genotypes. B) KM822 demonstrates no effect on f-phenylethylamine-induced Swip of N2 ani-
mals (ns, P value < 0.05). Swip data were analyzed using ordinary one-way ANOVA, with selected Bonferroni’s multiple comparisons tests, com-
paring different conditions with (**** = P value < 0.0001; F-value = 151.1). N = 140. For all, data means and SDs are displayed.



from the orthosteric binding site and interferes with the trans-
port mechanism of DAT-1, most likely by inducing conforma-
tional changes in the transporter. In vitro studies show that
KM822 has no effect on the inhibition potency of another
orthosteric ligand, nisoxetine, in DAT-1 transfected cells, indi-
cating that the attenuation of AMPH and cocaine activity in
DAT-1 transfected cells by KM822 might not be due to a direct
interference with ligand binding at the orthosteric site versus
either interference at a more distal site or perturbations of
conformational changes that must be achieved by the orthos-
teric ligand to achieve high affinity binding. Interestingly, the
affinities for the two orthosteric inhibitors, cocaine and nisoxe-
tine, are different with the higher affinity ligand nisoxetine
not being affected by KM822 engagement of the allosteric site.
Taken together, our findings demonstrate an evolutionary
conservation of the allosteric pocket that likely provides the
structures necessary for mediating allosteric effects, but also
points to ligand-specific effects as KM822 affects the interac-
tion of the orthosteric ligand cocaine but not nisoxetine with
DAT. This furthermore opens the possibility of developing
allosteric ligands with unique specificity and selectivity and
with various transporter-modulating activities.

To determine whether findings with KIM822 heterologous cell
transfection of DAT-1 ¢cDNA are relevant in vivo, we evaluated
the ability of KM822 to diminish AMPH-induced Swip behavior
in which nematodes deficient in DAT-1 expression are exposed
to water. The Swip phenotype has been used extensively to
investigate the structural, functional, and behavioral properties
of DAT-1 in vivo and as a tool to support forward genetic studies
to identify novel determinants of DA signaling and health (Ber-
mingham et al., 2017; Carvelli et al., 2010; Gibson et al., 2018;
J. Hardaway et al., 2015; J. A. Hardaway et al., 2012; Refai &
Blakely, 2019; Robinson et al., 2019; Safratowich et al., 2013).
The free-living C. elegans hermaphrodite possesses eight mecha-
nosensitive DA neurons that inhibit motor neurons involved in
determining the speed of crawling on solid surfaces or thrashing
in liquid. Excess DA secretion, or reduced DA clearance via
DAT-1 leads, when sustained, to Swip. Swip is triggered by
excess DA release that can arise from mutations that induce
excess DA neuron excitability (J. Hardaway et al., 2015) when
DAT-1 is antagonized pharmacologically (e.g., with nisoxetine)
(Bermingham et al., 2016) or when DAT-1 is genetically elimi-
nated (McDonald et al., 2007). As a competitive substrate of
DAT-1 with the ability to induce DAT-1-mediated DA efflux,
AMPH also produces Swip (Carvelli et al., 2010; Safratowich
et al., 2013, 2014; Valladares et al., 2021) (ref) via both DAT-1
dependent and independent mechanisms (McDonald et al.,
2007; Safratowich et al., 2013).

Since tests of KM822 interaction with DA uptake assays in
DAT-1-transfected cells revealed inhibitory activity, we
expected the drug might induce Swip like the DAT-1 inhibi-
tor nisoxetine. However, KM822 at the concentrations used
had no effect on the swimming behavior of wild-type animals,
suggesting that the drug’s allosteric interactions with DAT-1
are insufficient to produce Swip, or that the drug does not
access the transporter in vivo, perhaps due to poor penetra-
tion across the worm cuticle. However, we found KM822 to
be bioactive in vivo when tested in the context of AMPH-
induced Swip. We have reported analogous observations
previously in planarians, where KM822 did not impact loco-
motion in planarians, but effectively antagonized cocaine-
induced stimulation of locomotion (Aggarwal et al., 2019).
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The observation that KM822 does not affect nisoxetine-
induced Swip supports the in vitro results that showed that
KM822 had no effect on DAT-1 interactions with nisoxetine.
This further corroborates that the KM822 interaction with
DAT-1 occurs either through an intermediate or because of
binding to sites distinct from those of an orthosteric inhibitor.
Since we see a shift induced by KM822 of AMPH potency in
transfected cells not expected to harbor C. elegans DAT-1-
interacting proteins, and we detect a conserved binding site
for KM822 shared by nematodes and humans, we believe our
findings are most consistent with a model whereby KM822
exhibits non-competitive inhibition of DAT-1 via allosteric
modulation of DAT-1 function. Such observations have been
widely reported in the past with several other DAT ligands
with non-competitive mechanism of inhibition (Li et al.,
2011; Loland et al., 2008; Schmitt & Reith, 2012) though to
our knowledge, this is the first example of an interaction that
results in modulated AMPH action.

Our findings indicate that KM822 specifically targets DAT-1
in vivo based on the fact that: (1) KM822 has no effect on Swip
behavior induced by dat-1 KO mutants, and (2) the effect of
KM822 on the AMPH-induced Swip is lost in da¢-1 animals.
However, since AMPH can induce Swip in a DAT-1-indepen-
dent manner via activation of the amine-gated chloride channel
LGC-55 (Safratowich et al., 2013, 2014), we needed to confirm
that the action of KM822 to attenuate AMPH-induced Swip
was not due to an interaction of KM822 on LGC-55. First, we
showed that KM822 suppression of AMPH-induced Swip is not
lost (rather increased) in animals that lack LGC-55. Second, we
found that KM822 was ineffective in reducing Swip behavior
triggered by B-phenylethylamine, a specific activator of LGC-55
that induces Swip independently of DA signaling (Refai &
Blakely, 2019). Together, our data indicate that KIM822 specifi-
cally targets DAT-1 and allosterically reduces AMPH interac-
tions with the transporter as was found in transfected cells.
Consequently, we suggest that KM822 action on DAT-1 is via
the occupancy of the A2 allosteric site first identified in hDAT
(Aggarwal et al., 2019, 2021). Identification of A2 site mutations
that disrupt KM822 interactions with AMPH, but that fail to
alter DAT-1 activity, and the introduction of these changes
in vivo through CRISPR/Cas9 approaches can add further sup-
port for our conclusion. To conclude, by using both pharmaco-
logical and genetic approaches, our studies demonstrate that
the behavioral effects of KM822 are mediated by a specific mod-
ulation of DAT-1. This finding adds to our previous studies in
planarians, here adding strong evidence that in vivo allosteric
inhibition of DAT can be realized. Furthermore, our findings
support the use of the worm model, with its extensive battery
of genetic tools, as a platform for the rapid screening of DAT
allosteric inhibitors as well as in understanding their mecha-
nisms of action. Further pursuit of these efforts may provide
lead structures for the development of novel therapeutic agents.
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