Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Mutations in the Epithelial Na+ Channel ENaC Outer Pore Disrupt Amiloride Block by Increasing Its Dissociation Rate

Stephan Kellenberger, Ivan Gautschi and Laurent Schild
Molecular Pharmacology October 2003, 64 (4) 848-856; DOI: https://doi.org/10.1124/mol.64.4.848
Stephan Kellenberger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ivan Gautschi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Laurent Schild
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The epithelial Na+ channel ENaC mediates transepithelial Na+ transport in the distal kidney, the colon, and the lung and is a key element for the maintenance of Na+ balance and the regulation of blood pressure. Mutagenesis studies have identified residues αS583 and the homologous βG525 and γG537 in the outer pore entrance that are critical for ENaC block by the K+-sparing diuretic amiloride. The aim of the present study was to determine first, whether these residues are part of the amiloride binding site, and second, whether they are general determinants of ENaC block by amiloride and its derivatives. Kinetic analysis of the association and dissociation rates of amiloride and benzamil to ENaC showed that mutation of residue αS583C and the homologous βG525C increased the dissociation rate of the drugs from the binding site, with little changes in their association rate. Thus, these mutations destabilize the binding interaction between the blockers and the receptor on the channel, favoring the unbinding of the ligand. This strongly suggests that they are part of the binding site. Because mutations of αS583, βG525, and γG537 have similar effects on amiloride, benzamil, and triamterene block, we conclude that these three ENaC blockers share a common receptor within the ion channel pore.

  • Received April 30, 2003.
  • Accepted June 24, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

Log in using your username and password

Forgot your user name or password?

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$35.00

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

PreviousNext
Back to top

In this issue

Molecular Pharmacology: 64 (4)
Molecular Pharmacology
Vol. 64, Issue 4
1 Oct 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mutations in the Epithelial Na+ Channel ENaC Outer Pore Disrupt Amiloride Block by Increasing Its Dissociation Rate
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
Citation Tools
Research ArticleArticle

Mutations in the Epithelial Na+ Channel ENaC Outer Pore Disrupt Amiloride Block by Increasing Its Dissociation Rate

Stephan Kellenberger, Ivan Gautschi and Laurent Schild
Molecular Pharmacology October 1, 2003, 64 (4) 848-856; DOI: https://doi.org/10.1124/mol.64.4.848

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Mutations in the Epithelial Na+ Channel ENaC Outer Pore Disrupt Amiloride Block by Increasing Its Dissociation Rate

Stephan Kellenberger, Ivan Gautschi and Laurent Schild
Molecular Pharmacology October 1, 2003, 64 (4) 848-856; DOI: https://doi.org/10.1124/mol.64.4.848
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Operational Models for Receptors with Multiple Agonist Sites
  • BODIPY-cyclopamine Binding to Nluc-SMO
  • Characterization and optimization of the novel TRPM2 antagonist tatM2NX
Show more Article

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2019 by the American Society for Pharmacology and Experimental Therapeutics