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Abstract 

Arsenic trioxide (As2O3) has potent antileukemic properties in vitro and in vivo, but the 

mechanisms by which it generates its effects on target leukemic cells are not well understood.  

Understanding cellular mechanisms and pathways that are activated in leukemic cells to control 

generation of As2O3 responses should have important implications in the development of novel 

approaches using As2O3 for the treatment of leukemias.  In this study, we used immunoblotting 

and immune complex kinase assays to provide evidence that the kinases TAO2 and TAK1 are 

rapidly activated in response to treatment of acute leukemia cells with As2O3.  Such activation 

occurs after generation of reactive oxygen species and regulates downstream engagement of the 

p38 Map kinase.  Our studies demonstrate that siRNA-mediated knockdown of TAO2 or TAK1 

or pharmacological inhibition of TAK1 enhances the suppressive effects of As2O3 on KT-1-

derived leukemic progenitor colony formation and on primary leukemic progenitors from 

patients with acute myelogenous leukemia.  These results indicate key negative-feedback 

regulatory roles for these kinases in the generation of the antileukemic effects of As2O3.  Thus, 

molecular or pharmacological targeting of these kinases may provide a novel approach to 

enhance the generation of arsenic-dependent antileukemic responses. 
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Introduction 

Arsenic trioxide (As2O3) has been used for medicinal purposes for thousands of years and 

has potent antitumor effects both in vitro and in vivo (Miller et al., 2002; Platanias, 2009).  First 

used by investigators in China (Miller et al., 2002; Chen et al., 2002), it is now approved in the 

United States for the treatment of acute promyelocytic leukemia (APL), a rare subtype of acute 

myelogenous leukemia (AML).  In addition to its promise in APL therapy, As2O3 has also been 

shown to inhibit the growth of various other types of malignant cells in vitro, including chronic 

myelogenous leukemia (CML), multiple myeloma, prostate carcinoma, and neuroblastoma cells 

(Miller et al., 2002; Chen et al., 2002; O’Dwyer et al., 2002; Douer and Tallman, 2005; 

Platanias, 2009).  The effects of As2O3 are known to be dose-dependent, with low doses 

(≤0.5µM) inducing differentiation in APL cells, while higher doses (≥2µM) are required for 

apoptosis (Miller et al., 2002; Chen et al., 2002; O’Dwyer et al., 2002; Douer and Tallman, 2005; 

Platanias, 2009).  By elucidating the pathways through which the antineoplastic effects of As2O3 

are regulated, it is possible that new strategies can be developed to enhance the effects of this 

agent on malignant cells, allowing for its broader use in the treatment of various cancers. 

In previous work, we demonstrated that the p38 mitogen-activated protein kinase 

(MAPK) pathway is activated in leukemic cells in response to treatment with As2O3 (Verma et 

al., 2002; Giafis et al., 2006).  The engagement of the p38 pathway appears to occur in a 

negative-feedback regulatory manner, with enhanced pro-apoptotic and/or antiproliferative 

effects seen following pharmacological inhibition of p38 or in p38α-knockout cells (Verma et al., 

2002; Giafis et al., 2006).  Furthermore, downstream effectors of this pathway activated by 

arsenic trioxide, including the mitogen- and stress-activated kinase 1 (MSK1) (Kannan-

Thulasiraman et al., 2006) and the MAPK-interacting kinases 1 and 2 (Mnk1/2) (Dolniak et al., 
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2008) have been identified and their involvement in the negative control of generation of arsenic 

responses established (Kannan-Thulasiraman et al., 2006; Dolniak et al., 2008).  Others have also 

recently shown that pharmacological targeting of the p38 MAPK pathway enhances arsenic 

trioxide-induced apoptosis in multiple myeloma cells (Wen et al., 2008), suggesting a similar 

negative feedback mechanism in these cells. 

As there is emerging evidence that the p38 MAPK pathway plays an important regulatory 

role in the generation of arsenic trioxide responses, we sought to identify the upstream effector 

signals that lead to its activation by arsenic in leukemic cells.  In this study, we provide the first 

evidence demonstrating that thousand-and-one amino acid kinase 2 (TAO2) and TGF-β-activated 

kinase 1 (TAK1) are activated during treatment of leukemic cells with As2O3.  Our data 

demonstrate that such phosphorylation occurs downstream of As2O3-induced reduction/oxidation 

reactions, and that phosphorylation of p38 by As2O3 is regulated by upstream engagement of 

these kinases.  In addition, the suppressive effects of As2O3 on primitive leukemic progenitors 

are enhanced by knockdown of TAO2 and TAK1, suggesting that these kinases negatively 

regulate generation of As2O3-mediated antileukemic responses. 
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Materials and Methods 

Cells and Reagents. The NB4 human acute promyelocytic leukemia, the U937 acute 

myelomonocytic leukemia, and the KT-1 CML-blast crisis cell lines were grown in RPMI 1640 

supplemented with 10% fetal bovine serum and antibiotics.  The NB4.306 retinoic-acid-resistant 

variant cell line (Dermime et al., 1993; Sassano et al., 2007) has been provided by Dr. Saverio 

Minucci (European Institute of Oncology) and was also grown in RPMI 1640 supplemented with 

10% fetal bovine serum and antibiotics.  As2O3, dithiothreitol (DTT), and N-acetylcysteine 

(NAC) were purchased from Sigma (St. Louis, MO).  An antibody against the phosphorylated 

form of TAO2 (Ser181) was purchased from Abcam (Cambridge, MA).  Antibodies against p38 

MAPK as well as the phosphorylated forms of both TAK1 (Ser412) and p38 MAPK 

(Thr180/Tyr182) were purchased from Cell Signaling (Danvers, MA).  An antibody against 

TAO2 was purchased from Santa Cruz Biotechnology (Santa Cruz, CA).  An antibody against 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as well as the p38 substrate ATF2 were 

obtained from Millipore (Billerica, MA).  The TAK1 inhibitor 5Z-7-Oxozeaenol was purchased 

from Calbiochem (La Jolla, CA). 

 

Cell Lysis and Immunoblotting. Cells were incubated with the indicated doses of As2O3 for the 

indicated times and subsequently lysed in phosphorylation lysis buffer as previously described 

(Uddin et al., 1995).  Immunoblotting using an enhanced chemiluminescence (ECL) method was 

done as previously described (Uddin et al., 1995). 

 

Kinase Assays. Cells were incubated with As2O3 for the indicated times.  Total cell lysates were 

immunoprecipitated with an antibody against TAO2 or non-immune rabbit IgG.  In vitro kinase 
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assays were performed as previously described (Verma et al., 2002; Kannan-Thulasiraman et al., 

2006). 

 

Generation of Reactive Oxygen Species (ROS). Generation of ROS was measured by 

monitoring the oxidation of 2’7’dichlorofluorescein diacetate (DCFDA; Molecular Probes, 

Carlsbad, CA) to 2’7’dichlorofluorescein (DCF) as previously described (Evens et al., 2005).  

DCFDA is a nonfluorescent compound that permeates cells and interacts with intracellular 

oxidants to form the fluorescent compound DCF.  Briefly, following treatment with As2O3 in the 

absence or presence of the reducing agent DTT, cells were incubated in 5µM DCFDA for 30 

minutes at 37oC.  Cells were then analyzed for fluorescent intensity by flow cytometry. 

 

siRNA-mediated Knockdown of TAO2 or TAK1 in Human Leukemic Cells. Cells were 

transfected with SMARTpool pre-designed TAO2- or TAK1-specific siRNAs from Dharmacon 

(Lafayette, CO), using Amaxa Biosystems Nucleofector Kits, as recommended by the 

manufacturer (Walkersville, MD).  Expression of mRNA was evaluated by real-time RT-PCR 

using TAO2- or TAK1-specific primers purchased from Applied Biosystems (Foster City, CA). 

 

Human Hematopoietic Progenitor Cell Assays. Peripheral blood from patients with AML was 

collected after obtaining informed consent approved by the Institutional Review Board of 

Northwestern University.  The effects of As2O3 on leukemic progenitor colony formation (CFU-

L) were assessed by clonogenic assays in methylcellulose as previously described (Kannan-

Thulasiraman et al., 2006; Altman et al., 2008).  The suppressive effects of arsenic trioxide on 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on February 16, 2010 as DOI: 10.1124/mol.109.061507

 at A
SPE

T
 Journals on A

pril 8, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL #61507 

 8

leukemic progenitor colony formation from KT-1 leukemic cells were assessed by clonogenic 

assays in methylcellulose as in previous studies (Kroczynska et al., 2009). 
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Results 

We first determined whether As2O3 treatment of leukemic cells leads to phosphorylation 

of TAO2 or TAK1.  Different acute leukemia cell lines were incubated in the absence or 

presence of As2O3 for various times, and cell lysates were resolved by SDS-PAGE and 

immunoblotted with an antibody against the phosphorylated form of TAO2 on serine 181.  

As2O3 treatment resulted in phosphorylation of TAO2 in both U937 (Fig. 1A) and NB4 cells 

(Fig. 1B).  Similarly, As2O3 treatment induced phosphorylation of TAO2 in the NB4.306 variant 

cell line (Fig. 1C) that is resistant to the differentiating and growth inhibitory effects of all-trans-

retinoic acid (ATRA) (Dermime et al., 1993; Sassano et al., 2007).  In addition, such 

phosphorylation led to activation of the TAO2 kinase domain, as evidenced in immune complex 

kinase assay experiments (Fig. 1D).  In other parallel studies in which we examined the effects of 

As2O3 on the phosphorylation/activation of TAK1, a similar pattern of phosphorylation of TAK1 

on serine 412 was seen in response to treatment of various acute leukemia cell lines with As2O3 

(Fig. 2A-C).  Interestingly, more baseline TAK1 phosphorylation was detected in NB4.306 cells 

as compared to NB4 cells (Fig. 2A, C).  Phosphorylation of both kinases was rapid, occurring 

within 5 minutes of treatment of cells, with signal intensity peaking at 30-60 minutes (Fig. 1A-C 

and Fig. 2A-C).  In time- and dose-response experiments, we found that low concentrations of 

As2O3 also resulted in phosphorylation/activation of these kinases, and such activity was 

detectable after prolonged treatment of the cells (Fig. 2D).  Thus, treatment of acute leukemia 

cells with As2O3 results in phosphorylation/activation of the kinases TAO2 and TAK1, 

suggesting their involvement in the generation of the antileukemic properties of arsenic trioxide. 

There is extensive previous evidence in the literature implicating increases in cellular 

H2O2 stores and production of ROS in the generation of various arsenic responses (Dai et al., 
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1999; Jing et al., 1999; Miller et al., 2002; Platanias, 2009).  As expected, treatment of cells with 

As2O3 also resulted in generation of ROS in our system (Fig. 3A).  Such ROS induction appears 

to be necessary for As2O3-dependent phosphorylation/activation of TAO2 or TAK1, as pre-

treatment of cells with the reducing agents DTT or NAC resulted in inhibition of arsenic-

inducible phosphorylation of both TAO2 (Fig. 3B) and TAK1 (Fig. 3C).  Thus, similar to what 

was previously observed in the case of the p38 MAPK pathway (Verma et al., 2002), 

phosphorylation of TAO2 and TAK1 occurs downstream of As2O3-induced redox reactions. 

Previous studies have demonstrated that TAO2 and TAK1 are upstream effectors in the 

p38 MAPK pathway in response to stress stimuli (Chen and Cobb, 2001; Huangfu et al., 2006).  

As the p38 MAPK pathway is activated in an arsenic-dependent manner in leukemia cell lines 

(Verma et al., 2002; Giafis et al., 2006; Kannan-Thulasiraman et al., 2006; Dolniak et al., 2008), 

and plays a key role in the control of generation of antileukemic responses, we examined 

whether inhibition of expression of TAO2 or TAK1 results in defective activation of p38 in 

response to treatment of acute leukemia cell lines with As2O3.  TAO2- or TAK1-specific siRNAs 

were used to knock down the corresponding kinases (Fig. 4A), and the effects of such 

knockdown on p38 phosphorylation/activation were determined.  U937 cells were nucleofected 

with either TAO2- or TAK1-specific siRNAs, and the phosphorylation of p38 in response to 

As2O3 was examined.  Knockdown of TAO2 or TAK1 blocked As2O3-induced p38 

phosphorylation (Fig. 4B and C), establishing that these kinases act as upstream effectors of the 

As2O3-induced p38 MAPK pathway.  We also performed experiments using the TAK1 inhibitor, 

5Z-7-Oxozeaenol.  This compound is a resorcylic acid lactone of fungal origin, which has been 

shown to be a highly effective and specific inhibitor of TAK1 (Ninomiya-Tsuji et al., 2003; 
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Choo et al., 2006).  Pre-treatment of cells with 5Z-7-Oxozeaenol inhibited phosphorylation of 

p38 (Fig. 4D), establishing that TAK1 is necessary for As2O3-induced p38 phosphorylation. 

To assess the functional relevance of TAO2 and TAK1 in the generation of As2O3 

antileukemic properties, we determined whether siRNA-mediated knockdown of TAO2 or 

TAK1 or pharmacological inhibition of TAK1 enhances the suppressive effects of As2O3 on 

leukemic progenitors.  TAO2- or TAK1-specific siRNAs were used to knock down the 

corresponding kinases (Fig. 5A), and KT-1-derived CFU-L colony formation was examined in 

clonogenic assays in methylcellulose.  As2O3-dependent suppression of CFU-L colony formation 

was clearly enhanced in cells transfected with either TAO2 or TAK1 siRNA compared to 

controls (Fig. 5B and C).  Concomitant treatment of KT-1 cells with the TAK1 inhibitor 5Z-7-

Oxozeaenol also led to enhanced growth-suppressive effects of As2O3 on CFU-L colony 

formation (Fig. 5D). 

To further evaluate the role of TAO2 and TAK1, we explored the effects of siRNA-

mediated knockdown or pharmacological inhibition of these kinases on the suppressive effects of 

As2O3 on primary leukemic progenitors from different patients with AML.  Peripheral blood 

mononuclear cells from such patients were isolated and CFU-L colony formation was assessed in 

clonogenic assays in methylcellulose.  Similar to the results obtained in leukemic cell lines, 

As2O3 suppressed the growth of primary leukemic CFU-L progenitors, and such growth 

inhibition was further enhanced by knockdown of either TAO2 or TAK1 (Fig. 6A, B) or by 

concomitant treatment of cells with 5Z-7-Oxozeaenol (Fig. 6C), underscoring the importance of 

these kinases in the regulation of As2O3 responses. 
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Discussion 

The ability of As2O3 to induce apoptosis and inhibit the growth of malignant cells both in 

vitro and in vivo has been well-documented over the years (Miller et al., 2002; Chen et al., 2002; 

O’Dwyer et al., 2002; Douer and Tallman, 2005; Platanias, 2009).  It is now known that a major 

mechanism by which As2O3 exhibits its effects on target neoplastic cells involves generation of 

ROS, loss of mitochondrial membrane potential and release of cytochrome c, resulting in 

programmed cell death (Wang et al., 1998; Jing et al., 1999; Park et al., 2000; Mahieux et al., 

2001).  Generation of intracellular ROS is dependent upon glutathione stores within cells, and 

lower levels of intracellular glutathione peroxidase and catalase have been demonstrated in 

malignant cell lines that are particularly sensitive to arsenic (Jing et al., 1999; Miller et al., 2002; 

Platanias, 2009).  Consistent with this, there has been previous evidence that pre-treatment of 

malignant cells with the reducing agent DTT prevents loss of mitochondrial inner 

transmembrane potential and limits arsenic-induced apoptosis, while the effects of arsenic are 

augmented by pre-treatment with buthionine sulfoximine, a glutathione synthesis inhibitor (Zhu 

et al., 1999; Miller et al., 2002).  Other studies have shown that arsenic regulates cellular 

signaling pathways, with activation of the JNK pathway (Davison et al., 2004; Mann et al., 2005) 

and inhibition of the NF-κB pathway (Mathas et al., 2003; Kerbauy et al., 2005; Wei et al., 2005) 

playing roles in As2O3-induced cell death. 

In previous work we have demonstrated that the p38 MAPK pathway is activated in a 

variety of leukemic cell lines following treatment with As2O3 (Verma et al., 2002; Giafis et al., 

2006).  Moreover, the upstream regulators Mkk3 and Mkk6 (Verma et al., 2002; Giafis et al., 

2006), as well as the downstream regulators MSK1 (Kannan-Thulasiraman et al., 2006) and 

Mnk1/2 (Dolniak et al., 2008) were identified as arsenic-regulated kinases.  Our previous work 
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has also suggested that the p38 MAPK pathway regulates arsenic responses in a negative-

feedback regulatory manner, as we have found that the pro-apoptotic and antiproliferative effects 

of As2O3 are enhanced by pharmacological or siRNA-mediated inhibition of these kinases, or in 

corresponding knockout cells (Verma et al., 2002; Giafis et al., 2006; Kannan-Thulasiraman et 

al., 2006; Dolniak et al., 2008).  These studies have raised the possibility that pharmacological 

targeting of p38 and/or its downstream effectors in leukemia cells could provide a novel 

approach to enhance the induction of antileukemic responses by As2O3.  Identifying upstream 

effectors at the MAPK kinase kinase (MAPKKK) or MAPK kinase kinase kinase (MAPKKKK) 

levels of the cascade is also of considerable interest, as the ability to enhance the antineoplastic 

effects of As2O3 could lead to broader uses of this agent at physiologically achievable 

concentrations. 

TAO2 (Chen et al., 1999; Chen and Cobb, 2001; Chen et al., 2003; Dhillon et al., 2007) 

and TAK1 (Yamaguchi et al., 1995; Moriguchi et al., 1996; Hanafusa et al., 1999; Dhillon et al., 

2007) have both been identified as kinases that function as MAPKKKs.  TAO2 has been shown 

to activate downstream Mkk3 and Mkk6, but not Mkk1, Mkk4, or Mkk7 (Chen et al., 1999; 

Chen and Cobb, 2001).  Thus, this MAPKKK has specificity for the stress-activated p38 MAPK 

(Chen et al., 1999; Chen and Cobb, 2001).  TAO2 is also known to be activated by a number of 

stress stimuli, including sorbitol, sodium chloride, ionizing radiation, ultraviolet radiation, as 

well as chemotherapy-induced stress by hydroxyurea (Chen and Cobb, 2001; Raman et al., 

2007).  TAK1 was initially identified as a mediator of TGF-β signal transduction (Yamaguchi et 

al., 1995) and was subsequently shown to activate both Mkk3 and Mkk6 (Moriguchi et al., 

1996).  Further studies demonstrated a signaling cascade linking TAK1 to p38 through Mkk6 in 

response to TGF-β stimulation (Hanafusa et al., 1999).  Besides TGF-β, other cytokines such as 
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tumor necrosis factor (TNF) and interleukin-1 (IL-1) have been shown to induce TAK1 

activation (Ninomiya-Tsuji et al., 1999; Takaesu et al., 2003; Shim et al., 2005; Inagaki et al., 

2008).  It has also been demonstrated that TAK1 is activated by chemical and physical stresses 

(Cheung et al., 2003; Huangfu et al., 2006) and plays a role in both JNK (Huangfu et al., 2006; 

Frazier et al., 2007) and NF-κB signaling (Sakurai et al., 1998; Huangfu et al., 2006). 

In this study, we provide the first evidence that TAO2 and TAK1 are activated by arsenic 

trioxide in leukemic cells in a rapid and transient manner.  Our data demonstrate that both 

kinases are engaged downstream of As2O3-generated redox reactions and that the function of 

both of them is required for engagement of p38.  This finding is of substantial interest as it 

suggests either sequential linear or parallel function of these kinases in the regulation of As2O3-

dependent responses.  These findings, taken together with a previous study from our group that 

demonstrated key roles for Mkk3 and Mkk6 in the generation of arsenic responses (Giafis et al., 

2006), indicate that pairs of MAPKKKs (TAO2 and TAK1) and MAPKKs (Mkk3 and Mkk6) 

control arsenic-inducible p38 MAPK activation and generation of downstream effector signals.  

Importantly, selective targeting of either TAO2 or TAK1 results in enhanced arsenic-dependent 

antileukemic responses.  Such effects were seen using primary progenitors from patients with 

AML, indicating pharmacologically-important and relevant roles for these kinases in the control 

of arsenic-induced antileukemic responses. 

Altogether, our findings raise the potential of TAO2 and TAK1 as therapeutic targets for 

the treatment of leukemias.  Although inhibiting the expression of TAO2 or TAK1 alone does 

not result in antileukemic effects, such inhibition results in potent enhancement of the 

antileukemic properties of arsenic trioxide.  This suggests that pharmacological or molecular 

means to selectively target the kinase activities and/or expression levels of these kinases may 
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provide a novel approach to promote the antileukemic effects of arsenic.  In fact, as these kinases 

function at an early level of the p38 MAPK cascade, their targeting may provide a more 

complete blockade of the pathway and more effectively promote antileukemic responses than 

agents targeting downstream effectors, and clinical-translational efforts to target these kinases in 

vivo are warranted. 
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Figure Legends 

 

Figure 1. As2O3-dependent phosphorylation of TAO2 in leukemic cell lines.  A, U937 cells 

were incubated in the absence or presence of As2O3 (2µM) for the indicated times.  Equal 

amounts of total cell lysates were resolved by SDS-PAGE and immunoblotted with an anti-

phospho-TAO2 (S181) antibody (upper panel).  The same blot was re-probed with an anti-

GAPDH antibody to control for protein loading (lower panel).  B, As in A, but using NB4 

cells.  C, As in A, but using NB4.306 cells.  D, U937 cells were incubated with As2O3 (2µM) 

as indicated.  Cell lysates were subjected to in vitro kinase assays using ATF2 as an 

exogenous substrate.  Proteins were resolved by SDS-PAGE, and phosphorylated proteins 

were detected by autoradiography (upper panel).  Longer exposure of the same membrane is 

also shown (lower panel). 

 

Figure 2. As2O3-dependent phosphorylation of TAK1 in leukemic cell lines.  A, NB4 cells 

were incubated in the absence or presence of As2O3 (2µM) for the indicated times.  Equal 

amounts of total cell lysates were resolved by SDS-PAGE and immunoblotted with an anti-

phospho-TAK1 (S412) antibody (upper panel).  The same blot was re-probed with an anti-

GAPDH antibody to control for protein loading (lower panel).  B, As in A, but using KT-1 

cells.  C, As in A, but using NB4.306 cells.  D, KT-1 cells were incubated in the absence or 

presence of As2O3 at varying times and concentrations as indicated.  Equal amounts of total 

cell lysates were resolved by SDS-PAGE and immunoblotted with an anti-phospho-TAO2 

(S181) antibody (upper panel) or an anti-phospho-TAK1 (S412) antibody (middle panel).  

The same blot was re-probed with an anti-GAPDH antibody to control for protein loading 

(lower panel). 
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Figure 3. As2O3-induced phosphorylation of TAO2 and TAK1 is diminished by the reducing 

agents DTT and NAC.  A, NB4 cells were pre-incubated for one hour with DTT (1mM) and 

subsequently incubated with As2O3 (2µM) for 30 minutes.  Cells were then analyzed by flow 

cytometry for the presence of ROS as described in materials and methods.  Data are 

expressed as fold increase in mean fluorescence over untreated samples and represent the 

means ± S.E. of two independent experiments.  B, NB4 cells were incubated with or without 

combinations of DTT (1mM), NAC (10mM), and As2O3 (2µM) as indicated.  Equal amounts 

of total cell lysates were resolved by SDS-PAGE and immunoblotted with an anti-phospho-

TAO2 (S181) antibody (upper panel).  The same blot was re-probed with an anti-GAPDH 

antibody to control for protein loading (lower panel).  C, Similar experiment as in B, with the 

upper panel demonstrating immunoblotting with an anti-phospho-TAK1 (S412) antibody. 

 

Figure 4. Knockdown of TAO2 or TAK1 and pharmacological inhibition of TAK1 block 

As2O3-induced phosphorylation of p38 MAPK. A, (left panel) U937 cells were transfected 

with control siRNA or TAO2-specific siRNA.  Expression of mRNA for TAO2 gene was 

evaluated by quantitative real-time RT-PCR using GAPDH gene for normalization.  Data 

represent means ± S.E. of two experiments;  (right panel) As in the left panel, but using 

TAK1-specific siRNA.  B, U937 cells were transfected with control siRNA or TAO2-

specific siRNA, and cells were incubated in the absence or presence of As2O3 (2µM) for 30 

min.  Total cell lysates were resolved by SDS-PAGE and immunoblotted with an anti-

phospho-p38 (Thr180/Tyr182) antibody (upper panel).  Equal amounts of cell lysates from 

the same experiment were resolved separately by SDS-PAGE and immunoblotted with an 

anti-p38 antibody (lower panel).  C, Similar experiment as in B, but using TAK1 siRNA 
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instead of TAO2 siRNA.  D, KT-1 cells were pre-treated for 60 min with 5Z-7-Oxozeaenol 

(500nM) and were subsequently incubated with As2O3 (2µM) for 30 min in the continuous 

absence or presence of 5Z-7-Oxozeaenol, as indicated.  Equal amounts of total cell lysates 

were resolved by SDS-PAGE and immunoblotted with an anti-phospho-p38 

(Thr180/Tyr182) antibody (upper panel).  The same blot was re-probed with an anti-p38 

antibody to control for protein loading (lower panel). 

 

Figure 5. siRNA-mediated knockdown of TAO2 and TAK1 and pharmacological inhibition 

of TAK1 enhance the suppressive effects of As2O3 on leukemic progenitor (CFU-L) growth.  

A, (left panel) KT-1 cells were transfected with control siRNA or TAO2-specific siRNA.  

Expression of mRNA for TAO2 gene was evaluated by quantitative real-time RT-PCR using 

GAPDH gene for normalization.  Data are expressed as % of control samples and represent 

means ± S.E. of three experiments;  (right panel)  As in the left panel, but using TAK1-

specific siRNA.  B, KT-1 cells transfected with control siRNA or TAO2-specific siRNA 

were subsequently incubated in methylcellulose in the absence or presence of As2O3 

(0.5µM), and leukemic CFU-L colony formation was assessed.  Data are expressed as 

percent of control colony formation of samples treated with control siRNA and represent 

means ± S.E. of 4 independent experiments as shown.  Paired t test analysis comparing the 

effects of As2O3 in the absence or presence of TAO2 siRNA showed a paired p value = 

0.0006.  C, As in B, but using TAK1-specific siRNA.  Paired t test analysis comparing the 

effects of As2O3 in the absence or presence of TAK1 siRNA showed a paired p value = 

0.0087.  D, KT-1 cells were incubated in methylcellulose with As2O3 (0.5µM), in the absence 

or presence of 5Z-7-Oxozeaenol (100nM) as indicated, and leukemic CFU-L colony 
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formation was assessed.  Data are expressed as percent of control colony formation of 

untreated samples and represent means ± S.E. of 5 independent experiments as shown.  

Paired t test analysis comparing the effects of As2O3 in the absence or presence of 5Z-7-

Oxozeaenol showed a paired p value = 0.005935. 

 

Figure 6. siRNA-mediated knockdown of TAO2 and TAK1 and pharmacological inhibition 

of TAK1 enhance As2O3-induced growth suppression of CFU-L colony formation from 

AML patients.  A, Peripheral blood mononuclear cells from 2 AML patients were transfected 

with control siRNA or TAO2 siRNA and were subsequently incubated in methylcellulose in 

the absence or presence of As2O3 (0.5µM).  CFU-L colony formation was assessed and data 

are expressed as means ± S.E. of the percent colony formation of samples treated with 

control siRNA only.  B, As in A, but using TAK1-specific siRNA.  C, Peripheral blood 

mononuclear cells from 3 AML patients were plated in a methylcellulose assay system with 

As2O3 (0.5µM), in the absence or presence of 5Z-7-Oxozeaenol (100nM), as indicated.  

CFU-L colony formation was assessed and data are expressed as means ± S.E. of the percent 

colony formation of untreated samples.  Paired t test analysis comparing the effects of As2O3 

in the absence or presence of 5Z-7-Oxozeaenol showed a paired p value = 0.01009. 
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