Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
OtherPerspective

Potentiation of Acetylcholine Receptors by Divalent Cations

Jon Lindstrom
Molecular Pharmacology July 2006, 70 (1) 5-7; DOI: https://doi.org/10.1124/mol.106.025767
Jon Lindstrom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Divalent cations promote activation of several nicotinic acetylcholine receptor (AChR) subtypes, presumably by lowering the energetic barrier between open and closed conformations. In wild-type α7 AChRs, binding of calcium to a particular part of the extracellular domain is required for potentiating activation. McLaughlin et al. (p. 16) tested the hypothesis that movements involved in agonist activation and calcium modulation involve a nearby β sheet by linking strands within this sheet through disulfide bonds formed by replacing adjacent amino acids with cysteines to alter its mobility. These studies are helping to reveal how movements initiated by agonist binding to ACh binding sites are propagated through the extracellular domain of AChRs to regulate opening of the cation channel through the membrane.

  • Received April 14, 2006.
  • Accepted April 26, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

Log in using your username and password

Forgot your user name or password?

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$35.00

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

PreviousNext
Back to top

In this issue

Molecular Pharmacology: 70 (1)
Molecular Pharmacology
Vol. 70, Issue 1
1 Jul 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Potentiation of Acetylcholine Receptors by Divalent Cations
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
Citation Tools
OtherPerspective

Potentiation of Acetylcholine Receptors by Divalent Cations

Jon Lindstrom
Molecular Pharmacology July 1, 2006, 70 (1) 5-7; DOI: https://doi.org/10.1124/mol.106.025767

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
OtherPerspective

Potentiation of Acetylcholine Receptors by Divalent Cations

Jon Lindstrom
Molecular Pharmacology July 1, 2006, 70 (1) 5-7; DOI: https://doi.org/10.1124/mol.106.025767
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • G Protein Signaling Then and Now: A Tribute to Al Gilman
  • Cellular Assays Detect Pluridimensional and Biased Efficacy
  • β2-Adrenergic and Glucocorticoid Receptor Agonist Synergism
Show more Perspective

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2019 by the American Society for Pharmacology and Experimental Therapeutics