Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Reduction of desensitization of a glutamate ionotropic receptor by antagonists.

M Geoffroy, B Lambolez, E Audinat, B Hamon, F Crepel, J Rossier and R T Kado
Molecular Pharmacology May 1991, 39 (5) 587-591;
M Geoffroy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Lambolez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Audinat
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Hamon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F Crepel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Rossier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R T Kado
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The glutamate receptor channel subtype that responds to both quisqualate (QA) and alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) was expressed in Xenopus oocytes injected with rat cerebral cortex mRNA. Voltage-clamp current responses to QA, AMPA, and glutamate (GLU) exhibited a rapid increase followed by a decrease to a desensitized steady state (DS). Perfusion with high agonist concentrations produced smaller DS responses than perfusion with low concentrations. During the DS, the current was increased by lowering of the concentration of agonist or by application of low concentrations of a competitive antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX). This paradoxical increase of the agonist-induced currents during the DS was also observed in cultured Purkinje cells with another competitive antagonist, 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX). Dose-response curves obtained in oocytes were bell shaped, with a negative slope for high concentrations of QA. DNQX shifted these bell-shaped curves to the right. Together, these results indicate that the agonists are able to reversibly inhibit the AMPA receptor. The classical desensitization model of Katz and Thesleff [J. Physiol. (Lond.) 138:63-80 (1957)] cannot account for our observations.

Log in using your username and password

Forgot your user name or password?

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$35.00

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 39, Issue 5
1 May 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Reduction of desensitization of a glutamate ionotropic receptor by antagonists.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
Citation Tools
Abstract

Reduction of desensitization of a glutamate ionotropic receptor by antagonists.

M Geoffroy, B Lambolez, E Audinat, B Hamon, F Crepel, J Rossier and R T Kado
Molecular Pharmacology May 1, 1991, 39 (5) 587-591;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Reduction of desensitization of a glutamate ionotropic receptor by antagonists.

M Geoffroy, B Lambolez, E Audinat, B Hamon, F Crepel, J Rossier and R T Kado
Molecular Pharmacology May 1, 1991, 39 (5) 587-591;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2019 by the American Society for Pharmacology and Experimental Therapeutics