Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Structural and Preclinical Studies of Computationally Designed Non-Nucleoside Reverse Transcriptase Inhibitors for Treating HIV infection

Shalley N. Kudalkar, Jagadish Beloor, Albert H. Chan, Won-Gil Lee, William L. Jorgensen, Priti Kumar and Karen S. Anderson
Molecular Pharmacology April 2017, 91 (4) 383-391; DOI: https://doi.org/10.1124/mol.116.107755
Shalley N. Kudalkar
Departments of Pharmacology, School of Medicine (S.N.K., A.H.C., K.S.A.), Infectious Diseases/Internal Medicine, School of Medicine (J.B., P.K.), and Chemistry (W.-G.L., W.L.J.), Yale University, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jagadish Beloor
Departments of Pharmacology, School of Medicine (S.N.K., A.H.C., K.S.A.), Infectious Diseases/Internal Medicine, School of Medicine (J.B., P.K.), and Chemistry (W.-G.L., W.L.J.), Yale University, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Albert H. Chan
Departments of Pharmacology, School of Medicine (S.N.K., A.H.C., K.S.A.), Infectious Diseases/Internal Medicine, School of Medicine (J.B., P.K.), and Chemistry (W.-G.L., W.L.J.), Yale University, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Won-Gil Lee
Departments of Pharmacology, School of Medicine (S.N.K., A.H.C., K.S.A.), Infectious Diseases/Internal Medicine, School of Medicine (J.B., P.K.), and Chemistry (W.-G.L., W.L.J.), Yale University, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William L. Jorgensen
Departments of Pharmacology, School of Medicine (S.N.K., A.H.C., K.S.A.), Infectious Diseases/Internal Medicine, School of Medicine (J.B., P.K.), and Chemistry (W.-G.L., W.L.J.), Yale University, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Priti Kumar
Departments of Pharmacology, School of Medicine (S.N.K., A.H.C., K.S.A.), Infectious Diseases/Internal Medicine, School of Medicine (J.B., P.K.), and Chemistry (W.-G.L., W.L.J.), Yale University, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karen S. Anderson
Departments of Pharmacology, School of Medicine (S.N.K., A.H.C., K.S.A.), Infectious Diseases/Internal Medicine, School of Medicine (J.B., P.K.), and Chemistry (W.-G.L., W.L.J.), Yale University, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

The clinical benefits of HIV-1 non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are hindered by their unsatisfactory pharmacokinetic (PK) properties along with the rapid development of drug-resistant variants. However, the clinical efficacy of these inhibitors can be improved by developing compounds with enhanced pharmacological profiles and heightened antiviral activity. We used computational and structure-guided design to develop two next-generation NNRTI drug candidates, compounds I and II, which are members of a class of catechol diethers. We evaluated the preclinical potential of these compounds in BALB/c mice because of their high solubility (510 µg/ml for compound I and 82.9 µg/ml for compound II), low cytotoxicity, and enhanced antiviral activity against wild-type (WT) HIV-1 RT and resistant variants. Additionally, crystal structures of compounds I and II with WT RT suggested an optimal binding to the NNRTI binding pocket favoring the high anti-viral potency. A single intraperitoneal dose of compounds I and II exhibited a prolonged serum residence time of 48 hours and concentration maximum (Cmax) of 4000- to 15,000-fold higher than their therapeutic/effective concentrations. These Cmax values were 4- to 15-fold lower than their cytotoxic concentrations observed in MT-2 cells. Compound II showed an enhanced area under the curve (0–last) and decreased plasma clearance over compound I and efavirenz, the standard of care NNRTI. Hence, the overall (PK) profile of compound II was excellent compared with that of compound I and efavirenz. Furthermore, both compounds were very well tolerated in BALB/c mice without any detectable acute toxicity. Taken together, these data suggest that compounds I and II possess improved anti-HIV-1 potency, remarkable in vivo safety, and prolonged in vivo circulation time, suggesting strong potential for further development as new NNRTIs for the potential treatment of HIV infection.

Footnotes

    • Received December 5, 2016.
    • Accepted February 2, 2017.
  • ↵1 S.N.K. and J.B. contributed equally to this work.

  • This work was supported in part by the National Institutes of Health [Grants AI44616, GM49551, AI112443, and AI122384] and the Ruth L. Kirschstein National Research Service Award Individual Postdoctoral Fellowship [AI122864]. This work is based on research conducted at the Northeastern Collaborative Access Team beamlines, which are funded by the National Institutes of Health National Institute of General Medical Sciences [Grant P41 GM103403]. Crystal screening was conducted with support from the Yale Macromolecular X-ray Core Facility [1S10OD018007-01]. This research used resources from the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

  • dx.doi.org/10.1124/mol.116.107755.

  • ↵Embedded ImageThis article has supplemental material available at molpharm.aspetjournals.org.

  • Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 91 (4)
Molecular Pharmacology
Vol. 91, Issue 4
1 Apr 2017
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Structural and Preclinical Studies of Computationally Designed Non-Nucleoside Reverse Transcriptase Inhibitors for Treating HIV infection
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
Citation Tools
Research ArticleArticle

Potent NNRTIs with Enhanced In Vivo Pharmacokinetics

Shalley N. Kudalkar, Jagadish Beloor, Albert H. Chan, Won-Gil Lee, William L. Jorgensen, Priti Kumar and Karen S. Anderson
Molecular Pharmacology April 1, 2017, 91 (4) 383-391; DOI: https://doi.org/10.1124/mol.116.107755

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Potent NNRTIs with Enhanced In Vivo Pharmacokinetics

Shalley N. Kudalkar, Jagadish Beloor, Albert H. Chan, Won-Gil Lee, William L. Jorgensen, Priti Kumar and Karen S. Anderson
Molecular Pharmacology April 1, 2017, 91 (4) 383-391; DOI: https://doi.org/10.1124/mol.116.107755
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • hsa-miR-9-3p and hsa-miR-9-5p as Post-Transcriptional Modulators of DNA Topoisomerase IIα in Human Leukemia K562 Cells with Acquired Resistance to Etoposide
  • Operational Models for Receptors with Multiple Agonist Sites
  • BODIPY-cyclopamine Binding to Nluc-SMO
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2019 by the American Society for Pharmacology and Experimental Therapeutics