Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

In vitro pharmacology of ACEA-1021 and ACEA-1031: systemically active quinoxalinediones with high affinity and selectivity for N-methyl-D-aspartate receptor glycine sites.

R M Woodward, J E Huettner, J Guastella, J F Keana and E Weber
Molecular Pharmacology March 1995, 47 (3) 568-581;
R M Woodward
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J E Huettner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Guastella
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J F Keana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Weber
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

N-methyl-D-aspartate (NMDA) receptor antagonists show therapeutic potential as neuroprotectants, analgesics, and anticonvulsants. In this context, we used electrical recording techniques to study the in vitro pharmacology of two novel quinoxalinediones, i.e., ACEA-1021 and ACEA-1031 (5-nitro-6,7- dichloro- and 5-nitro-6,7-dibromo-1,4-dihydro-2,3-quinoxalinedione, respectively). Assays with NMDA receptors expressed by rat brain poly(A)+ RNA in Xenopus oocytes and with NMDA receptors in cultured rat cortical neurons indicated that ACEA-1021 and ACEA-1031 are potent competitive antagonists at NMDA receptor glycine sites. Apparent dissociation constants (Kb values) for ACEA-1021 and ACEA-1031 ranged between 6 and 8 nM for oocyte assays and between 5 and 7 nM for neuronal assays. Cloned NMDA receptors expressed in oocytes showed up to 50-fold variation in sensitivity, depending upon subunit composition. For example, using fixed agonist concentrations (10 microM glycine and 100 microM glutamate) IC50 values for ACEA-1021 with four binary combinations were as follows: NMDA receptor (NR)1A/2A, 29 nM; NR1A/2B, 300 nM; NR1A/2C, 120 nM; NR1A/2D, 1500 nM. Measurement of EC50 for glycine and calculation of Kb for the inhibitors indicated that differences in IC50 values are due to subunit-dependent variations in glycine affinity (EC50 ranged between approximately 0.1 and 1 microM) combined with variations in affinity of the antagonists themselves (Kb of approximately 2-13 nM). In addition to the strong antagonism of NMDA receptors, ACEA-1021 and ACEA-1031 were also moderately potent competitive inhibitors of non-NMDA receptors activated either by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid or by kainate. Antagonist affinities were similar whether measured with receptors expressed by rat brain poly(A)+ RNA in oocytes (Kb of 1-2 microM) or with cultured neurons (Kb of 1.5-3.3 microM). Our results suggest that the in vivo neuro-protective actions of ACEA-1021 and ACEA-1031 are predominantly due to inhibition at NMDA receptor glycine sites, although additional inhibition at non-NMDA receptors may play an ancillary role.

Log in using your username and password

Forgot your user name or password?

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$35.00

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 47, Issue 3
1 Mar 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
In vitro pharmacology of ACEA-1021 and ACEA-1031: systemically active quinoxalinediones with high affinity and selectivity for N-methyl-D-aspartate receptor glycine sites.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
Citation Tools
Abstract

In vitro pharmacology of ACEA-1021 and ACEA-1031: systemically active quinoxalinediones with high affinity and selectivity for N-methyl-D-aspartate receptor glycine sites.

R M Woodward, J E Huettner, J Guastella, J F Keana and E Weber
Molecular Pharmacology March 1, 1995, 47 (3) 568-581;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

In vitro pharmacology of ACEA-1021 and ACEA-1031: systemically active quinoxalinediones with high affinity and selectivity for N-methyl-D-aspartate receptor glycine sites.

R M Woodward, J E Huettner, J Guastella, J F Keana and E Weber
Molecular Pharmacology March 1, 1995, 47 (3) 568-581;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2019 by the American Society for Pharmacology and Experimental Therapeutics