Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

The role of inactivation in open-channel block of the sodium channel: studies with inactivation-deficient mutant channels.

A O Grant, J E John, V V Nesterenko, C F Starmer and J R Moorman
Molecular Pharmacology December 1996, 50 (6) 1643-1650;
A O Grant
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J E John
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V V Nesterenko
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C F Starmer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J R Moorman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Inactivation has been implicated as an important determinant of the block of Na+ channel by local anesthetic-class drugs. This proposition has been difficult to examine because agents used to modify inactivation change other channel properties and both inactivated and blocked channels do not conduct. We used site-directed mutagenesis of Phe1304 to glutamine in the linker between the third and fourth domains of the mu-1 Na+ channel to slow inactivation. Wild-type and mutant channels were expressed in frog oocytes. Macropatch and single-channel currents were recorded in cell-attached membrane patches. The F1304Q mutation increased mean open time (1.7 fold at -20 mV) and reduced the probability that the channel would fail to open. Closed times were best fit by a double-exponential function, suggesting that the inactivated state transitions were no longer absorbing. In wild-type channels, 100 microM disopyramide decreased mean open time from 1.64 +/- 0.08 to 0.34 +/- 0.04 msec. Total open time per trial was decreased 2-fold. There also was a marked increase in the fraction of null sweeps. In the inactivation-deficient mutant channel, mean and total open times were also reduced. These data indicate that even when inactivation is slowed by a localized specific mutation, open-channel block by disopyramide persists. Inactivation may not be a necessary requirement for open-channel block.

Log in using your username and password

Forgot your user name or password?

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$35.00

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 50, Issue 6
1 Dec 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The role of inactivation in open-channel block of the sodium channel: studies with inactivation-deficient mutant channels.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
Citation Tools
Abstract

The role of inactivation in open-channel block of the sodium channel: studies with inactivation-deficient mutant channels.

A O Grant, J E John, V V Nesterenko, C F Starmer and J R Moorman
Molecular Pharmacology December 1, 1996, 50 (6) 1643-1650;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

The role of inactivation in open-channel block of the sodium channel: studies with inactivation-deficient mutant channels.

A O Grant, J E John, V V Nesterenko, C F Starmer and J R Moorman
Molecular Pharmacology December 1, 1996, 50 (6) 1643-1650;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2019 by the American Society for Pharmacology and Experimental Therapeutics