Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Mechanisms of resistance to ansamycin antibiotics in human breast cancer cell lines.

M N Benchekroun, E Schneider, A R Safa, A J Townsend and B K Sinha
Molecular Pharmacology October 1994, 46 (4) 677-684;
M N Benchekroun
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Schneider
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A R Safa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A J Townsend
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B K Sinha
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We recently reported that multidrug-resistant, P-170 glycoprotein-positive, Adriamycin-selected, human breast tumor (MCF7/ADRR) cells were resistant to the benzoquinonoid ansamycin antibiotics geldanamycin (GL) and herbimycin A (HA) and that significantly fewer hydroxyl radicals were formed in resistant cells. We have carried out additional studies to define the mechanisms of cytotoxicity of and resistance to GL and HA, by directly examining the interactions of these drugs with P-170 glycoprotein using photoaffinity labeling. We found that both GL and HA inhibited binding of azidopine to P-170 glycoprotein in a dose-dependent manner. We have developed a 10-fold GL-resistant cell line (MCF7/GLR) by continuous drug exposure. Our studies indicated no significant differences in free radical formation between wild-type MCF7 cells and MCF7/GLR cells. Uptake and efflux studies indicated a small decrease in the GL accumulation but no difference in the efflux of GL in these cells. Verapamil had no effect on cellular accumulation of GL in wild-type MCF7 cells or MCF7/GLR cells. Verapamil significantly increased the accumulation of GL in MCF7/ADRR cells and enhanced GL cytotoxicity 12-fold, suggesting that GL interacted with the P-170 glycoprotein. Using reverse transcription-polymerase chain reaction, we found no expression of the mdr1 gene; however, expression of the multidrug resistance-associated protein was about 2-fold higher in MCF7/GLR cells. Taken together, these studies indicate that the mechanisms of GL resistance are multifactorial. Although decreased free radical formation may not play a significant role in low levels of GL resistance, e.g., in MCF7/GLR cells, both overexpression of mdr1 and decreased free radical formation contribute to GL resistance in highly resistant cells such as MCF7/ADRR cells.

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 46, Issue 4
1 Oct 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mechanisms of resistance to ansamycin antibiotics in human breast cancer cell lines.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
Citation Tools
Abstract

Mechanisms of resistance to ansamycin antibiotics in human breast cancer cell lines.

M N Benchekroun, E Schneider, A R Safa, A J Townsend and B K Sinha
Molecular Pharmacology October 1, 1994, 46 (4) 677-684;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Mechanisms of resistance to ansamycin antibiotics in human breast cancer cell lines.

M N Benchekroun, E Schneider, A R Safa, A J Townsend and B K Sinha
Molecular Pharmacology October 1, 1994, 46 (4) 677-684;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2019 by the American Society for Pharmacology and Experimental Therapeutics