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ABSTRACT 

Flecainide has been used to differentiate Kv4.2-based transient-outward K+-currents (flecainide-

sensitive) from Kv1.4-based (flecainide-insensitive).  We found that flecainide also inhibits 

ultrarapid-delayed rectifier (IKur) currents in Xenopus oocytes carried by Kv3.1 subunits (IC50, 

28.3±1.3 µM) more strongly than Kv1.5 currents corresponding to human IKur (237.1±6.2 µM).  

The present study examined molecular motifs underlying differential flecainide sensitivity.  An 

initial chimeric approach pointed to a role for S6 and/or carboxy-terminal sites in Kv3.1/Kv1.5 

sensitivity-differences.  We then looked for homologous amino-acid residues of the two sensitive 

subunits (Kv4.2 and Kv3.1) different from homologous residues for insensitive subunits 

(Kv1.4 and Kv1.5).  Three candidate sites were identified:  two in the S5-S6 linker and one in the 

S6 segment.  Mutation of the proximal S5-S6 linker site failed to alter flecainide-sensitivity.  

Mutation at the more distal site in Kv1.5 (V481L) modestly increased sensitivity, but the 

reciprocal Kv3.1 mutation (L401V) had no effect.  S6 mutants caused marked changes:  

flecainide sensitivity decreased ∼8-fold for Kv3.1 L422I (to IC50 213±9 µM) and increased ∼7-

fold for Kv1.5 I502L (to 35.6±1.9 µM).  Corresponding mutations reversed flecainide-sensitivity 

of Kv1.4 and Kv4.2:  L392I decreased Kv4.2-sensitivity ∼17-fold (from IC50 37.4±6.9 to 628±36 

µM); I547L increased Kv1.4-sensitivity ∼15-fold (from 706±37 to 40.9±7.3 µM).  Our 

observations indicate that the flecainide sensitivity differences among these four voltage-gated 

K+-channels are determined by whether an isoleucine or a leucine is present at a specific amino 

acid location.  
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Introduction 

Voltage-gated K+-channels of the Shaker family play an important role in governing cardiac 

excitability (Roden and George 1997; Snyders, 1999).  A variety of antiarrhythmic agents target 

Shaker-based channels (Tamargo et al., 2004; Varro et al., 2004), and such actions are believed to 

contribute to their actions in man.  The cardiac transient outward current (Ito) subunits Kv1.4 and 

Kv4.2 differ in their sensitivity to the antiarrhythmic drug flecainide, with Kv4.2 being much 

more sensitive than Kv1.4.  This difference has been used to probe the various contributions of 

Kv1.4 and Kv4.2 to native Ito in the rat (Yeola and Snyders, 1997).  Kv1.5, the principal ionic 

current underlying human atrial ultra-rapid delayed rectifier current (IKur) (Wang et al., 1993; 

Feng et al., 1997) is a potentially interesting atrial-selective ionic target for drug therapy of atrial 

fibrillation (AF) (Nattel et al., 1999).  The dog counterpart, IKur.d, appears to have a contribution 

from Kv3.1 subunits (Yue et al., 1996; Yue et al., 2000a), although the importance of this 

contribution has recently been questioned (Fedida et al., 2003).  In previous work, we found IKur.d 

to be sensitive to flecainide (Yue et al., 2000b), unlike human IKur, which appears resistant (Wang 

et al., 1995).  In preliminary studies, we observed corresponding differences in the flecainide 

sensitivity of Kv3.1 and Kv1.5 (Herrera et al., 2002), reminiscent of the differences typically 

observed between Kv4.2 and Kv1.4.  The present study was designed to characterize flecainide 

block of Kv3.1 and Kv1.5, and then to determine whether there is a common molecular basis for 

flecainide-sensitivity differences between Kv1.4 and Kv1.5 on one hand, and Kv3.1 and Kv4.2 

on the other. 

 We began by constructing several chimeras of the Kv3.1 and Kv1.5 wild-type channels to 

identify important domains of flecainide block in these channels.  This was followed by site-

directed mutagenesis of the identified domains to determine whether specific residues might 
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modulate sensitivity of these channels to flecainide.  The results of these studies pointed to a key 

role for the presence of leucine versus isoleucine at a specific amino acid location.  Finally, a 

mathematical model was applied to assess the location and orientation of this amino acid in 

relation to key structures in the Kv3.1 channel molecule.  
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Materials and Methods 

 Molecular Biology.  Wild-type (WT) dKv3.1 (GenBank #AF153198), hKv1.5 (GenBank 

#XM_006988, kindly provided by Dr. Barbara Wible) and rKv1.4 (GenBank #NM_012971, 

kindly provided by Dr. Barbara Wible), were cloned into a pSP64 (Promega, Madison, WI) and 

rKv4.2 (GenBank #S64320, kindly provided by Dr. Jeanne Nerbonne) into a pRC-CMV 

expression vector (Invitrogen Life Technologies, Carlsbad, CA) with identical restriction 

endonuclease sites flanking the clone in the polyclonal region for ligating the digest product into 

the target vector. 

 For chimera construction we performed a series of polymerase chain reactions (PCRs) with 

Elongase Enzyme Mix (Invitrogen Life Technologies) and respective WTs as templates.  For 

overlap extension of both products we used a third PCR and the products of each of the previous 

reactions as the template.  The synthetic oligonucleotide primers used for the first reactions 

contained the ends of the chimera and the restriction endonuclease sites for cloning into the 

expression vector (Table 1).  The complementary primer contained part of one clone and an 

overlap overhang for the overlap extension PCR.  The third PCR employed the end primers to 

create a continuous string of nucleotides of the desired sequence.  The final products and target 

vectors were digested with appropriate restriction endonucleases (Table 1) and ligated with Quick 

T4 DNA ligase (New England Biolabs, Beverley, MA). 

 For site-directed mutagenesis, PCR was applied, with a synthetic oligonucleotide primer 

containing the desired nucleotide to create the point mutation upon translation.  Two 

complementary primers containing desired mutation and PCR primers flanking unique restriction 

enzyme sites enclosed the region of interest.  Two parallel PCR reactions, each with a flanking 

primer and a primer containing the desired mutation, generated two DNA fragments with 
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overlapping ends.  After gel purification, both fragments were annealed in a third PCR using the 

two restriction site flanking primers, resulting in a fragment containing the desired mutation.  The 

final PCR product was digested with the flanking restriction enzymes, gel-purified, and 

TOPO-TA cloned into the PCRII vector.  All PCR-generated sequences were verified by 

double-stranded sequencing.  After sequence confirmation, the mutant was released from PCRII 

at flanking restriction sites and ligated into pSP64 (or pRC-CMV) containing the coding region 

for the respective WT from which the segments enclosed by the restriction enzyme sites had been 

removed. 

 

 Oocyte Isolation.  Frogs were anesthetized by immersion in tricaine methanesulfonate for 

approximately 25 minutes.  Oocytes were excised and immersed in a 100-mm Petri dish 

containing Barth’s solution (mM):  100 NaCl, 2.0 KCl, 1.8 CaCl2, 1.0 MgCl2, and 5.0 HEPES, 

pH 7.4 (NaOH) at room temperature.  Oocytes were physically separated, then immersed 

(∼60 minutes) in 7 ml of calcium-free Barth’s-collagenase solution containing (mM):  82.5 NaCl, 

2.0 KCl, 1.0 MgCl2, and 5.0 HEPES, 0.0247 g lyophilized collagenase type A (Invitrogen) and 

0.0075 g trypsin inhibitor.  Oocytes were incubated in Barth’s solution containing penicillin 

(1000 U/L) (Invitrogen), streptomycin (100 mg/L) (Invitrogen), kanamycin (100 mg/L) and 

sodium pyruvate (275 mg/L) (Sigma) for 12 hours at 15°C. 

 5’-Capped polyadenylated cRNA was prepared for each construct with the SP6 mMessage 

mMachine in-vitro transcription kit (Ambion) after cDNA linearization.  Xenopus oocytes were 

injected with ∼1-1.4 ng/oocyte of cRNA using a microinjector and stored for at least 12 hours in 

Barth’s solution containing antibiotics and 5% horse serum at 15°C.  Oocytes were placed in a 

recording/perfusion chamber and perfused at 0.5 mL/min with (mM):  5.0 KCl, 100 NaCl, 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on May 9, 2005 as DOI: 10.1124/mol.104.009506

 at A
SPE

T
 Journals on A

pril 17, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOLPHARM/2004/009506     8 

2.0 MgCl2, 0.3 CaCl2, 10 N-2-hydoxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES), pH 7.4 

(NaOH). 

 

 Data Acquisition and Analysis.  Whole-cell currents were recorded at room temperature 

with 2-electrode voltage-clamp.  Borosilicate-glass electrodes (outer diameter 1.0 mm) filled with 

3 M KCl (resistances 1-2 MΩ) were connected to a GeneClamp-500B amplifier (Axon).  

Current-injecting electrode resistance averaged 1.5 MΩ.  Voltage command pulses were 

generated with pClamp 6 software connected to a 12-bit Digidata 1200 analog-to-digital 

converter (Axon).  A holding potential (HP) of -60 mV was used as in previous studies of native 

currents (Yue et al., 2000; Wang et al., 1995).  The effects of flecainide (Sigma) exposure were 

monitored with test pulses to +60 mV (in 10 mV steps).  The inter-pulse interval was 10 seconds 

for all protocols and pulse length is indicated in figure insets.  Recordings were low-pass filtered 

at 1 kHz.  Data were analyzed with pClamp 6 (Axon Instruments) and are expressed as 

mean±S.E.M.  Group comparisons were performed with ANOVA.  If significant differences were 

indicated by ANOVA, a t-test with Bonferroni’s correction was used to evaluate differences 

between individual mean values.  A two-tailed P<0.05 was taken to indicate statistical 

significance. 

 

 Homology Modeling of the Kv3.1 Pore.  Two models of the Kv3.1 channel were generated 

using the KcsA (Streptomyces lividans) potassium channel (PDB:  1J95) and the MthK 

(Methanobacterium thermoautotrophicum) potassium channel (PDB:  1LNQ) channel structures 

as templates.  The sequence alignment between the Kv3.1 pore-S6 region, MthK and KcsA was 

performed with SAM-T02 (Hughey and Krogh, 1996).  Automated homology modeling was 
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carried out with Modeller V6.2 (Sali and Blundell, 1993) and involved the generation of 150 

models of the Kv3.1 channel pore for each structural template.  Model selection was based on the 

lowest objective function value (roughly related to the energy of the model) provided by 

Modeller (Sali and Blundell, 1993) and on the RMS deviation between the atomic coordinates of 

the template relative to the model.  Energy minimization was carried out on the four best models 

using Charmm (Brooks et al., 1983).  The overall structural quality of the generated models was 

confirmed by PROCHECK (Laskowski et al., 1993).  Structural features of flecainide were 

approximated using HyperChem 7.5 (Hyperchem, Gainesville, FL) and the AMBER force field 

(Weiner et al., 1984).  
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Results 

 Effects of Flecainide on Kv3.1 and Kv1.5.  The effects of flecainide on Kv3.1 WT and 

Kv1.5 WT were characterized by eliciting currents in response to pulses to potentials ranging 

from -50 to +60 mV in increments of 10 mV from a holding potential of -60 mV.  Test pulses 

elicited rapidly activating outward currents with very slow inactivation in the absence of 

flecainide (Fig. 1).  Reduced current increments were seen for Kv3.1 at potentials positive to +30 

mV, compatible with inward rectification, as previously described for dKv3.1 (Yue et al., 1996; 

Yue et al., 2000a).  Flecainide (50 µM) caused rapid decay of Kv3.1 currents upon 

depolarization, compatible with open-channel block, and potently decreased end-pulse current 

amplitude (Fig. 1A).  Overall, 50 µM flecainide significantly inhibited dKv3.1 current at all 

voltages positive to 0 mV, with a mean 58.9±3.9% reduction at +30 mV (Fig. 1B).  In contrast, 

the same concentration of flecainide had little apparent effect on Kv1.5 currents (Fig. 1C), and 

mean Kv1.5 current amplitude was not significantly affected (Fig. 1D).  These observations 

indicate important differences between Kv1.5 and Kv3.1 in their sensitivity to the drug. 

 Figure 2 shows the effects of the full range of drug concentrations on Kv3.1 and Kv1.5.  

Figure 2A illustrates the effects of increasing drug concentrations on current recorded upon 

stepping from -60 to +30 mV in single oocytes expressing each subunit.  Flecainide appreciably 

decreased Kv3.1 current at 20 µM and produced near-total block of end-pulse current at 500 µM.  

In contrast, Kv1.5 was minimally affected by 50 µM flecainide and 500 µM drug produced just 

over 50% inhibition.  Figure 2B shows mean concentration-response data for flecainide inhibition 

of Kv3.1 and Kv1.5 at +30 mV.  The flecainide IC50s for Kv3.1 end-pulse current at +30 mV 

averaged 28.3±1.3 µM with a Hill coefficient (nH) of 0.91±0.1 in 11 oocytes, an order of 

magnitude less than the corresponding value for Kv1.5 (237.1±6.2 µM, Hill coefficient 1.1±0.2 
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n=8 oocytes, P<0.001).  Figure 2C shows the percentage inhibition by two concentrations of 

flecainide on Kv3.1 and Kv1.5 at different test potentials.  Inhibition showed shallow voltage-

dependence for both subunits.  At approximately equipotent flecainide concentrations (50 µM for 

Kv3.1, 500 µM for Kv1.5), block as a function of voltage is not significantly different for the two 

subunits.  Figures 2D and 2E show the activation curve for Kv3.1 and Kv1.5, respectively, based 

on an analysis of tail currents following 400-ms test pulses to various activation voltages, before 

and after exposure to approximately equipotent drug concentrations.  The half-maximal 

activation voltage (V½) of Kv3.1 was -1.7±0.4 mV (slope factor 8.2±1.3 mV), and this was 

slightly shifted to -6.8±1.5 mV, (P<0.05; slope factor 7.4±1.9 mV) after exposure to flecainide.  

For Kv1.5, the V½ was -11.6±1.8 mV (slope factor 7.2±1.8 mV) before and -16.9±1.9 mV (slope 

factor 7.4±1.9 mV) after 500 µM flecainide.  

 The rapid decay of current in the presence of flecainide suggests open-channel blocking.  

Figure 3A (inset) shows the onset of Kv3.1 block as a function of time during the pulse at 

three concentrations of flecainide.  Block was a discrete function of time, well-fit by exponential 

relations as shown, and accelerated at higher drug concentrations.  The regression lines in Fig 3A 

are an analysis of blocking kinetics as a function of drug concentration.  The blocking rate 

constant (K) was a linear function of concentration (C), consistent with a standard blocking 

model, K= koff + kon[C] (where koff and kon are rate constants for drug-receptor association and 

dissociation).  K is obtained from best-fit regression of the onset of block at each concentration to 

a single exponential function B(t)=Bo + Btd(1-exp[-Kt]), where B(t) is block at time t, Bo=block 

upon pulse onset and Btd=steady-state time-dependent block.  The dissociation constant (Kd) is 

given by koff/kon and the exponential block-onset time constant τB at any concentration [C] is 

given by 1/(kon[C] + koff), with the net rate constant K being 1/τB.  When this relation was 
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analyzed in each of 8 experiments with Kv3.1, we obtained a mean kon of 1.4±0.1 µM-1s-1 and koff 

of 39.8±5.3 s-1.  The Kd estimated from koff/kon of the kinetic analysis averaged 28.8±3.6 µM, in 

good agreement with the directly measured IC50 (28.3 µM) as obtained in Fig. 2A.  Figure 3B 

shows corresponding data for Kv1.5.  The results are qualitatively similar, with lower blocking 

rates for a given concentration.  For Kv1.5, kon averaged 0.30±0.02 µM-1s-1 and koff 60.0±5.5 s-1 

(n=8 oocytes).  Kd estimated from the kinetic analysis averaged 210.8±5.9 µM, once again in 

reasonable agreement with the directly measured IC50 (237 µM).  Table 2 shows the calculated 

rate constants.  The time-dependent block onset in Fig. 3A and B are compatible with open-

channel block.  This notion is further supported by observations of crossover of control tail 

currents with those in the presence of blocking drug concentrations for Kv3.1 (Fig. 3C) and 

Kv1.5 (Fig. 3D).  Upon repolarisation in the absence of drug, rapid time-dependent transition of 

channels from the open to the closed state provides characteristic deactivating tail currents.  In 

the presence of drug, deactivation of unblocked channels is similarly rapid.  However, for many 

open-channel blockers, unblocking must occur in the open state, there is low affinity for the 

closed state and drug-bound channels must unblock before closing.  If a large fraction of channels 

have been blocked during depolarization and the unbinding rate koff is fast enough, channels may 

unblock through the open state upon repolarization and carry significant current, thus slowing the 

apparent rate of deactivation.  This process will be reflected in a slower time course of the tail 

current, resulting in tail current ‘crossover’ (Armstrong, 1971).  The tail-current time course was 

fitted by monoexponential relations (as shown by the solid lines fitted to the experimental data 

points shown in Figures 3C and D), providing the mean data shown in Figure 3E.  These results 

show that the rate of current decay upon repolarisation was prolonged significantly in the 

presence of drug.  Kv3.1 tail-current time constants increased from 54.8±2.7 ms (control) to 
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218.2±9.6 ms in presence of flecainide 50 µM (P=0.0017, n=8 oocytes).  Corresponding values 

for Kv1.5 before and after 100 µM flecainide were 115.6±3.0 ms and 247.4±7.2 ms, respectively 

(P=0.0173, n=8 oocytes). 

 

 Response of Kv3.1/Kv1.5 Chimeras to Flecainide.  As an initial approach to analyzing the 

molecular determinants of the differential flecainide sensitivity of Kv3.1 and Kv1.5, we 

constructed chimeras between the two subunits.  Two sets of reciprocal chimeras were 

constructed.  Since we had already observed block of the wild-type channels in their open 

configuration we decided to concentrate on the pore to C-terminal region (see figure 3C, D and 

E).  One set of chimeras involved the C-terminal distal to position Asn-436 in Kv3.1 and Asn-

518 in Kv1.5.  Figure 4A, top panels, show typical recordings before and after 50 µM flecainide 

in WT Kv3.1 and Kv1.5, whereas the middle panels show corresponding recordings from Kv3.1 

subunits with their C-terminal replaced by those of Kv1.5 and Kv1.5 subunits with Kv3.1 C-

terminal substitution.  There was clearly no major change in sensitivity.  We therefore 

interchanged longer segments of each subunit, involving the C-terminal distal to Met-414 in the 

Kv3.1 S6 segment and Lys-494 in the Kv1.5 S6.  Figure 4A (bottom panels) show that flecainide 

sensitivity was somewhat decreased for Kv3.1 subunits containing the S6+C-terminal component 

of Kv1.5 and that sensitivity was increased for the corresponding Kv1.5 chimera.  Figure 4B 

compares mean±S.E.M. concentration-response data for the S6+C-terminal chimeras with those 

of WTs at +30 mV.  Results for the chimeras clearly lie in a position different from those of the 

WTs and close to each other.  Mean IC50s at +30 mV based on values calculated for each oocyte 

studied for WT and both sets of chimeric constructs are shown in Fig. 4C.  Whereas values for 

the C-terminal chimeras are indistinguishable from WT, values for the S6+C-terminal chimeras 
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are significantly different from their respective WTs and not different from each other.  These 

results suggest that molecular motifs in S6 play a role in determining the flecainide affinity 

differences between Kv3.1 and Kv1.5.  We next proceeded to address the potential role of 

specific amino acid residues in these drug affinity differences. 

 

 Effects of Mutating Candidate Amino Acids in Kv3.1 and Kv1.5 on Flecainide 

Sensitivity.  The results described above suggest that flecainide produces open-channel block of 

both Kv3.1 and Kv1.5, with marked differences in affinity.  We noted that similar differences in 

flecainide affinity had previously been reported for Kv1.4 (Yamagishi et al., 1995), which like its 

Kv1 subfamily co-member Kv1.5 is flecainide-insensitive, and Kv4.2 (Caballero et al., 2003), 

which is typically flecainide-sensitive.  In addition, we noted that many of the amino acids that 

determine drug block of voltage-dependent K+-channels are situated in the S5-S6 linker region or 

in S6 (Yeola et al., 1996; Franqueza et al., 1997; Zhang et al., 1998; Caballero et al., 2002; 

Decher et al., 2004).  We therefore aligned and compared these portions of the sequences of 

rKv1.4, hKv1.5, dKv3.1 and rKv4.2 with one another.  As shown in Fig. 5, there was a large 

degree of homology among these subunits.  At three positions (shown by boxes and symbols 

corresponding to their respective position in the channel protein), amino-acid residues 

corresponded for Kv1.4 and Kv1.5, on one hand, and for Kv3.1 and Kv4.2, on the other, but 

differed between the sensitive and insensitive subunits. 

We therefore considered these three amino acid residues to be candidates to play a role in 

the difference in flecainide sensitivity between the sensitive subunits Kv3.1 and Kv4.2 and the 

insensitive subunits Kv1.4 and Kv1.5.  We first used site-directed mutagenesis to alter each of 

these amino acids in Kv3.1 to those in Kv1.5, and to alter the amino acids in Kv1.5 to those in 

Kv3.1.  Figure 6A illustrates the effects of several flecainide concentrations on current at +30 mV 
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in oocytes expressing WT subunits and each of the point mutations.  The response of Kv3.1 

subunits with the I389D mutation was similar to that of the WT subunits shown immediately 

above.  Similarly, Kv1.5 with the reciprocal D469I mutation responded like Kv1.5 WT.  The 

response of L401V Kv3.1 also resembled that of Kv3.1 WT, but the reciprocal V481L Kv1.5 

appeared somewhat more sensitive to flecainide than Kv1.5 WT.  The mutations shown in the 

bottom panels of Fig. 6A had quite striking effects.  The L422I mutation strongly decreased the 

sensitivity of Kv3.1, whereas I502L strongly increased that of Kv1.5. 

Figure 6B shows the mean IC50s for each of the constructs studied at +30 mV.  The 

isoleucine/aspartic acid mutations did not alter the IC50 of either Kv3.1 or Kv1.5.  Whereas Kv3.1 

L401V had an IC50 indistinguishable from that of Kv3.1 WT, Kv1.5 V481L had a significantly 

lower IC50 than that of Kv1.5 WT.  The most striking changes occurred with the 

isoleucine/leucine mutations in the S6 segment.  The IC50 of Kv3.1 L422I was dramatically 

increased from that of Kv3.1 WT and approached the value of Kv1.5 WT.  Similarly, the IC50 of 

Kv1.5 I502L was substantially decreased and approximated that of Kv3.1 WT.  The full 

concentration-response relations for flecainide inhibition of the reciprocal isoleucine/leucine 

mutants and their respective WTs are shown in Fig. 6C.  They indicate that the S6 

isoleucine/leucine mutants transformed the flecainide-sensitivity phenotype of each subunit to 

resemble that of its opposite WT counterpart.  Table 2 shows the rate constants for 

leucine/isoleucine mutants compared to WTs, and indicate that like the WT channels, the main 

differences among the mutants was in the kon, suggesting that the differences in drug sensitivity 

were due to differences in drug access to the channel rather than stability of the drug-receptor 

complex. 
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 Biophysical Effects of the S6 Isoleucine/Leucine Mutations in Kv3.1 and Kv1.5.  To 

evaluate changes in biophysical properties as potential mechanisms of altered flecainide-

sensitivity of the S6 Kv3.1 and Kv1.5 mutants, we assessed the kinetics, activation 

voltage-dependence and reversal potentials of the currents carried by the various constructs.  As 

shown in Table 3, despite the substantial changes in flecainide-sensitivity caused by the 

mutations, they did not affect the primary biophysical properties of the channels. 

 

 Effects of Corresponding Mutations in Kv1.4 and Kv4.2.  The striking changes in Kv3.1 

and Kv1.5 flecainide sensitivity caused by the S6 isoleucine/leucine mutations suggest a crucial 

role in determining the flecainide sensitivity differences between these subunits.  To determine 

the role of the corresponding residues in Kv1.4 and Kv4.2, we made the equivalent point 

mutations in these subunits.  The results are illustrated in Fig. 7.  Figure 7A (left panels) shows 

currents recorded upon voltage steps from -80 mV in Kv4.2 WT, Kv4.2 with the S6 L492I 

mutation, Kv1.4 WT and Kv1.4 I547L.  The right panels show currents recorded from the same 

oocytes after exposure to 50 µM flecainide.  Kv4.2 WT was clearly flecainide-sensitive and 

Kv1.4 WT flecainide-insensitive.  The leucine to isoleucine mutation at position 392 abolished 

the response to 50 µM flecainide in Kv4.2, without obviously affecting current kinetics.  On the 

other hand, the reciprocal mutation in Kv1.4 substantially increased flecainide sensitivity.  Figure 

7B shows the full concentration-response relations for the WT subunits and the isoleucine/leucine 

mutants at +30 mV.  The mutations clearly reversed the flecainide-sensitivity differences, with 

curves for each point-mutated subunit superimposing on the curve of the opposite WT subunit.  

Overall, Kv4.2 WT exhibited marked sensitivity to flecainide with an IC50 of 37.4±6.9 µM, 

compared to Kv1.4 WT which had an IC50 of 706.3±37.2 µM  (P<0.001 versus Kv4.2).  The 
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Kv1.4 I547L mutant IC50 was decreased to 40.9±7.3 µM (P<0.001 versus Kv1.4 WT), whereas 

the flecainide IC50 of the Kv4.2 L392I mutant was 628.3±35.5 µM (P<0.001 versus Kv4.2 WT).   
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Discussion 

In this study, we have evaluated the basis for pharmacological sensitivity differences among 

four voltage-dependent K+-channel subunit channels.  We find that a single, relatively 

conservative amino acid difference in S6 accounts for the variations in flecainide sensitivity. 

 

Comparison with Previous Studies of Molecular Determinants of Cardiac Ion-Channel 

Block.  Replacing a leucine with an isoleucine in corresponding positions of the S6 

transmembrane domain conferred to the flecainide-sensitive channels Kv3.1 and Kv4.2 a 

flecainide affinity like that of the insensitive subunits Kv1.4 and Kv1.5.  Mutating the equivalent 

isoleucine in Kv1.4 and Kv1.5 to a leucine conferred strongly-increased sensitivity similar to that 

of Kv3.1 and Kv4.2.  These subunits possess highly-conserved S5, pore and S6 segments. 

Several previous studies have examined molecular motifs in these subunits that determine 

antiarrhythmic drug binding (Caballero et al, 2002; Decher et al, 2004; Franqueza et al, 1997; 

Yeola et al, 1996).  Yeola et al. (1996) were the first to examine the determinants of quinidine 

binding in Kv1.5.  They noted that residues in the S6 segment, specifically T507 and V514, are 

significant determinants of quinidine block.  Franqueza et al. (1997) showed that mutations at 

T507, L510 and V514 abolish stereoselectivity of bupivacaine block of Kv1.5.  Caballero et al. 

(2002) examined the determinants of benzocaine block and low-concentration agonist activity on 

Kv1.5, and found that mutations of T479, T507, L510 and V514 abolish agonist actions but 

increase blocking effects.  In a recent study, Decher et al. (2004) used alanine-scanning 

mutagenesis to examine the role of 23 amino acids in the K+-signature sequence and S6 of Kv1.5 

in sensitivity to the anthranilic acid derivative S0100176.  Mutations at T479, T480, V505, I508 

and V512 reduced drug sensitivity.  An alanine mutation at I502, the critical site in the present 
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study, slightly but significantly decreased sensitivity to S0100176.  The authors concluded that 

specific S6 and pore helix residues facing the inner cavity form a binding pocket for S0100176.  

There is also evidence for a role of S6 residues in determining drug block of Kv1.4 channels.  

Substitutions at T529 alter sensitivity to quinidine and 4-aminopyridine (4AP), with a 

phenylalanine substitution in particular strongly reducing the affinity for quinidine (Zhang et al., 

1998).  Phenylalanine substitutions in the leucine heptad repeat region of the S4-S5 linker region 

stabilize the closed state of Kv1.4 and increase 4AP sensitivity (Judge et al., 2002). 

There is evidence for an important role of S6 residues in governing drug block of other 

cardiac voltage-gated potassium channels.  Mutations at S620 and S631 impair C-type 

inactivation of the rapid delayed-rectifier channel encoded by the human ether-a-go-go-related 

gene (HERG) and attenuate verapamil block (Zhang et al., 1999).  Changes in HERG inactivation 

due to S6 mutations can be dissociated from alterations in blocking drug affinity, suggesting a 

primary role for modulation of drug affinity rather than state-dependent block (Lees-Miller et al., 

2000).  An elegant series of studies from Dr. Sanguinetti’s laboratory have revealed the structural 

basis for HERG block, with cation-π interactions involving critical S6 residues and tertiary 

nitrogens playing a central role (Mitcheson et al, 2000; Fernandez et al., 2004).  Similarly, S6 

domain residues are crucial determinants of drug block of the slow delayed-rectifier channel 

KvLQT1 (Seebohm et al., 2003), voltage-gated Na+-channels (Ragsdale et al., 1996; Sunami et 

al., 1997), and L-type Ca2+-channels (Hockerman et al., 1997). 

 

 Model of Kv3.1 Channel Pore.  We used molecular modeling to evaluate the position of the 

critical leucine/isoleucine amino-acid residue in relation to key structural components of Kv3.1.  

The results of structural modeling (according to the approach described in the “Materials and 
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Methods” section) are shown in Fig. 8.  The overall structure of the S5-pore-S6 region of Kv3.1 

is illustrated in a ribbon representation, with the surface of the L422 and V425 residues colored 

in yellow and red respectively.  The V425 residue is seen as projecting inside part of the channel 

central cavity (Jiang et al., 2002).  This residue has been shown to participate in the binding of a 

large number of inhibitory agents to several K+ channels, including the voltage-gated Shaker (Liu 

et al., 1997) and the KCa3.1 (Wulff et al., 2001) channels.  As the dimensions of the channel 

inner cavity (10Å) correspond to the computed length of a flecainide molecule, it is quite 

conceivable that flecainide interacts directly with the hydrophobic residues of the channel cavity, 

in particular V425.  In contrast, the van der Walls surface of the key L422 residue appears to be 

projecting directly behind V425.  Hence, our structural analysis does not support a direct 

interaction between flecainide and the residue at position 422; therefore, it is probably not part of 

the binding site per se.  It is possible, however, that the L to I mutation at position 422 induces a 

repositioning of the V425 residue, thereby modifying the interaction between flecainide and 

residues such as V425 in the channel cavity.  Alternatively, as seen in the model in Figure 8, 

L422 is located directly above the highly-conserved G424 residue that is generally considered to 

act as a gating hinge.  This residue bends the inner helix by approximately 30 degrees in the 

crystal structure of MthK and is believed to provide part of the S6 segment flexibility required for 

Kv channel opening.  It is thus possible that the L422I mutation alters the flexibility of the G424 

region, thus modulating the rate at which flecainide has access to the channel inner cavity.   

 Figure 8 also includes the position of the hydrophilic L401 (green) and I389 (blue) residues, 

mutation of which failed to alter flecainide sensitivity of Kv3.1.  The I389 residue is predicted to 

be located in the N-terminal end of the channel pore helix (blue) whereas the L401 residue is seen 

as part of the selectivity filter.  Because I389 is more exposed to the external than internal 

medium, mutating this residue is not expected to affect the structure of the channel central cavity.  
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However, according to the proposed model, the leucine at position 401 could indirectly modify 

the position of the cavity-lining T400 residue and thus affect flecainide binding.  In fact, residues 

at positions equivalent to T400 have been implicated in drug binding (see for instance Wulff et 

al., 2001).  However, mutation of L401 is not likely to result in a significant change in the T400 

orientation due to the high rigidity of the filter region.   

 The predicted positions of the I389, L401, L422 and V425 residues depend on the validity 

of our homology-based models.  In this regard, it should be pointed out that the structural features 

of the L401, L422 and V425 residues are conserved whether Kv3.1 is modeled with MthK 

(Figure 8) or with the closed KcsA channel structure as template (not shown).  The structure of 

the S6 segment above the gating-hinge glycine residue thus appears to change minimally between 

the closed and the open conformation of K+-channels, despite important structural changes in the 

C-terminal region of S6.  However, in the absence of a crystal structure for mammalian voltage-

gated K+ channels, we cannot rule out the possibility that the orientation of the L422 and V425 

residues differs from that predicted by the bacterial MthK and/or KcsA structures.  Further 

studies to evaluate the potential structural basis for the role of the isoleucine/leucine moiety in 

determining flecainide sensitivity, as well as the importance of other residues in that region, 

would be of interest. 

 
 Potential Importance of our Findings.  The difference in flecainide-sensitivity between 

Kv1.4 and Kv4.2 is well-recognized and consequently flecainide has been used as a tool to 

explore the potential molecular basis of native Ito (Yeola and Snyders, 1997; Han et al., 2000).  

Flecainide sensitivity differences have also been noted between canine IKur with properties of 

Kv3.1 (Yue et al., 2000) and native human Kv1.5-like IKur currents (Wang et al., 1995).  The 

present study demonstrates a common molecular basis for these sensitivity differences:  the 
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presence of a leucine rather than an isoleucine at a key S6 amino-acid position in the flecainide-

sensitive subunits. 

Atrial fibrillation is the most common clinical arrhythmia and its treatment remains 

suboptimal (Nattel et al., 2002).  Because of its atrial-selective localization, Kv1.5-based human 

IKur has been suggested to be a potentially-interesting target for new antiarrhythmic drug 

development (Wang et al., 1993).  The present study was designed to shed light on the molecular 

determinant of reported differences seen between sensitive and insensitive subunits.  The 

identification of a key amino-acid determinant is an important step in this direction.  A better 

understanding of the molecular determinants of the drug-sensitivity of Kv1.5 and related channels 

may help in the rational design of new antiarrhythmic compounds. 

 

Potential Limitations.  The objective of this study was to determine the molecular basis for 

the differences in flecainide sensitivity among four subunits involved in forming native 

K+-channels for which discrepancies in sensitivity have been noted and studied previously.  We 

did not set out to establish the details of the molecular determinants of the drug-binding site for 

each individual subunit.  Although the latter issue is of great interest, it goes well beyond the 

scope of the present study.  The S6+C-terminal chimeras containing the S6+C-terminal of Kv3.1 

or Kv1.5 moved the flecainide sensitivity towards that of the subunit composition of the S6+C-

terminal end.  However, despite the fact that the S6+C-terminal contained the leucine/isoleucine 

moiety conferring flecainide sensitivity/insensitivity respectively in the respective wild types or 

point mutations, the changes in drug sensitivity were less with the chimeras than for the point 

mutations.  This observation suggests that other molecular determinants in S6 and/or the C-

terminus influence drug sensitivity in the chimeras, and can partly offset the effects of the 

leucine/isoleucine moiety.   
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The channel-blocking concentrations in this study are higher than those produced 

therapeutically, as well as values published in studies analyzing the effects of flecainide on IKur.d 

in isolated atrial cells and in vivo models of AF (Yue et al., 2000b; Wang et al., 1992).  This 

discrepancy is likely due to the well-recognized lesser sensitivity to blocking drugs of channels 

expressed in Xenopus oocytes compared to mammalian cells (Weerapura et al, 2002).  

Nevertheless, the mechanisms of channel block in Xenopus oocytes are believed to be similar to 

those in other systems and Xenopus oocytes are widely used as an expression system for the 

analysis of structural motifs for channel block (Decher et al., 2004; Dibb et al., 2003; Perry et al., 

2004; Wang et al., 2003). 

We used molecular modeling to evaluate the position of the critical leucine/isoleucine 

amino acid in relationship to key structural components of Kv3.1.  We recognize that this 

modeling does not clarify the details of flecainide binding.  As mentioned above, a full evaluation 

of the molecular structure of the drug-binding site goes beyond the scope of this study.   In 

particular, further work is needed to delineate the amino acids that form the binding site and the 

mechanism of their interaction with the critical leucine/isoleucine residue that we identified.  

Nevertheless, we feel that it is important to note the position of the leucine/isoleucine amino acid 

site in order to begin to assess potential mechanisms of its involvement.  Further work will 

clearly be needed to reveal more of the details of flecainide's interactions with channels 

composed of Kv4.2, Kv3.1, Kv1.4 and Kv1.5 subunits.   
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FIGURE LEGENDS 

Figure 1. Flecainide inhibition of Kv3.1 and Kv1.5 currents expressed in Xenopus oocytes 

(n=8 per observation).  Kv3.1 (A) and Kv1.5 (C) currents induced by depolarization 

to potentials ranging from -50 mV to +60 mV from a holding potential of -60 mV in 

the absence and presence of 50 µM flecainide.  Inset shows the voltage-clamp 

protocol used to elicit currents.  Vertical scales represent 1 µA and horizontal scales 

100 ms.  Current-voltage relationships for Kv3.1 (B) and Kv1.5 (D) currents in the 

absence (○) and presence of 50 µM flecainide (□) (** P<0.01, *** P<0.001 versus 

control).  

Figure 2. A, effects of four concentrations of flecainide on currents recorded in representative 

oocytes expressing Kv3.1 and Kv1.5 (protocol in inset).  Note that all recordings 

before and after drug were in the same oocyte.  Vertical scales represent 1 µA and 

horizontal scales 100 ms.  B, concentration-response curves for Kv3.1 and Kv1.5 

(mean±S.E.M.) for effects of flecainide upon steps to +30 mV (n=8 per 

observation).  C, percentage reduction (mean±S.E.M.) in Kv3.1 and Kv1.5 as a 

function of test potential at 50 and 500 µM flecainide.  D, E, activation 

voltage-dependence of Kv3.1 and Kv1.5 currents under control conditions and in the 

presence of 50 and 500 µM flecainide respectively, as determined based on the tail 

current at -30 mV following steps to each of the voltages indicated normalized to 

the tail current after a step to +60 mV (n=8 per observation). 

Figure 3. Time-dependent flecainide effects.  A, B, mean±S.E.M. blocking rate constants 

(determined as illustrated in insets) were a linear function of flecainide 

concentration (n=8 oocytes/data point).  Insets:  fractional inhibition of Kv3.1 (A) 
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and Kv1.5 (B) current produced by the flecainide concentration indicated relative to 

control (given by [(ICtl-IFlec)/ICtl]) are shown as a function of time during voltage 

steps to +30 mV.  Original data are shown, as well as best-fit exponentials to 

determine the rate constants for block onset.  C, D, tail currents were elicited upon 

repolarisation to -30 mV following pulses to +60 mV from a holding potential of -

60 mV.  Kv3.1 (C) and Kv1.5 (D) deactivation currents (tail currents) in the absence 

and presence of the indicated flecainide concentration.  E, summary data 

(mean±SEM) of time course of deactivation in the absence and presence of 

flecainide concentrations indicated in panels C and D (results were obtained in 

8 oocytes per construct). 

Figure 4. Effects of flecainide on currents carried by WT and chimeric subunits.  A, current 

recordings in absence and presence of 50 µM flecainide.  B, concentration-response 

curves for Kv3.1 WT, Kv3.1 with the Kv1.5 S6 and C-terminal (Kv3.1/Kv1.5 

S6+C-term), Kv1.5 WT and Kv1.5 with the Kv3.1 S6 and C-terminal (Kv1.5/Kv3.1 

S6+C-term).  C, IC50s for flecainide effects on currents upon application of a pulse 

to +30 mV.  (*P<0.05 versus Kv3.1 WT; †† P<0.01 versus Kv1.5 WT, N ranges 

from 6 to 8).  Vertical calibrations are 1 µA and horizontal calibrations are 100 ms.  

(Kv3.1/1.5C-term=chimera formed by substituting Kv1.5 C-terminal into Kv3.1; 

Kv1.5/3.1C-term=chimera formed by substituting Kv3.1 C-terminal into Kv1.5). 

Figure 5. Amino-acid sequence comparison of the region between the beginning of the S5-S6 

linker and S6 in dKv3.1, hKv1.5, rKv4.2 and rKv1.4.  Residues selected for 

mutation analysis are boxed. 
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Figure 6. A, effects of four concentrations of flecainide on currents recorded in representative 

oocytes expressing WT and various mutant constructs of Kv3.1 (left) and Kv1.5 

(right) (voltage protocol in inset).  Vertical calibrations are 1 µA and horizontal 

calibrations are 100 ms.  B, mean±S.E.M. IC50s for WT and mutant constructs 

(*P<0.05, ***P<0.001 versus. Kv1.5WT; †P<0.05, †††P<0.001 versus Kv3.1 WT, 

n ranges from 6 to 8 per data point).  C, concentration-response curves for WT and 

isoleucine/leucine mutants mean±S.E.M. for effects of flecainide upon steps to 

+30 mV (n ranges from 6 to 8 per data point). 

Figure 7. Effects of flecainide on Ito-forming subunits.  A, current recordings of Kv4.2 WT, 

Kv4.2 L492I, Kv1.4 WT and Kv1.4 I547L in the absence (left panels) and presence 

(right panels) of 50 µM flecainide (recordings before and after drug were always 

obtained in the same oocyte).  B, concentration-response curves for flecainide 

inhibition of currents elicited by depolarization to +30 mV.  Vertical calibrations are 

1 µA and horizontal calibrations are 100 ms. 

Figure 8. Homology model of the Kv3.1 pore.  Structural model of the Kv3.1 pore region 

obtained by homology modeling using the MthK crystal structure as template (PDB:  

1LNQ).  Top and side views of the predicted Kv3.1 channel S5-Pore-S6 region 

shown in a ribbon representation.  The channel selectivity filter is illustrated 

containing  two K+ ions (orange).  The L422 (red) and the cavity lining residue 

V425 (yellow) are represented as van der Walls surfaces.  Only three of the four 

monomers have been included in the side view representation of the channel for 

clarity.  This model predicts that the L422 residue is positioned behind V425.  As a 

result L422 is not expected to face the channel central cavity and thus to interact 

directly with flecainide.  The position of the hydrophilic L401 and I389 residues has 
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been marked in green and blue respectively.  The I389 residue is predicted to be 

located in the N-terminal end of the channel pore helix (blue) whereas the L401 

residue is seen as part of the selectivity filter.  Mutation of these residues is not 

expected to affect the structure of the channel central cavity where most likely 

binding of flecainide takes place. 
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TABLE 1 
Primers used for chimera and point mutation construction 

 
Clone Primers and Annealing Temperatures in °C RES 

Kv3.1 I389D 1. CTGCCCCAACAAGATAGAGTTCAT 
2. CAGAAGCCATCGGGGATGTTCTTAAAGTGGG 
3. GTCATGGTGACCACGGCCCACCAGAAGCCATCGGGGA 

MscI 
BstEII 

Kv1.5 D469I 1. AGCGGGGTCATGGCCCCGCCCTCT 
2. ACCAGAAGGCGATAGGGATGCTAG 
3. CATGGTGACCACTGCCCACCAGAAGGCGATAGGGATGC 

PmlI 
BstEII 

Kv3.1 L401V 1. ATGACGACGGTGGGCTACGGAGAC 
2. GCCCGTGGTCACCATGACGACGGTGGGCTAC 
3. ATCGGATCCTCAAGTCACTCTCAC 

BstEII 
BamHI 

Kv1.5 V481L 1. AGTGGTCACCATGACCACTCTGGGCTACGGGGA 
2. CATGATATCTCACAAATCTGTTTCCCGGCT 

BstEII 
EcoRV 

Kv3.1 L422I 1. GCACTGTGTGCGATAGCGGGCGTGCTG 
2. ATCGGATCCTCAAGTCACTCTCAC 

BstAPI 
BamHI 

Kv1.5 I502L 1. TCCAGTGCCGTCTACTTCGCA 
2. AGGACCCCGGCGAGGGCACACAGCGAG 
3. GCTGTGTGCCCTCGCCGGGGTCCTCAC 
4. CATGATATCTCACAAATCTGTTTCCCGGCT 

 
BstEII 
EcoRV 

Kv4.2 L392I 1. GGCCCTGGTGTTCTACTATGT 
2. GACCAAGACTCCGCTAATTGAGCAGAT 
3. GGGTCTATCTGCTCAATTAGCGGAGTC 
4. ATAGTTTAGCGGCCGCGTCTTACAAAGCAGACAC 

 
BsmBI 
NotI 

Kv1.4 I547L 1. GCAGAGGCAGATGAACCTACC 
2. TAAGACACCCGCAAGGGCACACAG 
3. GGGTCCCTGTGTGCCCTTGCGGGTGTC 
4. GATGGATCCTCAGACGTCAGTCTC 

 
BsmI 
BamHI 

Kv3.1/ 
Kv1.5S6-
Cterm 

1. CAAGATAAGCTTATGGGCCAAGGGGACGAGAGCGAG 
2. CCCGGCGATGGCACACAGCGAGCCCACGATCATGCCG 
    GACCACGTCTGCGGGTA 
3. GACATGTACCCGCAGACGTGGTCCGGCATGATCGTGG 
    GCTCGCTGTGTGCCATC 
4. ACGAATGAGCTCTCACAAATCTGTTTCCCGGCTGGT 

 
 
HindIII 
SacI 

Kv1.5/ 
Kv3.1S6-
Cterm 

1. CAAGATAAGCTTATGGAGATCGCCCTGGTGCCCCTG 
2. GCCCGCCAGCGCACACAGTGCTCCCACCAGCTTGCC 
    CCCAACAGTGATGGGCCT 
3. GACATGAGGCCCATCACTGTTGGGGGCAAGCTGGTG 
    GGAGCACTGTGTGCGCTG 
4. ACGAATGGATCCTCAAGTCACTCTCACAGCCTCTGT 

 
 
HindIII 
BamHI 

Kv3.1/ 
Kv1.5Cterm 

1. ATAGGGGCCCAGCCCAATGAC 
2. CACGATGACGGGCACAGGCAT 
3. GTTGAAGTTGGACACGATGACGGG 
4. TCCAACTTCAACTACTTCTACCACCGG 
5. ACGAATGAGCTCTCACAAATCTGTTTCCCGGCTGGT 
6. CCCGTCATCGTGTCCAACTTCAACTACTTCTAC 

 
 
BstEII 
SacI 

Kv1.5/ 
Kv3.1Cterm 

1. TCCAGTGCCGTCTACTTCGCA 
2. GACGATGACGGGCACAGGCAG 
3. CCCAAAATTGTTGACGATGACGGG 
4. AACAATTTTGGGATGTATTACTCC 
5. ACGAATGGATCCTCAAGTCACTCTCACAGCCTCTGT 
6. CCCGTCATCGTCAACAATTTTGGGATGTATTACTCC 

 
 
BstEII 
BamHI 

 
RES: Restriction Endonuclease Sites 
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TABLE 2 

Rate constants for wild-type and mutant channels. 

Channel kon(µM-1s-1) koff(s
-1) Kd (µM) 

Kv3.1 WT 1.4±0.1 39.8±5.3 28.8±3.6 

Kv3.1 L422I 0.37±0.05 73.2±4.5 202.7±11.7 

Kv1.5 WT 0.30±0.02 60.0±5.5 210.8±5.9 

Kv1.5 I502L 1.1±0.3 36.7±1.6 35.4±1.9 
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TABLE 3 

Biophysical properties of wild-type and mutant clones 

Clone V1/2 (mV) k (mV) τ-10mV (ms) τ+30mV (ms) Vrev (mV) 

Kv3.1 WT -1.7±0.4 8.2±1.1 19.4±1.5 3.9±0.5 -78±3.2 

Kv3.1 L422I -2.1±0.5 8.0±1.5 18.7±1.9 3.5±0.9 -76±4.8 

Kv1.5 WT -11.6±1.8 7.2±1.2 9.8±1.1 2.7±0.3 -73±3.4 

Kv1.5 I502L -10.3±1.7 7.0±1.4 9.6±1.6 2.5±0.6 -74±4.6 

V1/2 = 50% activation voltage; k = slope factor of activation curve; τ-10mV, τ+30mV = activation time 
constants at -10 and +30 mV respectively, Vrev = reversal potential based on reversal of tail 
currents following a 25 ms activating pulse to +30 mV. 
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