Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

β1 (KCNMB1) Subunits Mediate Lithocholate Activation of Large-Conductance Ca2+-Activated K+ Channels and Dilation in Small, Resistance-Size Arteries

Anna N. Bukiya, Jianxi Liu, Ligia Toro and Alejandro M. Dopico
Molecular Pharmacology August 2007, 72 (2) 359-369; DOI: https://doi.org/10.1124/mol.107.034330
Anna N. Bukiya
Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee (A.B., J.L., A.M.D.); and Department of Anesthesiology, University of California Los Angeles, Los Angeles, California (L.T.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jianxi Liu
Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee (A.B., J.L., A.M.D.); and Department of Anesthesiology, University of California Los Angeles, Los Angeles, California (L.T.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ligia Toro
Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee (A.B., J.L., A.M.D.); and Department of Anesthesiology, University of California Los Angeles, Los Angeles, California (L.T.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alejandro M. Dopico
Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee (A.B., J.L., A.M.D.); and Department of Anesthesiology, University of California Los Angeles, Los Angeles, California (L.T.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Among the nongenomic effects of steroids, control of vasomotion has received increasing attention. Lithocholate (LC) and other physiologically relevant cholane-derived steroids cause vasodilation, yet the molecular targets and mechanisms underlying this action remain largely unknown. We demonstrate that LC (45 μM) reversibly increases the diameter of pressurized resistance cerebral arteries by ∼10%, which would result in ∼30% increase in cerebral blood flow. LC action is independent of endothelial integrity, prevented by 55 nM iberiotoxin, and unmodified by 0.8 mM 4-aminopyridine, indicating that LC causes vasodilation via myocyte BK channels. Indeed, LC activates BK channels in isolated myocytes through a destabilization of channel long-closed states without modifying unitary conductance. LC channel activation occurs within a wide voltage range and at Ca2+ concentrations reached in the myocyte at rest and during contraction. Channel accessory β1 subunits, which are predominant in smooth muscle, are necessary for LC to modify channel activity. In contrast, β4 subunits, which are predominant in neuronal tissues, fail to evoke LC sensitivity. LC activation of cbv1+β1 and native BK channels display identical characteristics, including EC50 (46 μM) and Emax (≈300 μM) values, strongly suggesting that the cbv1+β1 complex is necessary and sufficient to evoke LC action. Finally, intact arteries from β1 subunit knockout mice fail to relax in response to LC, although they are able to respond to other vasodilators. This study pinpoints the BK β1 subunit as the molecule that senses LC, which results in myocyte BK channel activation and, thus, endothelial-independent relaxation of small, resistance-size arteries.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

Log in using your username and password

Forgot your user name or password?

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$35.00

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

PreviousNext
Back to top

In this issue

Molecular Pharmacology: 72 (2)
Molecular Pharmacology
Vol. 72, Issue 2
1 Aug 2007
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
β1 (KCNMB1) Subunits Mediate Lithocholate Activation of Large-Conductance Ca2+-Activated K+ Channels and Dilation in Small, Resistance-Size Arteries
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
Citation Tools
Research ArticleArticle

β1 (KCNMB1) Subunits Mediate Lithocholate Activation of Large-Conductance Ca2+-Activated K+ Channels and Dilation in Small, Resistance-Size Arteries

Anna N. Bukiya, Jianxi Liu, Ligia Toro and Alejandro M. Dopico
Molecular Pharmacology August 1, 2007, 72 (2) 359-369; DOI: https://doi.org/10.1124/mol.107.034330

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

β1 (KCNMB1) Subunits Mediate Lithocholate Activation of Large-Conductance Ca2+-Activated K+ Channels and Dilation in Small, Resistance-Size Arteries

Anna N. Bukiya, Jianxi Liu, Ligia Toro and Alejandro M. Dopico
Molecular Pharmacology August 1, 2007, 72 (2) 359-369; DOI: https://doi.org/10.1124/mol.107.034330
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Operational Models for Receptors with Multiple Agonist Sites
  • BODIPY-cyclopamine Binding to Nluc-SMO
  • Characterization and optimization of the novel TRPM2 antagonist tatM2NX
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2019 by the American Society for Pharmacology and Experimental Therapeutics