New Assignments for Multi-tasking Signal Transduction Inhibitors

Zhihong Zhang and Kathryn E. Meier

Department of Pharmaceutical Sciences

Washington State University

Pullman, Washington

MOL23721

Downloaded from molpharm.aspetjournals.org at ASPET Journals on April 10, 2024

Running title:

Multi-tasking protein tyrosine kinase inhibitors

Corresponding author:

Kathryn E. Meier, Ph.D.
Dept. of Pharmaceutical Sciences
P.O. Box 646534
Washington State University
Pullman, WA 99164-6534
kmeier@wsu.edu

Document statistics:

Number of text pages: 5 Number of tables: 0 Number of figures: 1 Number of references: 32

Number of words in abstract: 170 Number of words in introduction: NA Number of words in discussion: NA Number of words in entire text: 1364

List of non-standard abbreviations:

CML, chronic myelogenous leukemia; PDGFR, platelet-derived growth factor receptor; SMC, smooth muscle cell; VSMC, vascular smooth muscle cell

ABSTRACT

An article presented in this issue of Molecular Pharmacology (p. ...) provides an intriguing example of how tyrosine kinase inhibitors can be put to many uses. In this article, the action of dasatinib (BMS-354825) is contrasted to that of imatinib, a kinase inhibitor that is currently being used to treat chronic myelogenous leukemia and other disorders. Both pharmacologic inhibitors target several tyrosine kinases, including Bcr-Abl and the platelet-derived growth factor receptor (PDGFR). Up to this point, the PDGFR has not been a primary therapeutic target for this class of agents. The work of Chen and colleagues shows that dasatinib is a particularly potent inhibitor of PDGFR, and that the compound also targets Src kinase. The authors suggest that this combination of activities could be useful in the treatment of vascular obstructive diseases. While a lack of absolute specificity has classically been regarded as a pharmacologic drawback, this study exemplifies that drugs with multiple molecular targets can potentially provide a very beneficial spectrum of therapeutic activities in multiple disease states.

Tyrosine kinase inhibitors have been considered as potential therapeutic agents in several disease states, and particularly in cancer. Over 100 gain-of-function oncogenes have been defined that can contribute to carcinogenesis (Blume-Jensen and Hunter, 2001). Since tyrosine kinases represent a large fraction of known dominant oncogenic proteins, they continue to be a prime target for the development of specific signal transduction inhibitors (Levitzki and Gazit, 1995; Blume-Jensen and Hunter, 2001). Protein tyrosine kinases catalyze the transfer of the γ phosphate of ATP to hydroxyl groups of tyrosines on target proteins. They are important regulators of intracellular signal transduction pathways mediating cell proliferation, differentiation, migration, metabolism, survival, and cell-cell communication (Hunter, 1998). The human genome encodes 518 serine/threonine and tyrosine kinases (Manning et al., 2002), all of which bind ATP in highly conserved catalytic domains (Venter et al., 2001). It has long been recognized that protein kinase activities can be targeted by pharmacologic inhibitors. However, two potential problems presented themselves. First, the abundance of ATP in a cell raised a concern over the difficulty in developing inhibitors to be administered at concentrations that would effectively suppress particular kinases without cellular toxicity. Second, the high degree of commonality implied that it would be difficult to develop compounds that specifically inhibited particular protein kinases without having crossreactivity toward others. The first concern has not presented a significant problem. The second concern has proven to be well founded. However, in some cases the lack of specificity is advantageous. The latter point is nicely demonstrated by the work of Chen and co-workers in this issue.

Dozens of small molecule inhibitors have been identified that bind to the ATP site of tyrosine kinases with nanomolar or picomolar affinities and excellent specificity (Futreal et al., 2001; Davies et al., 2000). The recently marketed drug imatinib (STI-571, Gleevec) is a small molecular inhibitor that inhibits the Abl tyrosine kinases. Imatinib also inhibits the c-Kit (stem cell factor) and PDGFR tyrosine kinases (Buchdunger et al., 2000). Inhibition of Bcr-Abl is central to the therapeutic activity of imatinib in chronic myelogenous leukemia (CML). Imatinib appears to bind preferentially to the inactive conformation of Abl, thus blocking its activation (Schindler et al., 2000). It has been proposed that distinct structural features among tyrosine kinases in their inactive conformation may provide for the observed extent of drug-target selectivity. Nonetheless, lack of target selectivity has been observed, and this molecular "promiscuity" has resulted in broader therapeutic applications.

The breadth of action of imatinib has been used to advantage to expand its range of tumor targets. Treatment with this drug has shown remarkable clinical activity in gastrointestinal stromal tumors, which frequently contain activating mutations in the c-Kit tyrosine kinase (Heinrich et al., 2002). Preliminary clinical data suggest that imatinib is also active against leukemias expressing a fusion of the PDGFR with the Tel gene product (Sawyer, 2002). However, lack of target specificity can also lead to undesirable side effects. For example, there is a case report of cystoid macular edema (CME) occurring as a side effect of imatinib (Masood et al., 2005). The possible mechanism of this side effect may be mediated through inhibition of the PDGFR. The PDGFR is found in the retina (Robbins et al., 1994), where its down-regulation has been associated with the development of edema (Lindahl et al., 1997).

Pathological changes observed in vascular remodeling include endothelial injury, proliferation, and hypercontraction of vascular smooth muscle cells (SMCs) (Humbert et al., 2004). Migration of medial SMCs and their proliferation in the intima contribute to thickening of injured and atherosclerotic vessels. These events are regulated, in part, by platelet-derived growth factor (PDGF) (Koyama et al., 1994; Balasubramaniam et al., 2003). PDGF consists of dimers that include two structurally similar polypeptides (A chain and B chain) that are encoded by separate genes (Heldin and Westermark, 1999; Raines et al., 1990). PDGF stimulates cell growth through the activation of cell surface receptors α and β (Heldin and Westermark, 1999; Raines et al., 1990). Recently, two additional PDGF genes were identified, encoding PDGF-C and PDGF-D polypeptides (Bergsten et al., 2001; Li et al., 2000). The PDGF receptors belong to a family of transmembrane receptor tyrosine kinases (RTKs) that include the epidermal growth factor receptor and vascular endothelial growth factor receptors. These receptors dimerize to bind the bivalent PDGF ligands. Formation of the PDGF-PDGFR results in an autophosphorylation of the RTK and increased kinase activity. In vitro studies suggest that PDGF-B has affinity for both α - and β -receptors, whereas PDGF-A binds only the α receptor (Raines et al., 1990; Heldin and Westermark, 1999). PDGF and its receptors play a key role in embryonic development, as inactivation of the genes for PDGF and its receptors causes abnormal kidney, lung, cardiac, and vascular development (Heldin and Westermark, 1999; Leveen et al., 1994; Lindahl et al., 1998). Both receptors activate major mitogenic signaling transduction pathways, including Ras/MAPK, PI3K, and phospholipase C7 (Heldin et al., 1998; Rosenkranz and Kazlauskas, 1999). Recently, upregulation of both PDGFR and PDGFR has been shown in lambs with chronic intrauterine pulmonary hypertension (Balasubramaniam et al., 2003). Pulmonary levels of the ligands PDGF-A or PDGF-B mRNA did not differ between pulmonary hypertensive and control animals. In lung biopsies from patients with severe pulmonary arterial hypertension (PAH), PDGF-A chain expression was significantly increased (Humbert et al., 1998).

Results presented in this issue by Chen and colleagues provide evidence for the inhibitory effect of a novel protein tyrosine kinase inhibitor, dasatinib (BMS-354825), on PDGF responses in vascular smooth muscle cells (VSMCs). In this study, the authors show that dasatinib inhibits the following PDGF-stimulated responses in rat VSMCs: 1) activation of PDGFR, STAT3, Akt, and Erk2, 2) migration, and 3) proliferation. Dasatinib also inhibits Src tyrosine kinase in VSMCs. Direct comparison of the actions of dasatinib and imatinib in VSMCs indicated that dasatinib is 67-fold more potent than imatinib in inhibiting PDGFR activation.

This study provides an excellent example of a multi-tasking signal transduction inhibitor. Dasatinib is an ATP-competitive, dual-specificity Src- and Abl-kinase inhibitor developed by Bristol–Myers Squibb (Princeton, USA) (Lombardo et al., 2004; Shah, et al., 2004). Src is an attractive target because Src activation may play a role in the development and progression of many tumors. Specifically, Src kinase modulates signal transduction through mutiple oncogenic pathways including PDGF receptor, vascular endothelial growth factor receptor, and others. Notably, dasatinib can also inhibit Bcr-Abl activation loop mutants that are found in some CML patients with acquired clinical resistance to imatinib (Shah et al., 2004). Dasatinib, which is structurally unrelated to imatinib, is 325-fold more potent than imatinib and is active against 18 of 19 Bcr-Abl

mutations found in patients who develop imatinib resistance (Shah et al., 2004; Hampton, 2006; O'Hare et al. 2005). Thus, dasatinib is currently being developed as an anti-cancer drug (Walz and Sattler, 2006). In this issue, Chen and co-workers demonstrate that dasatinib possesses potential novel therapeutic activity in cardiovascular diseases such as restenosis and stenosis. These conditions, which involve hyperproliferation of vascular cells, are very significant clinically and have therefore been the target of various pharmacologic approaches. Chen and colleagues suggest that the combination of activities (i.e., inhibition of both PDGFR and c-Src) observed for dasatinib could be useful in the treatment of vascular obstructive diseases.

The potential therapeutic applications of tyrosine kinase inhibitors in different disease states are being very actively investigated. With respect to the study by Chen and co-workers, issues that are worthy of further attention include: 1) the relative roles of PDGFR and c-Src in mediating VSMC migration, 2) further characterization of the downstream signaling steps most critical for PDGF-induced migration and proliferation (Bornfeldt et al., 1995), and 3) ability of dasatinib to inhibit restenosis in animal models and human clinical trials. New inhibitors often contribute to our understanding of complex cellular signal transduction pathways, unveiling new elements pathophysiology. Combinations of the tyrosine kinase inhibitors with agents that inhibit downstream pathways should be explored as a novel multistep approach to treating human disease. We are approaching an age of maturity in pharmacology in which desired drug effects, as well as "side" effects, may be regarded as components of a therapeutic continuum that can be optimized to the treatment of specific disease states.

MOL23721

Downloaded from molpharm.aspetjournals.org at ASPET Journals on April 10, 2024

Acknowledgment:

The authors thank Ms. Andrea Meier for graphic design.

References

- Balasubramaniam V, Le Cras TD, Ivy DD, Grover TR, Kinsella JP and Abman SH (2003) Role of platelet-derived growth factor in vascular remodeling during pulmonary hypertension in the ovine fetus. *Am J Physiol Lung Cell Mol Physiol* **284**:826-833.
- Bergsten E, Uutela M, Li X, Pietras K, Ostman A, Heldin CH, Alitalo K and Eriksson U (2001) PDGF-D is a specific, protease-activated ligand for the PDGF beta-receptor. *Nat Cell Biol* **3**:512-516.
- Blume-Jensen P and Hunter T (2001) Oncogenic kinase signalling. *Nature* **411**:355-65.
- Bornfeldt KE, Raines EW, Graves LM, Skinner MP, Krebs EG and Ross R (1995)

 Platelet-derived growth factor. Distinct signal transduction pathways associated with migration versus proliferation. *Ann NY Acad Sci USA* **66**:416-430.
- Buchdunger E, Cioffi CL, Law N, Stover D, Ohno-Jones S, Druker BJ and Lydon NB. (2000) Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. *J Pharmacol Exp Ther* **295**:139-145.
- Davies SP, Reddy H, Caivano M and Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. *Biochem J* **351**: 95-105.
- Futreal PA, Kasprzyk A, Birney E, Mullikin JC, Wooster R and Stratton MR (2001)

 Cancer and genomics. *Nature* **409**:850-852.
- Hampton T (2006). Looking beyond imatinib: next line of targeted drugs for CML shows promise. *JAMA* **295**:369-370.

- Heinrich MC, Blanke CD, Druker BJ and Corless CL (2002) Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. *J Clin Oncol* **20**:1692-1703.
- Heldin CH, Ostman A and Ronnstrand L (1998) Signal transduction via platelet-derived growth factor receptors. *Biochim Biophys Acta* **1378**:79-113.
- Heldin CH and Westermark B (1999). Mechanism of action and in vivo role of plateletderived growth factor. *Physiol Rev* **79**:1283-1316.
- Humbert M, Monti G, Fartoukh M, Magnan A, Brenot F, Rain B, Capron F, Galanaud P, Duroux P, Simonneau G and Emilie D (1998) Platelet-derived growth factor expression in primary pulmonary hypertension: comparison of HIV seropositive and HIV seronegative patients. *Eur Respir J* 11:554-559.
- Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF and Rabinovitch M (2004)

 Cellular and molecular pathobiology of pulmonary arterial hypertension. *J Am Coll Cardiol* 43:13S-24S.
- Hunter T (1998) The Croonian Lecture: The phosphorylation of proteins on tyrosine: its role in cell growth and disease. *Philos Trans R Soc Lond B Biol Sci* **353**:583-605.
- Koyama N, Hart CE and Clowes AW (1994) Different functions of the platelet-derived growth factor-alpha and -beta receptors for the migration and proliferation of cultured baboon smooth muscle cells. *Circ Res* **75**:682-691.
- Leveen, P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E and Betsholtz C (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. *Genes Dev* **8**:1875-1887.

- Levitzki A and Gazit A (1995) Tyrosine kinase inhibition: an approach to drug development. *Science* **267**:1782-1788.
- Li X, Ponten A, Aase K, Karlsson L, Abramsson A, Uutela M, Backstrom G, Hellstrom M, Bostrom H, Li H, Soriano P, Betsholtz C, Heldin CH, Alitalo K, Ostman A and Eriksson U (2000) PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor. *Nat Cell Biol* **2**:302-309.
- Lindahl, P, Hellstrom M, Kalen M, Karlsson L, Pekny M, Pekna M, Soriano P and Betsholtz C (1998) Paracrine PDGF-B/PDGF-Rβ signaling controls mesangial cell development in kidney glomeruli. *Development* **125**:3313-3322.
- Lindahl P, Johansson B.R, Levéen P and Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. *Science* **277**:242–245.
- Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K, Castaneda S, Cornelius LA, Das J, Doweyko AM, Fairchild C, Hunt JT, Inigo I, Johnston K, Kamath A, Kan D, Klei H, Marathe P, Pang S, Peterson R, Pitt S, Schieven GL, Schmidt RJ, Tokarski J, Wen ML, Wityak J and Borzilleri RM (2004). Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. *J Med Chem* 47:6658-6661.
- Manning G, Whyte DB, Martinez R, Hunter T and Sudarsanam S (2002) The protein kinase complement of the human genome. *Science* **298**:1912-1934.

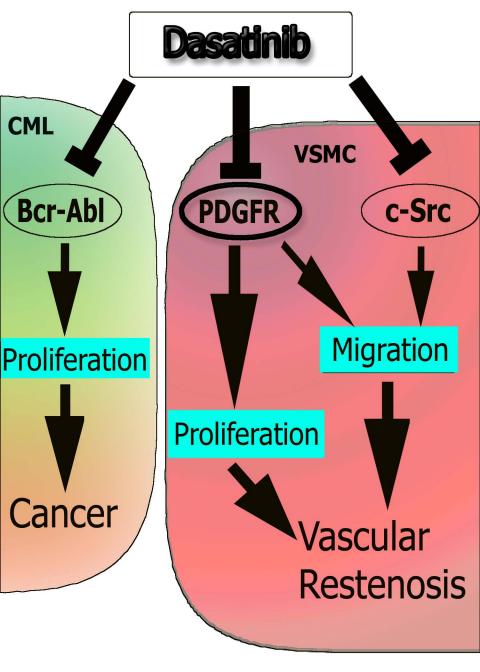
- Masood, I, Negi A and Dua HS (2005) Imatinib as a cause of cystoid macular edema following uneventful phacoemulsification surgery. *J Cataract Refract Surg* **12**:2427-2428.
- O'Hare T, Walters DK, Stoffregen EP, Jia T, Manley PW, Mestan J, Cowan-Jacob SW, Lee FY, Heinrich MC, Deininger MW and Druker BJ (2005) In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. *Cancer Res* **65**:4500-4505.
- Raines EW, Bowen-Pope DF and Ross R (1990) Platelet-derived growth factor, in Peptide Growth Factors and Their Receptors I (Sporn MB and Roberts AB eds) pp173-262, Springer-Verlag, New York.
- Robbins SG, Mixon RN, Wilson DJ, Hart CE, Robertson JE, Westra I, Planck SR and Rosenbaum JT (1994) Platelet-derived growth factor ligands and receptors immunolocalized in proliferative retinal diseases. *Invest Ophthalmol Vis Sci.* **35**: 3649-3663.
- Rosenkranz S and Kazlauskas A (1999) Evidence for distinct signaling properties and biological responses induced by the PDGF receptor alpha and beta subtypes.

 *Growth Factors 16:201-216.**
- Sawyers CL (2002) Rational therapeutic intervention in cancer: kinases as drug targets.

 Curr Opin Genet Dev 21:111-115.
- Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B and Kuriyan J (2000)

 Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase.

 Science 289:1938-1942.


- Shah NP, Tran C, Lee FY, Chen P, Norris D and Sawyers CL (2004) Overriding imatinib resistance with a novel ABL kinase inhibitor. *Science* **305**:399-401.
- Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S,

McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A and Zhu X. (2001) The sequence of the human genome. *Science* **291**:1304-1351.

Walz C and Sattler M (2006) Novel targeted therapies to overcome imatinib mesylate resistance in chronic myeloid leukemia (CML). *Crit Rev Oncol Hematol* **57**:145-164.

Figure Legend

Figure 1. Diagram depicting the inhibitory effects of dasatinib in chronic myelogenous leukemia (left) and vascular smooth muscle cells (right).

