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ABSTRACT
Accumulating evidence of glutamatergic abnormalities in the
brains of schizophrenia patients has led to efforts to target vari-
ous components of glutamatergic signaling as potential new
approaches for schizophrenia. Exciting research suggests that
metabotropic glutamate (mGlu) receptors could provide a funda-
mentally new approach for better symptomatic relief in patients
with schizophrenia. In preclinical studies, the mGlu5 receptor
positive allosteric modulators (PAMs) show efficacy in animal
models relevant for all symptom domains in schizophrenia. Inter-
estingly, biased pure mGlu5 receptor PAMs that do not po-
tentiate coupling of mGlu5 receptors to N-methyl-D-aspartate
(NMDA) receptors lack neurotoxic effects associated with mGlu5
PAMs that enhance coupling to NMDA receptors or have allo-
steric agonist activity. This provides a better therapeutic pro-
file for treating schizophrenia-like symptoms. Additionally, the
mGlu1 receptor PAMs modulate dopamine release in the stria-
tum, which may contribute to their antipsychotic-like effects.
Besides group I mGlu (mGlu1 and mGlu5) receptors, agonists of
mGlu2/3 receptors also induce robust antipsychotic-like and pro-
cognitive effects in rodents and may be effective in treating

symptoms of schizophrenia in a selective group of patients.
Additionally, mGlu2/4 receptor heterodimers modulate glutama-
tergic neurotransmission in the prefrontal cortex at selective syn-
apses activated in schizophrenia and therefore hold potential as
novel antipsychotics. Excitingly, the mGlu3 receptor activation
can enhance cognition in rodents, suggesting that mGlu3 recep-
tor agonist/PAM could provide a novel approach for the treat-
ment of cognitive deficits in schizophrenia. Collectively, the
development of mGlu receptor-specific ligands may provide an
alternative approach to meet the clinical need for safer and more
efficacious therapeutics for schizophrenia.

SIGNIFICANCE STATEMENT
The currently available antipsychotic medications do not show sig-
nificant efficacy for treating negative symptoms and cognitive defi-
cits in schizophrenia. Emerging preclinical and clinical literature
suggests that pharmacological targeting of metabotropic gluta-
mate receptors could potentially provide an alternative approach
for designing safer and more efficacious therapeutics for treating
schizophrenia.

Introduction
Schizophrenia is a heterogeneous neuropsychiatric disorder

that affects around 1% of the populationworldwide (Per€al€a et al.,
2007). The clinical features of the disease are characterized by
three symptom domains: positive symptoms that include halluci-
nations, delusions, and thought disorders; negative symptoms

including blunted emotions, anhedonia, and social withdrawal;
and cognitive deficits such as impairments in attention, execu-
tive function, and working memory. The currently prescribed
therapeutic agents (both typical and atypical antipsychotics)
show efficacy in reducing the severity of positive symptoms but
have minimal impact on negative symptoms and cognitive defi-
cits associated with schizophrenia (Li et al., 2016a). Further, a
significant portion of patients do not respond to these medica-
tions, and many patients discontinue treatment because of the
class-related adverse effects, such as extrapyramidal side effects
(parkinsonism, bradykinesia, dystonic reactions, tardive dyski-
nesia, and tremor), sedation, and metabolic side effects (weight
gain, hyperlipidemia, and type II diabetes) (Li et al., 2016a).
Thus, there is an unmet clinical need for designing safer
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therapeutic agents acting at new targets underlying the patho-
physiology of schizophrenia.
Despite evidence for a central role of dysfunction of dopa-

minergic signaling in schizophrenia, the inability of current
antipsychotics to treat schizophrenia effectively suggests that
a hyperdopaminergic state does not account for all major
symptoms of this disorder. Accumulating evidence suggests
that dysfunction of glutamatergic signaling may contribute
to the pathogenesis of schizophrenia (Coyle, 2006; Moghad-
dam and Javitt, 2012; Hu et al., 2015; Stahl, 2018). Pharma-
cological evidence for the role of glutamate in schizophrenia
centers on the clinical findings that administration of the
noncompetitive N-methyl-D-aspartate (NMDA) receptor anta-
gonists like phencyclidine (PCP) and ketamine induce/exacer-
bate schizophrenia-like symptoms in healthy individuals (Hu
et al., 2015). Based on these clinical observations, NMDA
antagonists are used preclinically to induce various schizo-
phrenia-like behaviors, such as hyperactivity, repetitive
behavior, sensorimotor gating deficits, and motivational and
cognitive impairments in rodents (Goff and Coyle, 2001;
Barnes et al., 2017; Lee and Zhou, 2019). Interestingly, ani-
mals with genetic knockdown of the NR1 subunit of NMDA
receptors exhibit a full range of behavioral phenotypes that
may be relevant for schizophrenia, including hyperlocomo-
tion, stereotypy, heightened anxiety-like behavior, lack of cog-
nitive flexibility, and other forms of memory impairments
(Mohn et al., 1999; Belforte et al., 2010). Similarly, animals
lacking NR2A or NR2B subunits of NMDA receptors show
behavioral and neurophysiological changes that may reflect
pathophysiology observed in schizophrenia (Ito et al., 1997;
Sprengel et al., 1998; Duncan et al., 2004; Brigman et al.,
2008; von Engelhardt et al., 2008; Belforte et al., 2010; Kan-
nangara et al., 2015). Collectively, these studies have led to
the hypothesis that pathologic changes in glutamatergic cir-
cuits and NMDA receptor signaling may contribute to the
pathophysiology associated with schizophrenia.
Interestingly, genome-wide association studies (GWAS)

and linkage studies have shown a significant association of
gene encoding for the components of glutamate receptors and
maintenance of glutamatergic neurotransmission with schi-
zophrenia (Timms et al., 2013; Schizophrenia Working Group
of the Psychiatric Genomics, 2014; Pocklington et al., 2015;
Pers et al., 2016). These studies, along with extensive preclin-
ical evidence mentioned above, reinforce the hypothesis that
disruption of glutamatergic signaling and NMDA hypo-
function may contribute to the pathophysiology of schizoph-
renia. Based on this, it is conceivable that pharmacological
agents that reverse pathologic changes in NMDA receptor
function or other aspects of glutamatergic signaling could
provide symptomatic relief to patients with schizophrenia.
However, direct modulation of NMDA receptors produces
neuronal excitotoxicity and seizures, prohibiting direct
NMDA receptor targeting as a viable therapeutic option.
Therefore, it will be important to develop more optimized
compounds targeting other components of the glutamatergic
system and testing them in rodent models for treating schizo-
phrenia-like deficits.
A growing body of preclinical and clinical evidence raise

the exciting possibility that targeting metabotropic gluta-
mate (mGlu) receptors may allow more subtle regulation of
glutamatergic neurotransmission in key brain circuits that
are relevant for schizophrenia and may provide novel drug

targets for treatment of this disorder. Metabotropic gluta-
mate receptors are G protein-coupled receptors and are clas-
sified into three groups based on amino acid sequence
homology, G protein binding, pharmacological profile, and
signaling. Group I mGlu receptors include mGlu1 and mGlu5
receptors, group II includes mGlu2 and mGlu3 receptors, and
group III includes mGlu4, mGlu6, mGlu7, and mGlu8 recep-
tors (Niswender and Conn, 2010; Dogra and Conn, 2021).
These receptors signal via coupling with different G-proteins:
Group I mGlu receptors typically couple to Gq/11 proteins and
group II and III receptors are coupled to Gi/o proteins (Nis-
wender and Conn, 2010). Their ability to modulate the gluta-
matergic transmission in the brain areas implicated in
schizophrenia makes them exciting targets for developing
improved pharmacotherapies for schizophrenia.

Genomic Variants in GRM5 and mGlu5

Receptor Hypofunction Are Associated with
Schizophrenia

GRM5 (the gene encoding for mGlu5 receptor) has emerged
as a promising target for the treatment of various symptoms
of schizophrenia. Polymorphisms in GRM5 are associated
with schizophrenia (Devon et al., 2001) and impaired cogni-
tion in patients with schizophrenia (Matosin et al., 2018). A
recent study by Wang et al. (2020) has reported reduced
mGlu5 receptor signaling in the postmortem dorsolateral pre-
frontal cortex (DLPFC) of patients with schizophrenia. The
authors also observed increased serine and tyrosine phos-
phorylation of mGlu5 receptors in DLPFC, which may cause
receptor desensitization leading to reduced mGlu5 receptor
signaling observed in the patients with schizophrenia (Wang
et al., 2020). Interestingly, lower mGlu5 receptor availability
in the left temporal cortex was associated with higher levels
of negative symptoms and worse performance in cognitive
tasks in male patients with chronic schizophrenia (R�egio
Brambilla et al., 2020). These findings support the concept
that dysregulation of mGlu5 receptor signaling/function may
underly the pathophysiology of schizophrenia.
These clinical studies are complemented by studies in

GRM5 knockout (KO) mice displaying sensorimotor gating
deficits, spontaneous hyperactivity, and loss of NMDA recep-
tor-mediated components of some forms of synaptic plasticity
(Jia et al., 1998; Brody et al., 2004a,b; Brody and Geyer,
2004; Burrows et al., 2015). These KO mice also exhibit
abnormalities in sleep and neural oscillatory processing simi-
lar to patients with schizophrenia (Aguilar et al., 2020). Fur-
ther, GRM5 KO mice display impaired performance on
discrimination learning and reversal learning in a trial-
unique nonmatching-to-location task indicating learning and
memory deficits in these mice (Zeleznikow-Johnston et al.,
2018). Also, deletion of GRM5 from cortical pyramidal neu-
rons causes increased novelty-induced locomotion, and sys-
temic treatment with the psychostimulant methylphenidate
can further enhance their locomotion (Jew et al., 2013).
These findings indicate that GRM5 KO mice display deficits
modeling all symptom domains of schizophrenia and reiter-
ate the critical roles of mGlu5 receptors in schizophrenia
pathophysiology. Similarly, administration of mGlu5 receptor
negative allosteric modulators (NAMs) evoke behavioral defi-
cits correlated with schizophrenia (Koros et al., 2007;
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Swedberg et al., 2014) and potentiate behavioral deficits
induced by psychotomimetic agents (Henry et al., 2002;
Campbell et al., 2004), providing evidence linking mGlu5
receptors to schizophrenia.

mGlu5 Potentiators Reduce Behavioral
Disruptions That Are Relevant for
Schizophrenia in Rodent Models

The mGlu5 receptor positive allosteric modulators (PAMs)
can induce cognition-enhancing effects, including improve-
ments in object recognition memory, attenuation of condi-
tioned avoidance response, and reduced impulsivity in the
five-choice serial reaction time test in rodents (Liu et al., 2008;
Uslaner et al., 2009; Schlumberger et al., 2010; Huang et al.,
2016; Yang et al., 2016). Also, systemic administration of the
mGlu5 receptor PAMs CDPPB and ADX427273 increases hip-
pocampus-dependent spatial learning in the Morris water
maze test (Ayala et al., 2009). Similarly, another mGlu5 recep-
tor PAM, DPFE, enhanced the acquisition of contextual fear
conditioning in rats (Gregory et al., 2013). Interestingly, the
mGlu5 receptor agonists/PAMs CHPG, CDPPB, ADX47273,
BMS-955829, DPFE, and DFB were able to reverse the cogni-
tive deficits and motivational impairments induced by NMDA
receptor antagonists as well as hyperactivity induced by
amphetamine, apomorphine, and PCP (Liu et al., 2008; Ste-
fani and Moghaddam, 2010; Vales et al., 2010; Gastambide
et al., 2012; Gregory et al., 2013; LaCrosse et al., 2015; Yang
et al., 2016). These studies support the hypothesis that alloste-
ric potentiation of the mGlu5 receptors could provide a novel
pharmacotherapeutic approach for treating multiple symptom
domains in schizophrenia.
Newer mGlu5 receptor-selective PAMs also show efficacy in

rodent models that have traditionally been used to predict ther-
apeutic efficacy of various drugs for schizophrenia. For exam-
ple, the mGlu5 receptor-selective PAMs VU0092273 and
VU0364289 dose-dependently reversed amphetamine-induced
hyperactivity in rodents, a model predictive of antipsychotic
activity (Rodriguez et al., 2010; Noetzel et al., 2012; Gregory
et al., 2013). Similar antipsychotic-like effects were also
observed with a dihydrothiazolopyridone class of mGlu5 recep-
tor PAM (Bartolom�e-Nebreda et al., 2013). Since the mGlu5

receptors are closely associatedwithNMDA receptors (Alagars-
amy et al., 1999; Benquet et al., 2002; Collett and Collingridge,
2004; O'Riordan et al., 2018), an early hypothesis was that tar-
geting mGlu5 receptors may exert these effects by augmenting
NMDA receptor function to mitigate the NMDA receptor hypo-
function and symptoms observed in schizophrenia.

Biased mGlu5 Receptor PAMs That Do Not
Potentiate Coupling of mGlu5 Receptors to
NMDA Receptors or Exert Allosteric Agonist
Activity Do Not Induce Observable Adverse

Effects
Despite the promising effects of mGlu5 receptor PAMs in

the preclinical studies, the development of these compounds
for the treatment of schizophrenia has been hampered by
neurotoxicology issues, possibly related to intrinsic allosteric
agonist activity (ago-PAMs) and excessive activation of
NMDA receptors (Rook et al., 2013; Parmentier-Batteur

et al., 2014). Early studies revealed that mGlu5 receptor ago-
PAMs induce seizures and other adverse effects that are not
as prominent with pure mGlu5 receptor PAMs that lack
intrinsic allosteric agonist activity (Rook et al., 2013; Par-
mentier-Batteur et al., 2014). Furthermore, the known
adverse effects associated with overactivation of NMDA
receptors raised the possibility that mGlu5 receptor PAMs
that are biased away from NMDA receptor potentiation may
lack excitotoxic/seizure-inducing profiles (Rook et al., 2015).
Supporting this theory, the biased mGlu5 receptor PAM
VU0409551, which does not enhance mGlu5 receptor-medi-
ated potentiation of NMDA receptor currents, induces robust
antipsychotic-like (MK801-induced hyperlocomotion) and cog-
nition-enhancing effects (novel object recognition and contex-
tual fear conditioning) in wild-type (WT) mice (Rook et al.,
2015). It also rescued deficits in contextual fear conditioning
and synaptic plasticity in serine racemase KO mice, a genetic
model that exhibits several behavioral abnormalities obser-
ved in schizophrenia (Balu et al., 2016). The studies with
VU0409551 suggest that biased mGlu5 receptor PAMs lack-
ing mGlu5 receptor-mediated potentiation of NMDA receptor
currents retain antipsychotic-like and cognition-enhancing
effects in rodent models relevant for schizophrenia. Thus, the
initial hypothesis that mGlu5 receptor PAMs induce their
beneficial effects by potentiating NMDA receptor currents
must be reevaluated. The mechanistic studies revealed that
VU0409551 could enhance cognition independent of NMDA
receptor activation (Balu et al., 2016). Further, biased mGlu5
receptor PAM may increase cognition by mGlu5 receptor-medi-
ated potentiation of excitability of hippocampal Cornu Ammo-
nis 1 (CA1) pyramidal neurons (Mannaioni et al., 2001) or
endocannabinoid-mediated depression of inhibitory neurotrans-
mission onto pyramidal neurons (Xu et al., 2014). Collectively,
the above-mentioned studies propose that a detailed under-
standing of the mechanisms of action of mGlu5 receptor PAMs
might help to develop safer compounds with robust efficacy for
treating schizophrenia.

mGlu1 Receptor PAMs May Have Potential
Antipsychotic Effects

Frank and coworkers (2011) identified nonsynonymous sin-
gle nucleotide polymorphisms (nsSNPs) within a functionally
important cysteine-rich domain and the first transmembrane
helix of the mGlu1 receptor in patients with schizophrenia.
Subsequently, a study involving 605 controls and 450 patients
with schizophrenia confirmed the presence of deleterious
mutations in GRM1 (the gene encoding for mGlu1 receptor) in
patients with schizophrenia (Ayoub et al., 2012). Also, these
mutations were inheritable and were also detected in relatives
with other neuropsychiatric disorders, including depression
and anxiety. In vitro analysis using mGlu1 receptors bearing
various schizophrenia-associated GRM1 mutations indicated
altered cell surface receptor expression and reduced down-
stream signaling (Ayoub et al., 2012; Cho et al., 2014). Excit-
ingly, the selective mGlu1 receptor PAMs Ro 07-11401,
VU0483605, and VU0483737 were able to potentiate signaling
by the mutant receptors and thereby reduce deficits in mGlu1
receptor signaling (Cho et al., 2014). Similarly, another set of
mGlu1 receptor PAMs based on an N-(3-chloro-4-(1,3-dioxo-
isoindolin-2-yl)phenyl)-3-methylfuran-2-carboxamide scaffold
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also potentiated the function of mGlu1 receptors mutated for
schizophrenia-associated deleteriousGRM1mutations (Garcia-
Barrantes et al., 2015). These findings indicate that schizophre-
nia patients with specific mutations may be responsive to in-
terventions with mGlu1 receptor PAMs and highlight the
effect of the clinical heterogeneity of schizophrenia on disease
prognosis.

The mGlu1 Receptor Ligands Display
Antipsychotic-Like Effects in Rodents

Interestingly, recent studies revealed that the mGlu1
receptor PAM VU6004909 reduced amphetamine-induced
hyperlocomotion and disruptions in prepulse inhibition (PPI)
in mice (Yohn et al., 2020). These effects were absent after
administration of cannabinoid type 2 (CB2) receptor antago-
nist, which indicates that the antipsychotic-like effects of
VU6004909 are dependent on CB2 receptor activation. Fur-
ther, mechanistic studies reveal that VU6004909 inhibits
dopamine release in the striatum, not in the nucleus accum-
bens, and a crosstalk between mGlu1 and muscarinic M4
receptors has been suggested for this inhibition on dopamine
release (Yohn et al., 2020). Because the mutations in GRM1
reduce mGlu1 receptor signaling and GRM1 KO mice display
deficits in PPI (Brody et al., 2003), it is possible that altered
receptor expression may contribute to the hyperdopaminergic
state observed in schizophrenia. Therefore, mGlu1 receptor
PAMs may act by correcting striatal dopamine hyperactivity
leading to the antipsychotic-like activity in models mimicking
schizophrenia symptomatology. Recently, it has been
reported that the mGlu1 receptor PAM VU6004909 can
reverse the cortical hyperactivity and cognitive deficits
induced by MK801 treatment (Maksymetz et al., 2021).
Future studies are needed to investigate the efficacy of
mGlu1 receptor PAMs on other behavioral correlates of cogni-
tive and negative symptoms of schizophrenia.
It is important to note that early preclinical behavioral

studies also argued in favor of employing mGlu1 receptor
antagonism as a pharmacotherapeutic approach to schizo-
phrenia. For example, the mGlu1 receptor NAMs FTIDC and
CFMTI blocked methamphetamine-induced hyperactivity
and reduced methamphetamine-induced disruption in PPI in
rodents (Satow et al., 2008, 2009). Also, CFMTI and JNJ162-
59685 (mGlu1 receptor antagonists) improved MK801-
induced impairments in social memory (Satow et al., 2009;
Hikichi et al., 2013), suggesting that mGlu1 receptor NAMs
could be effective for the treatment of some impairments
associated with schizophrenia. At present, the mechanistic
basis for overlapping actions of mGlu1 receptor PAMs and
mGlu1 receptor NAMs is not understood.

Group II (mGlu2/3) Receptor Agonists Show
Efficacy for Treating Behavioral Correlates of

Schizophrenia
Agonists of mGlu2/3 receptors can reverse the behavioral

effects of NMDA receptor antagonists, including induction of
hyperlocomotion, stereotypy, and heightened anxiety in
rodents (Moghaddam and Adams, 1998; Rorick-Kehn et al.,
2007; Watanabe et al., 2020). Further, the mGlu2/3 receptor
agonist LY354740 reduced PCP-induced working memory

deficits in mice (Moghaddam and Adams, 1998) and improved
working memory impairments induced by ketamine infusion
in healthy human subjects (Krystal et al., 2005). These and
other studies have stimulated efforts to develop mGlu2/3 receptor
agonists as novel potential antipsychotic agents. Also, mGlu2/3
receptor agonists attenuate various effects induced by the hallu-
cinogen 2,5-Dimethoxy-4-iodoamphetamine (DOI) in rodents,
including expression of immediate early gene, c-FOS, in the cor-
tex (Zhai et al., 2003; Gonz�alez-Maeso et al., 2008), increased
excitatory synaptic responses in the medial prefrontal cortex
(mPFC) (Marek et al., 2000), and head twitch response (Gewirtz
and Marek, 2000; Gonz�alez-Maeso et al., 2008). In addition, the
mGlu2/3 receptor agonists MGS0008 and LY404039 inhibited
conditioned avoidance responses in WT mice (Takamori et al.,
2003; Rorick-Kehn et al., 2007). Recently, our group reported
that the mGlu2/3 receptor agonist LY379268 enhances associa-
tive learning as evidenced by increased freezing in trace fear
conditioning in WT mice (Dogra et al., 2021). Further, using
mGlu2 and mGlu3 receptor-specific NAMs, we showed that the
mGlu3 receptor is mediating cognition-enhancing effects of
LY379268. Interestingly, the mGlu2/3 receptor agonist LY379268
was able to revert PCP-induced deficits in associative learning
(Dogra et al., 2021). All of these studies indicate the potential
utility of mGlu2/3 receptor agonists for the treatment of various
schizophrenia-associated symptoms.

Clinical Trials Using mGlu2/3 Receptor Agonists
Yielded Inconclusive Results

Based on the extensive preclinical literature, Eli Lilly &
Co. launched LY2140023 (pomaglumetad methionil, prodrug
of the active mGlu2/3 receptor agonist LY404039) into clinical
trials, where it showed efficacy for improving total Positive
and Negative Syndrome Scale (PANSS) scores as well as pos-
itive and negative symptoms of schizophrenia compared with
placebo control in early phase II clinical trials (Patil et al.,
2007; Kinon and G�omez, 2013). Excitingly, LY2140023 treat-
ment did not induce any extrapyramidal side effects, increase
in mean serum prolactin, or weight gain (Patil et al., 2007).
These encouraging proof-of-concept trials were followed by a

second phase II dose-response trial in which neither LY21-
40023 nor olanzapine demonstrated significant efficacy com-
pared with placebo (Kinon et al., 2011). This led to inconclusive
clinical trials which were likely due to high placebo response in
patients with schizophrenia. Another phase II study assessed
the efficacy of LY2140023 for 24 weeks and found improve-
ments in PANSS total score similar to the standard of care
(olanzapine, risperidone, or aripiprazole) group over the initial
6 to 8 weeks of treatment, but at the endpoint lesser improve-
ment was observed in the LY2140023 group (Adams et al.,
2013). Besides, trials including LY2140023 as a monotherapy
or adjunctive treatment failed to show efficacy for improving
symptoms (Adams et al., 2013; Stauffer et al., 2013), which led
to the cessation of the LY2140023 drug development program
for schizophrenia. However, a post hoc analysis of all clinical tri-
als showed that LY2140023 displayed therapeutic efficacy in
subgroups of patients who were early in disease (#3 years) or
who were previously treated with dopamine D2 receptor drugs
and were never treated with 5-hydroxy-tryptamine (5-HT)2A
receptor blockers (Kinon et al., 2015). These promising results
indicate the need for testing mGlu2/3 receptor agonists in
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patients with schizophrenia recruited based on disease dura-
tion, history of previous medication, and genetic background.
Further, it will be important to tease apart the relative contri-
butions of mGlu2 and mGlu3 receptors in mediating beneficial
effects ofmGlu2/3 receptor agonists.
Recently, LY2140023 was tested in phase Ib proof-of-con-

cept studies in which high doses of LY2140023 (320mg/day
for 10 days) significantly reduced ketamine-induced Brief
Psychiatric Rating Scale (BPRS) total symptoms (Kantrowitz
et al., 2020). However, it did not significantly inhibit keta-
mine-induced changes in the pharmacological blood-oxygen-
level dependent (pharmacoBOLD) signals in the dorsal ante-
rior cingulate cortex, suggesting that the tested dose might
still be too low for optimal target engagement. Besides
LY2140023, a novel mGlu2/3 receptor agonist prodrug TS-134
(MGS0274 besylate) entered the clinical trials and was found
to be safe and well tolerated in a double-blinded and placebo-
controlled dose-response phase I clinical trial conducted in
healthy subjects (Watanabe et al., 2020). Further clinical
studies reported reductions in both ketamine-induced BPRS
positive symptoms and pharmacoBOLD in the dorsal ante-
rior cingulate cortex, left caudate, and nucleus accumbens
after treatment with a low dose of TS-134 (20mg/day for 6
days) (Kantrowitz et al., 2020). These results provide evi-
dence of symptom reduction and target engagement by a
mGlu2/3 receptor agonist and further suggest that dose opti-
mization and characterization of changes in the glutamater-
gic neurotransmission are required to fully harness the
therapeutic potential of mGlu2/3 receptor agonists. Also, it
will be exciting to evaluate the therapeutic effects of TS-134
in patients with schizophrenia.

mGlu2 Receptor PAMs May Have Potential
Antipsychotic Activity

In terms of subtype selectivity based on the studies per-
formed with GRM2 (the gene encoding for mGlu2 receptor)
and GRM3 (the gene encoding for mGlu3 receptor) KO mice,
it has been suggested that the mGlu2 receptor, not the mGlu3
receptor, mediates the antipsychotic effects of mGlu2/3 recep-
tor agonists in rodents (Spooren et al., 2000; Woolley et al.,
2008). In the past decade, several preclinical studies have
shown antipsychotic-like and anxiolytic-like effects of the
mGlu2 receptor PAMs CBiPES, BINA, TASP0443294, TASP0-
433864, JNJ40411813/ADX71149, and JNJ-42153605 (John-
son et al., 2003, 2005; Galici et al., 2005, 2006; Govek et al.,
2005; Benneyworth et al., 2007; Hiyoshi et al., 2014; Hikichi
et al., 2015; Lavreysen et al., 2015). Another mGlu2 receptor
PAM, SAR218645, has been shown to improve cognitive symp-
toms induced by an NMDA receptor antagonist, reverse work-
ing memory impairments in NR1 KO mice, and reverse
amphetamine-induced disruptions in sensory processing and
attention (Griebel et al., 2016). These studies point toward the
SAR218645 class of PAMs as a promising candidate for the
treatment of cognitive impairments in schizophrenia, espe-
cially in patients with anomalous attention and sensory gat-
ing abilities.
Based on the preclinical studies, two mGlu2 receptor

PAMs, JNJ40411813 (Salih et al., 2015) and AZD8529
(Litman et al., 2016), have entered clinical trials. Both PAMs
displayed safety and tolerability in healthy subjects.

JNJ40411813 ameliorated deficits in attention and episodic
memory in the selective population and reduced ketamine-
induced negative symptoms (Salih et al., 2015). These prom-
ising trials suggest that patients with residual negative
symptoms are most likely to benefit from treatment with
JNJ40411813. The second compound, AZD8529, did not show
any extrapyramidal motor side effects, but it failed to show
any significant improvement in positive and negative symp-
tom subscale and PANSS total score as compared with pla-
cebo (Litman et al., 2016). To note, AZD8529 was tested at
only one dose selected from tolerability data obtained from
the prior healthy volunteer and preclinical studies. Thus, it
is possible that low systemic exposure at this dose failed to
engage mGlu2 receptors or induce detectable effects. There-
fore, further studies including multiple dosages of AZD8529
are warranted. Taken together, these studies reveal the
potential shortcomings of preclinical research and the diffi-
culty in translating preclinical research findings to clinics.
Furthermore, considering the underlying heterogeneity of
patients with schizophrenia, it may be best to test mGlu2/3
receptor agonists/mGlu2 receptor PAMs in patient popula-
tions recruited based on genotype and clinical symptoms.

Genetic Variants in GRM3 Are Associated with
Schizophrenia

Emerging evidence suggests an association between gen-
etic variations in GRM3 and risk for schizophrenia and cogni-
tive deficits in schizophrenia (Fujii et al., 2003; Egan et al.,
2004; Bishop et al., 2011, 2015; Chang et al., 2015; Saini
et al., 2017). Interestingly, polymorphisms in GRM3 may pre-
dict improvement in negative symptoms in patients with
schizophrenia treated with antipsychotic medications (Bishop
et al., 2005, 2015; Fijal et al., 2009). Also, one GRM3 poly-
morphism, rs1468412, was associated with worsening of spa-
tial working memory performance after antipsychotic
treatment (Bishop et al., 2015). All of these genetic associa-
tion studies suggest an important pharmacogenetic relation-
ship between GRM3 polymorphisms and changes in cognitive
and negative symptom response to antipsychotic treatment.
Furthermore, this information can be used to identify
patients with schizophrenia who are susceptible to adverse
cognitive effects induced by antipsychotic medications. These
gene polymorphisms studies are supported by findings indi-
cating impaired working memory in GRM3 KO mice (Lai-
niola et al., 2014; De Filippis et al., 2015), further stipulating
an essential role of the mGlu3 receptor in some forms of
cognition.

mGlu3 Receptor Is a Promising Target for
Enhancing Cognition in Schizophrenia

The exciting gene association studies encouraged the
researchers to investigate the mechanisms by which the
mGlu3 receptor regulates cognition and cognitive impair-
ments associated with schizophrenia. Owing to the lack of
receptor-specific compounds, early preclinical studies used N-
acetylaspartylglutamate (NAAG) peptidase (an enzyme that
inactivates the peptide transmitter) inhibitors. NAAG is a
peptide neurotransmitter that activates mGlu3 receptors
(Wroblewska et al., 1997) and is known to enhance cognition
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(Neale and Olszewski, 2019). Therefore, drugs that block the
inactivation of synaptically released NAAG (NAAG pepti-
dase inhibitors) activate mGlu3 receptors and can enhance
cognition (Neale and Olszewski, 2019). Also, NAAG peptidase
inhibitors blocked MK801-induced impairments in object rec-
ognition and motor activation induced by PCP and amphet-
amine (Olszewski et al., 2012b). These inhibitors were able to
rescue PCP-induced motor activation and stereotypic behav-
ior in WT mice (Olszewski et al., 2004) but not in GRM3 KO
mice (Olszewski et al., 2012a). Interestingly, they reduced
PCP-induced glutamate and dopamine release in the prefron-
tal cortex (PFC) and the nucleus accumbens (Zuo et al., 2012)
that may account for their antipsychotic-like effects. To note,
mice lacking the enzymes that synthesize NAAG in the cen-
tral nervous system (CNS) have impaired object recognition
memory (Becker et al., 2021), suggesting an important role of
NAAG (and mGlu3 receptors) in cognition. In summary, the
above-mentioned literature raises the potential therapeutic
utility of targeting mGlu3 receptors for treating schizophre-
nia and the need for further studies aimed at understanding
the mechanisms by which mGlu3 receptors may enhance cog-
nition in schizophrenia.
Using recently developed mGlu3 specific ligands, mechanis-

tic studies revealed that the mGlu3 receptor modulates syn-
aptic plasticity within the PFC and hippocampus (Walker
et al., 2015; Joffe et al., 2019; Dogra et al., 2021). Interest-
ingly, mGlu3 receptors functionally interact with mGlu5
receptors in the CNS (Di Menna et al., 2018; Dogra et al.,
2021) and enhance mGlu5 receptor-mediated somatic Ca21

mobilization in the cortical pyramidal neurons. Also, activa-
tion of mGlu5 receptor is required for mGlu3 receptor-medi-
ated long-term depression in the PFC (Di Menna et al., 2018)
and extinction of fear memories (Walker et al., 2015). Fur-
ther, a nonhuman primate study showed that an increase in
the endogenous mGlu3 receptor agonist NAAG enhances
DLPFC delay cell firing during a working memory task (Jin
et al., 2018). These studies illuminate the mechanisms by
which mGlu3 receptors can modulate PFC function and cog-
nition and suggest that mGlu3 receptor PAMs have the
potential to reduce the PFC-dependent cognitive impair-
ments associated with CNS disorders like schizophrenia.
This mGlu3 receptor-induced potentiation of mGlu5 recep-

tor function in the PFC is also observed in the hippocampus
(Dogra et al., 2021). Our group discovered that activation of
mGlu3 receptors in the CA1 pyramidal neurons induces
metaplastic changes to induce long-term potentiation at the
SC-CA1 synapse through an mGlu5 receptor-dependent,
endocannabinoid-mediated disinhibition (Dogra et al., 2021).
Further, the mGlu3 receptor has been shown to shape the
influence of mGlu5 receptors on excitotoxic insults (Di Menna
et al., 2018). Given the fact that activation of mGlu3 receptor
may provide neuroprotection (Caraci et al., 2011), pharmaco-
logical agents activating mGlu3 receptors may reduce the
risk for neurotoxicity while improving schizophrenia-related
cognitive deficits.

mGlu4 Receptor Ligands Have the Potential To
Treat Positive Symptoms of Schizophrenia

The availability of brain-penetrable receptor-selective
ligands has facilitated the study of group III mGlu receptors

in schizophrenia. Peripheral administration of pan-group
III mGlu receptor agonist ACPT-I exerted antipsychotic-like
effects (reducing MK801- and amphetamine-induced hyper-
activity and DOI-induced head twitches) in rats (Pałucha-
Poniewiera et al., 2008). Similar antipsychotic-like effects
were also observed with mGlu4 receptor-selective agonists
LSP1-2111 (Wiero�nska et al., 2012) and LSP4-2022 (Wo�zniak
et al., 2016). In addition, LSP4-2022 improved negative
symptoms and cognition in MK801-treated mice (Wo�zniak
et al., 2016). Interestingly, mGlu4 receptors cooperate with
other neurotransmitter receptors to induce antipsychotic-like
effects in rodents (Wo�zniak et al., 2016, 2017). For example,
the antipsychotic-like activity of the mGlu4 receptor agonist
LSP4-2022 was reversed by the GABAB receptor antagonist
CGP55845. Further, coadministration of subeffective doses of
LSP4-2022 and GABAB receptor PAMs acted synergistically
to produce antipsychotic-like effects (Wo�zniak et al., 2016).
Similarly, the 5-HT1A receptor antagonist WAY100635
reversed antipsychotic-like actions of the mGlu4 receptor ago-
nist LSP4-2022, whereas administration of a subeffective
dose of the 5-HT1A receptor agonist with an ineffective dose
of LSP4-2022 enhanced the effects of ineffective dosage of
LSP4-2022 (Wo�zniak et al., 2017). The receptor interaction
has also been extended to the M4 muscarinic receptor, where
coadministration of subactive doses of LSP4-2022 and M4
receptor PAMs induced a robust antipsychotic-like effects
(Cie�slik et al., 2018b). Similar antipsychotic-like properties
have also been reported with the mGlu4 receptor PAMs Lu
AF21934 (Sławi�nska et al., 2013) and ADX88178 (Kalinichev
et al., 2014). These studies further support the potential util-
ity of selective mGlu4 receptor activators for treating positive
symptoms of schizophrenia.

Potential Utility of mGlu2-mGlu4 Receptor
Heterodimers As Novel Antipsychotics

Emerging studies suggest that mGlu4 and mGlu2 receptors
can form heterodimers in native brain tissues (Yin et al.,
2014). Excitingly, a recent study demonstrated that activa-
tion of mGlu2/4 receptor heterodimers inhibits DOI-induced
increase in glutamatergic neurotransmission in the PFC ex
vivo (Xiang et al., 2021). Further mechanistic studies
revealed a synapse-specific role of these heterodimers in
which these heterodimers presented activity at synapses to
medial PFC (mPFC) originating from the thalamus (tha-
lamo-mPFC) but not at the synapses to the mPFC originating
from basolateral amygdala and ventral hippocampus (Xiang
et al., 2021). This indicates that mGlu2/4 receptor hetero-
dimers could selectively modulate specific functions associ-
ated with thalamo-mPFC synapses (Xiang et al., 2021).
Interestingly, thalamic nuclei and the projections from the
thalamus are widely known to play roles in the actions of
NMDA receptor antagonists (Santana et al., 2011; Zhang
et al., 2012). Moreover, the thalamocortical system is an
important site of action of hallucinogenic drugs like DOI and
lysergic acid diethylamide (LSD) (Scruggs et al., 2000; Marek
et al., 2001; Preller et al., 2019; Inserra et al., 2021), and
agents that modulate or depress transmission over this syn-
apse may show antipsychotic-like effects. Therefore, the
mGlu2/4 receptor heterodimer at the same synapse could be a
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novel therapeutic target for the treatment of positive symp-
toms associated with schizophrenia.
In line with the cellular effects of mGlu2/4 receptor activa-

tion, Lu AF21934, an mGlu4 receptor PAM with activity at
mGlu2/4 receptor heterodimers, has been shown to inhibit
MK801- and amphetamine-induced hyperactivity and reverse
of DOI-induced head twitch in rodents (Sławi�nska et al.,
2013; Wiero�nska et al., 2015). Considering the fact that the
mGlu4 receptor homodimer-specific PAMs PHCCC and
VU0418506 fail to potentiate L-AP4-mediated inhibition of
thalamo-PFC transmission in slices (Xiang et al., 2021), it is
conceivable that the previously reported antipsychotic-like
effects of LuAF21934 are likely to be mediated by actions on
mGlu2/4 receptor heterodimers. Nevertheless, it will be
important to test the behavioral effects of homomer-selective
mGlu2 and mGlu4 receptors PAMs relative to mGlu2/4 recep-
tor modulators in rodent models of NMDA hypofunction to
develop a better understanding of their role in treating posi-
tive symptoms of schizophrenia.

Deletion or Blockade of mGlu7 Receptor
Impairs Cognition

Genetic variations in GRM7 (the gene encoding for mGlu7
receptor) are associated with schizophrenia (Niu et al., 2015;
Li et al., 2016b; Chaumette et al., 2020). Specifically, the
polymorphism rs1396409 was associated with performance
intellectual quotient in a discovery cohort of 144 patients
with first-episode psychosis and was further replicated in 121
ultra-high-risk patients (Chaumette et al., 2020). This poly-
morphism is also associated with the cognitive deficits during
the onset of psychosis and highlights the impact of mGlu7
receptor signaling in cognitive impairments in early psy-
chotic episodes. These studies are supported by pharmacolog-
ical studies in which systemic administration of the mGlu7
receptor NAM MMPIP impaired cognitive performances in
WT mice as depicted by reduction in the recognition index
and location index in the object recognition and object loca-
tion test, respectively (Hikichi et al., 2010). Also, MMPIP
treatment increased the total time to complete the task
in the eight-arm radial maze test and decreased social inter-
action in rats. These results are complemented by the behav-
ioral profiling studies indicating deficits in various forms of
cognition tasks in GRM7 KO mice. For example, GRM7 KO
mice displayed deficits in fear response immediately after
and 1 day after exposure to foot shock (Masugi et al., 1999)
and in both contextual and cued fear learning (Goddyn et al.,
2008; Fisher et al., 2020). Further, these mice showed
impaired spatial working memory in the water maze test and
eight-arm radial maze test (H€olscher et al., 2004; Callaerts-
Vegh et al., 2006). These deficits in cognition were accompa-
nied by disruption of social behavior in which deletion of the
mGlu7 receptor impacted social preference but not sociability
or social recognition (Fisher et al., 2020). As cognitive deficits
and social withdrawal are core symptoms of schizophrenia,
the role of the mGlu7 receptor in mediating cognition and
social behaviors and the underlying circuitry are worth
investigating.

mGlu7 Receptor NAMs Can Rescue
Schizophrenia-Like Symptoms in Rodents

Interestingly, GRM7 KO mice exhibited a blunted effect of
amphetamine on locomotor activity (Fisher et al., 2020) and
DOI-induced head twitches as compared with the control
mice (Wiero�nska et al., 2012). These effects were consistent
with pharmacological studies showing beneficial effects of the
mGlu7 receptor NAMs ADX71743 and MMPIP in rodent
models of schizophrenia-relevant behavioral responses (Kali-
nichev et al., 2013; Cie�slik et al., 2018a). Both compounds
have been shown to decrease MK801-induced hyperlocomo-
tion and DOI-induced head twitches in mice and rescue
MK801-induced reduction in recognition index in novel object
recognition tests (Cie�slik et al., 2018a). Further, ADX71743
significantly reversed MK801-induced impairments in social
behavior and acoustic startle response, whereas MMPIP had
no effect on these behaviors. Besides these effects, ADX71743
caused a slight reduction in amphetamine-induced hyperloco-
motion in mice (Kalinichev et al., 2013), and the activity of
MMPIP in this behavior has not been tested so far. To note,
MMPIP and ADX71743 did not exert their own effects on
spontaneous locomotor activity in rodents (Hikichi et al.,
2010; Cie�slik et al., 2018a). Taken together, these studies
suggest that mGlu7 receptor NAMs may provide a novel ther-
apeutic approach for treating all symptom domains of schizo-
phrenia. On the other hand, the mGlu7 receptor atypical
agonist AMN082 (Mitsukawa et al., 2005) exacerbated
MK801-induced hyperactivity and DOI-induced head twit-
ches in mice (Wiero�nska et al., 2012). Also, the propsychotic-
like effects of AMN082 were absent in GRM7 KO mice, con-
sistent with the hypothesis that the mGlu7 receptor mediates
psychosis-like effects of AMN082 in rodents. These studies
suggest that activation/potentiation of the mGlu7 receptor at
selective synapses may induce antipsychotic-like effects. Nev-
ertheless, more research is certainly needed to fully evaluate
the potential utility of the mGlu7 receptor ligands in models
mimicking schizophrenia symptoms.

Deletion of GRM8 Does Not Induce Consistent
Endophenotypes of Schizophrenia

A study by Gerlai and coworkers (2002) reported that
GRM8 (the gene encoding for mGlu8 receptor) KO mice
showed a reduced fear response to the electric shocks pre-
sented during the training. Further, in the context test,
GRM8 KO mice showed a delayed fear response with reduced
freezing relative to WT mice at the beginning of the contex-
tual test. However, the freezing increased with time, and by
the end of the test session they exhibited total freezing that
was greater than that observed in the control mice (Gerlai
et al., 2002). GRM8 KO mice also showed a reduction in
amplitude to jump after electric shock, which suggests that
the mechanisms mediating responses to aversive stimuli
might be altered in these mice (Gerlai et al., 2002). To note,
the GRM8 KO and the control mice used in this study were
on the Institute of Cancer Research (ICR) background and
experienced an impaired vision that can affect the perfor-
mance of mice in behavioral tasks. Furthermore, other
research groups found either a robust decrease (Fendt et al.,
2010) or no impairments in the freezing response in contex-
tual fear conditioning (Goddyn et al., 2015). Similarly, no
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consistent genotype-specific effects in novel object recognition
tests were reported by different groups (Duvoisin et al., 2005;
Fendt et al., 2010). Also, the studies involving GRM8 KO did
not report consistent deficits in cognition (Gerlai et al., 2002;
Goddyn et al., 2015), leading to inconclusive results about
the role of the mGlu8 receptor in regulating cognitive func-
tion. Moreover, no deficits in PPI, spontaneous locomotor
activity, and spatial learning in the Morris water maze test
have been documented in these KOs (Duvoisin et al., 2005;
Fendt et al., 2010; Goddyn et al., 2015), which may suggest
that the mGlu8 receptor is not directly involved in behaviors
that are relevant for schizophrenia. Pharmacological studies
using mGlu8 receptor orthosteric agonist (S)-3,4-DCPG
showed decrease amphetamine but not PCP-induced hyper-
activity when tested at a higher dosage (80 mg/kg; i.p.) in
mice (Ossowska et al., 2004). Also, it evoked extrapyramidal
effects at a dose closer to the efficacious dose (100 mg/kg;
i.p.). From these studies, along with KO mice reports, it is
conceivable that the mGlu8 receptor is not a viable target for
novel antipsychotics. Further, considering the role of mGlu8
receptors in regulating memory tasks and anxiety, mGlu8
receptor ligands could be beneficial in treating the anxiety
phenotype and some cognitive deficits associated with
schizophrenia.

Concluding Remarks
Emerging preclinical and clinical evidences suggest the

involvement of glutamatergic neurotransmission in the path-
ophysiology of schizophrenia. Based on that, several NMDA
receptor antagonists are currently being used to mimic
schizophrenia-related behavioral deficits in preclinical stud-
ies. Considering the side effects associated with drugs target-
ing NMDA receptors, attention has shifted to finding novel
drug targets with a safer therapeutic profile. Among these,
the mGlu receptors have emerged as promising targets for
the treatment of schizophrenia. The development of trans-
genic animals and receptor-selective pharmacological tools
have advanced our understanding of the role of mGlu recep-
tors in schizophrenia. For example, mGlu1 receptor PAMs
can reverse receptor dysregulation induced by selective dele-
terious mutations expressed in a heterologous system and
induce robust antipsychotic-like activity in rodents. Also, the
mGlu5 receptor PAMs show efficacy for reducing behavioral
deficits related to all three symptoms domains (positive, neg-
ative, and cognitive deficits) in schizophrenia. Interestingly,
biased mGlu5 receptor PAMs that do not potentiate NMDA
receptor signaling are equally efficacious as ago-PAMs but
lack excitotoxicity and seizure-inducing effects. These excit-
ing findings suggest a need for testing biased mGlu5 PAMs in
various preclinical models to investigate the safety and effi-
cacy profiles before efforts to optimize compounds suitable for
clinical development. Further, based on robust antipsychotic-
like effects, mGlu2/3 receptor agonists and mGlu2 receptor
PAMs entered the clinical trials. These compounds failed to
show efficacy for the treatment of schizophrenia but were effi-
cacious in a selected group of patients. These trials point
toward a need for testing mGlu2/3 receptor agonists in the
patients recruited based on disease severity and genetic
background.
Excitingly, a functional interaction between mGlu5 and

mGlu3 receptors in the PFC and hippocampus has been

reported and might be responsible for the cognition-enhanc-
ing effects of mGlu3 receptor potentiators. In the future, it
will be crucial to investigate the role of mGlu3-mGlu5 recep-
tor interaction in a broad range of cognitive assays regulated
by mGlu5 receptors. Given the neuroprotective effects of
mGlu3 receptor activation, this information will be helpful in
guiding design of safer drugs for treating cognitive deficits
associated with schizophrenia. Also, the mGlu2-mGlu4 recep-
tor heterodimers with a distinct pharmacological profile may
provide novel approaches to optimize desired therapeutic effi-
cacy and safety profile. Knowledge about the role of other
group III mGlu receptors is still in its infancy, and more
receptor-selective compounds are needed to understand their
pharmacology and physiology.
In conclusion, a broad number of preclinical and clinical

studies illuminate the potential of targeting mGlu receptors
to develop safe and efficacious drugs for the treatment of
schizophrenia.
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