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ABSTRACT 

We previously revealed that nectandrin B isolated from Myristica fragrans (nutmeg, 

Myristicaceae) functions as a potent AMP-activated protein kinase (AMPK) activator 

and showed its anti-obesity effect. In this study, we investigated whether nectandrin B 

affects phosphorylation of endothelial nitric oxide synthase (eNOS) in human 

endothelial cells. Nectandrin B increased the phosphorylation of eNOS and nitric oxide 

(NO) production in a concentration dependent manner and maximal effect was found at 

10 μg/ml. Nectandrin B activates AMP-activated protein kinase (AMPK) presumably 

via CaM kinase II activation and nectandrin B-stimulated eNOS phosphorylation was 

reversed by AMPK inhibition. Both the enzyme activity of phosphatidylinositol 3-

kinase (PI3K) and the estrogen receptor (ER)-dependent reporter gene transcription 

were enhanced by nectandrin B. ERα inhibition by specific antagonist or siRNA 

suppressed nectandrin B-mediated eNOS phosphorylation. Moreover, AMPK inhibition 

significantly reversed the activation of ER-dependent transcription and PI3K activation 

in response to nectandrin B. Nectandrin B evoked endothelium-dependent relaxation in 

rat aortic rings and this was blocked by inhibition of AMPK, ER or PI3-kinase. These 

results suggest that potent AMPK activator, nectandrin B enhances NO production via 

eNOS phosphorylation in endothelial cells and ERα-dependent PI3-kinase activity is 

required.  
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Introduction 

Endothelial function is frequently impaired during atherosclerosis, 

hyperlipidemia and diabetes, and this has been well-correlated with a high risk of 

cardiovascular events (Widlansky et al., 2003; Gokce et al., 2003). In particular, 

endothelial dysfunction is a key event in both clinical and experimental type II diabetes 

(Morcos et al., 2001; Schalkwijk and Stehouwer, 2005). Impaired endothelium-

dependent vasodilatation and increased adhesion of monocytes and platelets are 

frequently found in diabetes (Fatehi-Hassanabad et al., 2010). 

The endothelial nitric-oxide synthase (eNOS) has important basal regulatory 

functions in the vasculature. Constitutively expressed eNOS in endothelial cells 

oxidizes L-arginine to generate L-citrulline and nitric oxide (NO) in response to diverse 

stimuli such as shear stress (Moncada and Higgs, 1993; Li et al., 2000). Because 

endothelial NO production evokes a decrease in vascular tone and inhibits oxidation of 

low density lipoprotein (Howes et al., 1997), safe compounds that activate eNOS may 

be beneficial for patients with chronic cardiovascular diseases.  

A series of recent studies have revealed that activation of AMP-activated 

protein kinase (AMPK) has beneficial effects on endothelial dysfunction. AMPK 

activation inhibits oxidized low density lipoprotein-triggered endoplasmic reticulum 
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stress in endothelial cells (Dong et al., 2010) and metformin, a clinical AMPK activator, 

normalizes endothelial function by suppressing vasoconstrictor prostanoids in arteries 

from a type II diabetes rat model (Matsumoto et al., 2008). Moreover, AMPK activity is 

involved in eNOS activation. An experimental AMPK activator, 5-aminoimidazole-4-

carboxamide-1-β-D-ribofuranoside (AICAR), increased eNOS activity via Ser 1177 

phosphorylation; infusion of AICAR markedly increased muscle microvascular blood 

volume (Bradley et al., 2010). Conversely, silencing AMPKa1 in human umbilical vein 

endothelial cells (HUVECs) reduced eNOS content (Colombo and Moncada, 2009).  

Plant-derived compounds are becoming of increasing interest as potential anti-

atherosclerosis therapeutics. It has been reported that some natural compounds in fruits, 

vegetables, oil seeds, and herbs have lipid lowering effects and reduce atherosclerotic 

lesions (Katsuda et al., 2009; Afrose et al., 2009; Magnone et al., 2009). Myristica 

fragrans (nutmeg) has been used as a food and cosmetic as well as a traditional oriental 

medicine against dysentery, diarrhea and pain (Grover et al., 2002). Furthermore, its 

seed extracts possess anti-hyperlipidemic and anti-atherosclerotic activities in vivo 

(Sharma et al., 1995). However, the mechanisms underlying these activities have not 

been clarified. To address this gap in our knowledge, we isolated seven 2,5-bis-aryl-3,4-

dimethyltetrahydrofuran lignans from total extracts of Myristica fragrans and 
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nectandrin B had a strong AMPK stimulation effect at a concentration of 5 µM in 

differentiated C2C12 cells (Nguyen et al., 2010 ). 

In the present study, we found that nectandrin B potently activates AMPK in 

both ECV 304 (a human endothelial cell line) and HUVECs in primary cultures. We 

determined whether nectandrin B affects phosphorylation and expression of eNOS and 

tried to identify cellular signaling pathways for the phosphorylation and expression of 

eNOS in response to nectandrin B.  

 

Materials and methods 

Nectandrin B isolation. The dried semens of Myristica fragrans (nutmeg) 

were purchased at a folk medicine market in Gwangju city, Republic of Korea. The 

sample was identified by Professor YH Moon at Chosun University, and its specimen 

(No. 0010) was deposited at the Department of Pharmacy, Chosun University. The 

EtOH extract of M. fragrans was subjected to an HP-20 column (10 × 60 cm), eluted 

with a gradient of EtOH in H2O (60, 80, 90, and 100 %, each 3 L), and finally washed 

by acetone (2 L) to give five fractions. Bioassay of the five fractions on the AMPK 

activity revealed that the 80% ethanol-eluted fraction was most active as AMPK 

activator. This fraction was further chromatographed over silica gel (6 × 60 cm; 63–200 
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μm particle size) using a gradient of n-hexane/acetone (from 6:1 to 0:1), to yield five 

fractions (F.1 – F.5) according to their profiles. Nectandrin B was purified from a part of 

fraction 2 by chromatography on a reversed phase ODS-A column (5.0 × 60 cm, 150 

μm particle size) eluted with MeOH/H2O (1.5:1, to 2:1, each 3 L) and purity was 

confirmed by high performance liquid chromatography. 

Materials. Antibodies against eNOS, phospho-eNOS, phospho-Akt, Akt, 

phospho-MAP kinase, p38, phospho-extracellular signal regulated kinase (ERK), ERK, 

phospho-c-Jun N-terminal kinase (JNK), JNK, ERα, phospho-AMP-activated protein 

kinase (AMPK), AMPK, phospho-acetyl CoA carboxylase (ACC), ACC, phospho-

calmodulin-dependent protein kinase II (CaMK II), horseradish peroxidase-conjugated 

anti-mouse and anti-rabbit IgG antibodies were purchased from Cell Signaling 

Technology (Beverly, MA). LY294002, PD98059, SB203580, SP600125, ICI-182780, 

A3281, compound C and NG -nitro-L-arginine methyl ester (L-NAME)(NOS inhibitor) 

were purchased from Calbiochem (La Jolla, CA). 4,4',4''-(4-Propyl-[1H]-pyrazole-1,3,5-

triyl)trisphenol (PPT), Diarylpropionitrile (DPN), Methyl-piperidino-pyrazole (MPP) 

and tetrahydrochrysene (THC) were obtained from Tocris Biosciences (Ellisville, MI, 

USA). ERβ antibody was obtained from abcam (Cambridge, MA, USA). siRNAs 

targeting for ERα and ERβ were purchased from Santa Cruz Biotechnology (Santa Cruz, 
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CA). Actin antibody and other reagents used for molecular studies were obtained from 

Sigma (St. Louis, MO). Dominant negative mutant (DN-AMPK) or constitutive active 

forms (CA-AMPK) of AMPK overexpression plasmids were kindly donated by Dr. Ha 

JH of Kyunghee University (Seoul, Korea). 

Cell culture. ECV 304 cells were obtained from the American type culture 

collection (Bethesda, MD). The cells were maintained at 37 °C in an incubator with a 

humidified atmosphere of 5% CO2 and cultured in DMEM containing 10% fetal bovine 

serum. Primary cultured HUVEC cells were purchased from Innopharmascreen (Asan, 

Chungnam, Korea) and cultured in M199 medium containing 10 units/ml heparin, 20% 

fetal bovine serum and 20 ng/ml fibroblast growth factor. Nectandrin B was dissolved 

in dimethylsulfoxide (DMSO) and the stock solutions were added directly to the culture 

media. Control cells were treated with DMSO only. The final concentration of solvent 

was always <0.1%. 

Cytotoxicity of nectandrin B in ECV 304 cells. Viable adherent cells were 

stained with MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] (2 

mg/ml) for 4 h. Media were then removed and the formazan crystals produced were 

dissolved by adding 200 μl of dimethylsulfoxide. Absorbance was assayed at 570 nm 

using a microplate reader (LB941, Berthold Technologies) and cell viabilities were 
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expressed as ratios versus untreated control cells. 

Reporter gene analysis. A dual-luciferase reporter assay system (Promega, 

Madison, WI) was used to determine gene promoter activity. Briefly, cells were plated 

in 12-well plates and transiently transfected with the reporter and phRL-SV plasmids 

(hRenilla luciferase expression for normalization; Promega) using Hillymax reagent 

(Dojindo Molecular Technologies). The cells were then incubated in culture medium 

without serum for 18 h. Firefly and hRenilla luciferase activities in the cell lysates were 

measured using a luminometer (LB941, Berthold Technologies). The relative luciferase 

activity was calculated by normalizing the promoter-driven firefly luciferase activity to 

the hRenilla luciferase activity. 

Western blot analysis. After treatment, cells were collected and washed with 

cold phosphate-buffered saline (PBS). The harvested cells were then lysed on ice for 

30 min in 100 μl lysis buffer [120 mM NaCl, 40 mM Tris (pH 8), 0.1% NP40 (Nonidet 

P-40)] and centrifuged at 12,000 rpm for 30 min. Supernatants were collected from the 

lysates and protein concentrations were determined using the BCA protein assay kit 

(Pierce, Rockford, IL). Aliquots of the lysates (30 μg of protein) were boiled for 5 min 

and electrophoresed on 10% SDS-polyacrylamide gels. Proteins in the gels were 

transferred onto nitrocellulose membranes, which were then incubated with primary 
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antibodies or mouse monoclonal β-actin antibodies. The membranes were further 

incubated with secondary anti-mouse or anti-rabbit antibodies. Finally, protein bands 

were detected using an enhanced chemiluminescence western blotting detection kit 

(Pierce Biotechnology, Rockford, IL). 

Measurement of NO production. Production of NO was assessed using the 

NO-specific fluorescent dye 4,5-diaminofluorescein diacetate (DAF-2 DA; Cayman 

Chemical, Ann Arbor, MI) as described previously (Formoso et al.,2006). Briefly, ECV 

304 cells were grown to 95% confluence in chamber slides (Lab-Tek, Rochester, NY) 

and serum-starved overnight. Cells were then loaded with DAF-2 DA (final 

concentration, 2 μM) for 30 min at 37 °C, rinsed 3 times with DMEM media and kept 

in the dark. Cells were then treated without or with nectandrin B as indicated in the 

figure legends. The cells were fixed in 5% paraformaldehyde for 5 min at 4 °C. Fixed 

cells were visualized using a fluorescence microscope (Axiovert 200M; Carl Zeiss, 

Germany) and an inverted epifluorescence microscope with an attached charge-coupled 

device camera using appropriate filters with a peak excitation wavelength of 480 nm 

and a peak emission wavelength of 510 nm.  

The amount of NO in the culture media was also determined using the Griess 

reagent (Assay Designs, Ann Arbor, MI). Culture media obtained 24 h after treatment 
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with various concentrations of nectandrin B were incubated with nitrate reductase for 1 

h at 37°C to reduce nitrate to nitrite. An equal volume of Griess reagent was then added 

and the optical density of the samples measured at a wavelength of 540 nm. Data were 

expressed as fold change over untreated controls. 

Recombinant ERα binding assay. Vehicle or test chemicals were incubated 

with 1 nM tritiated estradiol (3H-E2; Perkinelmer, Boston, MA) and 0.6 nM recombinant 

human ERα (MyBioSource, San Diego, CA) in TE buffer (10 mM Tris, 1 mM EDTA, 

PH 7.5) at 4 °C overnight. Hydroxylapatite (60% in TE buffer) was added, mixed well, 

and incubated for 15 min at room temperature. The resulting slurry was washed three 

times by centrifugation with TE buffer. Bound ligand was extracted by incubation of the 

slurry with absolute ethanol at 30 °C for 10 min. Tritium (3H) decay (counts per minute) 

was measured by liquid scintillation in β-counter (Wallac, Gaithersburg, MD). 

Organ chamber study. Male Sprague–Dawley rats (270–330 g) were 

sacrificed and thoracic aortas were carefully removed and placed in a modified Krebs–

Ringer-bicarbonate solution containing (in mM) NaCl, 118.3; KCl, 4.7; MgSO4, 1.2; 

KH2PO4, 1.2; CaCl2, 2.5; NaHCO3, 25.0; Ca2+EDTA, 0.016 and glucose, 11.1 (control 

solution). The aortas were cleaned of loose connective tissue and then cut into rings (2 

mm wide), The aortic rings were suspended horizontally between two stainless steel 
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stirrups in the organ chambers filled with 5 ml of control solution (37 °C, pH 7.4) and 

bubbled with 95% O2 and 5% CO2. The change in tension was measured isometrically 

with Grass FT03 force transducers (Grass Instrument Co., Quincy, MA), and data were 

acquired and analyzed with a PowerLab 8/30 Data Acquisition System and LabChart 

pro software (AD Instruments, Colorado Springs, CO). The rings were stretched 

progressively to the optimal tension (2 g) before the addition of 90 mM KCl. Once the 

plateau of the contraction elicited by KCl was obtained, the aortic rings were rinsed 

three times with warm control solution and 1 μM acetylcholine-mediated relaxation was 

tested in the precontracted rings by 1 μM phenylephrine to check endothelium-

dependent relaxation responsiveness. In some experiments, rings were incubated for 30 

min with LY294002 (10 μM), ICI-182,780 (100 nM) or compound C (20 μM). After 

30-min incubation, 10 μg/ml nectandrin B was added and the relaxation response was 

monitored in the precontracted aortic rings after addition of 1 μM phenylephrine. 

Statistical analysis. Unpaired Student’s t-test was used to determine the 

significance of differences between treatment groups. Statistical significance was 

accepted for p values of <0.05. 
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Results 

Cytotoxicity of nectandrin B in ECV 304 cells. Initially, we determined the 

cytotoxicity of nectandrin B to ECV 304 cells by MTT assay. Fig. 1B shows that 

nectandrin B at the tested concentrations did not cause cytotoxicity except at 

concentrations above 30 μg/ml. Thus, we treated cells with nectandrin B in the 

concentration range 1-10 μg/ml during subsequent experiments.  

 

Nectandrin B increases phosphorylation of eNOS and production of NO in 

endothelial cells. NO production from eNOS activation plays a protective physiological 

role in the vasculature (Li and Förstermann, 2000). We did western blot analyses to 

detect changes in eNOS phosphorylation. When cells were treated with 1-10 μg/ml 

nectandrin B for 1 h and 10 μg/ml nectandrin B at the indicated time points (5 min to 60 

min), the levels of phosphorylated eNOS were increased in a concentration- and time-

dependent manner (Fig. 2A and 2B). However, nectandrin B incubation for 3 to 24 h 

did not affect the expression level of eNOS in ECV 304 cells (Fig. 2C). To examine 

whether eNOS phosphorylation by nectandrin B stimulates NO production, ECV 304 

cells were loaded with DAF-2 DA, a dye that upon binding to an oxidized species of 

NO results in fluorescence. As shown in Fig. 2D and 2E, green fluorescence (indicative 
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of NO production) was increased by nectandrin B in a concentration- and time-

dependent manner. We further determined nitrite levels in culture medium. Nitrite 

production was significantly enhanced by 3 or 10 μg/ml nectandrin B (Fig. 3A). To 

confirm these results, HUVECs were treated with 1-10 μg/ml nectandrin B and eNOS 

phosphorylation and NO production were detected. As expected, phosphorylated eNOS 

level and DAF-2 DA fluorescence were enhanced by nectandrin B treatment in 

HUVECs (Fig. 3B and 3C).  

 

Nectandrin B increases eNOS phosphorylation via AMP-activated protein 

kinase through calmodulin-dependent protein kinase II. It is known phosphorylation 

of Ser-1177 in eNOS, which plays an important role in the regulation of eNOS activity, 

is induced by AMPK and results in NO production in endothelial cells (Chen et al., 

1999; Morrow et al., 2003). In our previous study, we reported that nectandrin B 

potently activates AMPK in differentiated skeletal muscle cells (Nguyen et al., 2010). 

Hence, we examined the effect of nectandrin B on AMPK activity in human endothelial 

cells. Representative AMPK activation markers, phosphorylation of AMPK and ACC, 

were increased by nectandrin B in concentration- and time-dependent manners in ECV 

304 cells (Fig. 4A and 4B). The same results were also found in HUVECs (Fig. 4C). 
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  LKB1 (also called STK11) is a mammalian kinase that activates AMPK by 

phosphorylating Thr172 on its catalytic (α) subunit (Carling et al., 2008). Recent studies 

have reported evidence that Ca2+/calmodulin-dependent protein kinase II (CaMKs) can 

act upstream of AMPK, at least in some cell types (Hurley et al., 2005; Woods et al., 

2005). ECV 304 cells were treated with nectandrin B for the indicated times and we 

determined the active phosphorylated form of CaMK II and LKB1. Fig. 4B shows that 

the levels of phospho-CaMK II were increased by 10 μg/ml nectandrin B, but this 

treatment did not affect LKB1 phosphorylation (data not shown), which suggest that 

nectandrin B-induced AMPK activation may be mediated through CaMK II activation. 

We then tested whether AMPK is necessary for eNOS phosphorylation induced by 

nectandrin B. AMPK activation by 1 mM AICAR treatment increased NO production in 

ECV 304 cells (Fig. 5A). ECV 304 cells were pretreated with compound C, an AMPK 

inhibitor and we examined nectandrin B-dependent eNOS phosphorylation. Nectandrin 

B-induced phosphorylation of ACC was impaired in compound C-pretreated ECV 304 

cells, and eNOS phosphorylation was attenuated (Fig. 5B), which suggests that AMPK 

is required for eNOS activation. To confirm these results, we used overexpression 

vector for DN-AMPK or CA-AMPK of AMPK. Transfection of DN-AMPK prior to 

nectandrin B treatment reduced nectandrin B-stimulated ACC and eNOS 
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phosphorylation (Fig. 5C). Conversely, CA-AMPK transfection markedly increased 

phosphorylation levels of ACC and eNOS (Fig. 5D). To investigate whether the CaMK 

II pathway is involved in the process by which nectandrin B causes AMPK and eNOS 

phosphorylation, ECV 304 cells were pretreated with a CaMK II inhibitor, A3281 (10 

μM), and exposed to nectandrin B. As shown in Fig. 5E, A3281 blocked nectandrin B-

induced phosphorylation of eNOS, ACC and AMPK. These results suggest that 

nectandrin B-mediated eNOS phosphorylation is dependent on AMPK signaling 

through CaMK II. 

 

Role of the PI3-kinase/Akt pathway in eNOS phosphorylation by 

nectandrin B. Diverse kinases such as PI3K/Akt, p38 kinase, ERK and JNK have been 

shown to be involved in cellular signaling for vascular relaxation and NO production 

(Merla et al., 2007; Grossini et al., 2008). To further elucidate the upstream signaling 

pathways involved in nectandrin B-mediated eNOS phosphorylation and subsequent 

NO production, we examined the activity of PI3K, ERK, p38 kinase and JNK  in 

nectandrin B-treated ECV 304 cells. Western blot analyses using phospho-specific 

antibodies showed that nectandrin B incubation caused a sustained phosphorylation of 

Akt or JNK, but not ERK and p38 (Fig. 6A). To address the role of PI3K or JNK 
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activation in eNOS phosphorylation by nectandrin B, the effects of specific kinase 

inhibitors were investigated. LY294002, a PI3K inhibitor significantly reduced 

nectandrin B-induced eNOS phosphorylation (Fig. 6B). However, an inhibitor of the 

JNK pathway (SP600125: JNK inhibitor) had no effect (Fig. 6C). 

 

Involvement of the ERα-dependent PI3K/Akt pathway in phosphorylation 

of eNOS by nectandrin B. A recent study suggests that AMPK activation restores 

estrogen responsiveness in human endothelial cells (Chakrabarti and Davidge, 2009). It 

has also been shown that a lignan, nordihydroguaiaretic acid, has estrogenic activity 

(Fujimoto et al., 2004). Until now, no evidence has been reported of a correlation 

between estrogen receptor (ER) and eNOS phosphorylation induced by nectandrin B. 

When we determined ER-dependent transcription by using an ERE reporter, nectandrin 

B significantly increased the reporter activities of ERE in a concentration-dependent 

manner, but the increase was marginal compared to the effects of a full ER agonist, 17-

β-estradiol (Fig. 7A). It has been shown that ERα directly interacts with PI3K and 

modulates its activity in human vascular endothelial cells (Simoncini et al., 2000). To 

further test the possible role of ER activation in PI3K-dependent eNOS phosphorylation 

in nectandrin B-exposed endothelial cells, we examined whether ICI-182780, an ER 
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specific inhibitor, affects the eNOS phosphorylation that occurs in response to 

nectandrin B. ICI-182780 potently suppressed eNOS phosphorylation as well as Akt 

phosphorylation (Fig. 7B). These results indicate that nectandrin B-stimulated eNOS 

phosphorylation is linked with ER-dependent PI3-kinase/Akt pathways. We then 

confirmed the effects of an ER antagonist and a PI3-kinase inhibitor on NO production 

induced by nectandrin B. As shown in Fig. 7C, nectandrin B-mediated NO production 

(DAF-2 fluorescence) was suppressed by ICI-182780 or LY294002 pretreatment. These 

data suggest that ER activation is critical for PI3-kinase/Akt-mediated eNOS 

phosphorylation by nectandrin B.  

 It has been shown that both ERα and ERβ are involved in eNOS 

phosphorylation in endothelial cells (Mineo and Shaul, 2006). Immunoblot analyses 

showed that both the receptor types were expressed in ECV 304 cells (Fig. 8A, left). 

Either DPN (ERα selective agonist) or PPT (ERβ selective agonist) increased eNOS 

phosphorylation in ECV 304 cells, demonstrating both the ER subtypes are coupled 

with eNOS phosphorylation process in this cell type (Fig. 8A, right). We further 

determined the effects of specific antagonists targeting ERα and ERβ on eNOS 

phosphorylation by nectandrin B. Methyl-piperidino-pyrazole (MPP, a selective ERα 

antagonist) potently suppressed nectandrin B-mediated eNOS phosphorylation, while 
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tetrahydrochrysene (THC, a selective ERβ antagonist) did not affect (Fig. 8B). 

Moreover, ERα siRNA potently suppressed nectandrin B-mediated eNOS 

phosphorylation, but ERβ siRNA marginally affected eNOS phosphorylation in 

response to nectandrin B (Fig. 8C). In order to assess whether nectandrin B directly 

bind to ERα, we further performed ERα ligand binding assay using human recombinant 

ERα. 3 and 10 μg/ml nectandrin B significantly inhibited tritiated estradiol binding to 

human ERα, but the inhibition intensity is lower than 10 nM 17-β-estradiol (Fig. 8D). 

These data suggest that nectandrin B acts as a relatively selective agonist on ERα. 

ER-dependent eNOS phosphorylation is coupled with diverse signaling 

molecules. It has been shown that Src kinase mediates PI3K/Akt-dependent rapid eNOS 

activation in endothelial cells (Haynes et al., 2003). We found that Src specific inhibor, 

4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) suppressed 

eNOS phosphorylation by nectandrin B (Fig. 8E). Coimmunoprecipitation studies of 

plasma membranes from COS-7 cells transfected with ERα and Gα proteins 

demonstrated estrogen-stimulated selective interaction between ERα and Gαi. 

Moreover, Gαi inhibitor pertussis toxin blocked estrogen-dependent eNOS activation 

(Mineo and Shaul, 2006). However, pertussis toxin did not abrogate nectandrin B-

stimulated eNOS phosphorylation in ECV 304 cells (Fig. 8E). Hence, Src tyrosine 
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kinase, but not G proteins, may be involved in the ERα and subsequent eNOS activation 

process by nectandrin B. 

Both PI3K/Akt and AMPK pathways are required for eNOS phosphorylation 

by nectandrin B. Hence, we studied possible cross-talk between the two kinase 

pathways. PI3K inhibition by LY294002 pretreatment failed to inhibit the 

phosphorylation of ACC in response to nectandrin B (Fig. 9A). However, AMPK 

inhibition by compound C impaired nectandrin B-induced Akt phosphorylation (Fig. 

9B). In addition, compound C attenuated ER-dependent reporter activity induced by 

nectandrin B (Fig. 9C). These data support the conclusion that AMPK/ERα/PI3-

kinase/Akt regulates eNOS phosphorylation in response to nectandrin B. 

 

Nectandrin B-mediated endothelium-dependent relaxation is reversed by 

inhibition of ER, PI3-kinase or AMPK. We did organ chamber studies using 

endothelium-intact aortic rings. Nectandrin B (10 μg/ml) relaxed phenylephrine-

precontracted aortic rings and LY294002 (PI3K inhibitor) and ICI-182,780 (ER 

antagonist) completely blocked nectandrin B-mediated vasorelaxation (Fig. 10A). 

Although, compound C (AMPK inhibitor) significantly reversed nectandrin B’s 

relaxation effect, the inhibition intensity was weaker than that of LY294002 or ICI-
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182,780 (Fig. 10A). Immunoblot analysis using the homogenates of aortic rings showed 

that nectandrin B increased the level of phosphorylated eNOS at 15-30 min after 10 

μg/ml nectandrin B exposure to aortic rings (Fig. 10B), which suggest that eNOS 

phosphorylation and subsequent NO production by nectandrin B is directly coupled 

with vascular relaxation.  

 

Discussion 

The species M. fragrans has been used traditionally for spices and various medicinal 

purposes – as a stomachic, carminative, tonic, aphrodisiac, and nervous system 

stimulant (Nguyen et al., 2010). Several studies have shown that lignan compounds 

from M. fragrans have beneficial anti-inflammatory, anti-diabetes and anti-oxidant 

effects (Han et al., 2008; Anggakusuma et al., 2009; Ma et al., 2009; Kwon et al., 2008). 

AMPK is activated either by an increase in the AMP/ATP ratio during metabolic stress 

or by activation of upstream kinases such as LKB1 and CaMK (Hardie, 2007). Because 

AMPK activation suppresses ATP-consuming anabolic pathways and conversely 

activates ATP-generating catabolic pathways, a selective AMPK activator could 

function as an anti-diabetes and anti-obesity agent (Misra, 2008). In this sense, 

nectandrin B is an attractive natural compound, since the lignan is a potent AMPK 
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activator at relatively low concentrations compared to other phytochemicals. 

Here, we demonstrated that nectandrin B stimulates eNOS phosphorylation in human 

endothelial cells. Although it has been reported that eNOS levels are reduced in AMPK 

silencing cells (Colombo and Moncada, 2009), protein expression of eNOS was not 

affected by nectandrin B. The PI3K/Akt pathway was reported to be essential for Ser 

1177 or Ser1179 eNOS phosphorylation (Dimmeler et al., 1999; Fulton et al., 1999) and 

therefore functions as an essential kinase in regulating eNOS activity and NO 

production in various circumstances (Thomas et al., 2002; Cai et al., 2003). The current 

experiments show that nectandrin B strongly activates PI3K, and that eNOS 

phosphorylation and NO production in response to nectandrin B are attenuated by PI3K 

inhibition. A recent study showed that ERα directly interacts with PI3K and modulates 

its activity in human vascular endothelial cells (Simoncini et al., 2000). Furthermore, 

PI3-kinase is included in ER-dependent signaling (Campbell et al., 2001). In our study, 

we found that nectandrin B has weak agonistic activities on the ERα, whereas 

nectandrin B-induced eNOS and Akt phosphorylations are suppressed by ER 

antagonists. Furthermore, nectandrin B-stimulated eNOS phosphorylation was inhibited 

by ERα antagonist or ERα siRNA, but not by ERβ blocking. These data suggest that 

ERα activation is critical for PI3K/Akt-mediated eNOS phosphorylation by nectandrin 
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B.  

In addition to the PI3K/Akt pathway, MAP kinase pathways have been reported to be 

involved in eNOS regulation. Both the activities of ERK and p38 kinase were related 

with eNOS activation by several vasodilators (Grossini et al., 2009; Kan et al., 2008) 

and the JNK pathway is a downstream target kinase after eNOS activation (Go et al., 

2001). Here, we found that nectandrin B activates JNK but neither ERK nor p38, and 

were confirmed that these pathways are not involved in nectandrin B-induced eNOS 

phosphorylation.  

Although it is obvious that PI3K/Akt is a key kinase in regulating eNOS 

phosphorylation (Shiojima et al., 2002), regulation of eNOS phosphorylation can be 

under the control of other kinases as well, including AMPK (Chen et al., 1999; Morrow 

et al., 2003), protein kinase A (Namkoong et al., 2009) and protein kinase C (Michell et 

al., 2001). AMPK is a serine/threonine protein kinase that is a critical mediator of 

energy metabolism (Hardie and Hawley, 2001; Carling, 2004). We showed that 

overexpression of the constitutively active form of AMPK alone was enough to increase 

eNOS phosphorylation in endothelial cells, indicating that AMPK also functions as an 

eNOS activator in our system. Moreover, nectandrin B potently activated AMPK, and 

this activation is closely associated with eNOS phosphorylation, which was shown 
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using chemical inhibitors or a dominant negative mutant of AMPK. Previous studies 

demonstrated that CaMKs and LKB1 act upstream of the AMPK pathway (Woods et al., 

2005) and regulate eNOS phosphorylation (Mount et al., 2008; Bair et al., 2009). In our 

study, CaMK II phosphorylation was increased by nectandrin B, and, furthermore, 

CaMK II inhibitors significantly inhibit nectandrin B-induced phosphorylation of eNOS 

as well as AMPK. These results indicate that nectandrin B stimulates eNOS 

phosphorylation via the AMPK pathway, presumably through CaMK II activation. 

Levine et al. showed that AMPK lies upstream of Akt in the pathway leading from 

receptor activation to eNOS stimulation (Dimmeler et al., 1999). Because inhibition of 

either PI3-kinase or AMPK simultaneously blocks nectandrin B-stimulated eNOS 

phosphorylation, we further tested whether cross-talk between PI3-kinase/Akt and 

AMPK is associated with eNOS phosphorylation by nectandrin B. We found that AKT-

phosphorylation induced by nectandrin B was attenuated by compound C, but that 

LY294002 did not affect nectandrin B-mediated AMPK phosphorylation. In addition, 

compound C decreased the ER reporter activity stimulated by nectandrin B. Thus, we 

can conclude that nectandrin B first activates AMPK, and that this may be responsible 

for further serial activation of the ERα/PI3K/Akt pathway and subsequent eNOS 

phosphorylation.  
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In an organ chamber study, we found that 10 μg/ml nectandrin B potently 

relaxed rat aortic rings, and inhibitors against ER or PI3K completely suppressed 

nectandrin B-stimulated vascular relaxation. Although compound C also results in 

significant inhibition, the inhibition intensity was marginal compared to LY294002 and 

ICI-182,780. The discrepancy between the effectiveness of compound C in endothelial 

cell culture and that in organ chamber system may be due to the incomplete tissue 

uptake of compound C in the rat aortic rings.  

In a previous study, 200 mg/kg tetrahydrofuran mixture of Myristica fragrans, 

which contains seven lignan compounds including nectandrin B, was daily administered 

in C57/BL6 mice for 6 weeks. The mixture showed anti-obesty effect against high fat-

diet feeding, but it did not cause any toxic response in mice (Nguyen et al., 2010). We 

also found that oral administration of 20 mg/kg nectandrin B in C57/BL6 mice for 6 

weeks did not make any significant change in the organs of mice (data not shown). 

Considering relatively long treatment schedules in these studies, we believe 1-10 μg/ml 

nectandrin B seems to be a clinically relevant concentration range in vivo. In summary, 

the present study shows that nectandrin B activates eNOS via eNOS phosphorylation, 

and that the ER/PI3K/Akt pathway under the control of AMPK plays a critical role in 

nectandrin B-mediated eNOS phosphorylation. Nectandrin B would be applicable to 
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prevent cardiovascular diseases and our observations have important implications for 

the elucidation of the pharmacological mechanism of nectandrin B. 
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Figure legends 

Fig. 1. (A) Structure of nectandrin B. (B) Cytotoxicity of nectandrin B in ECV 304 cells. 

Cells were seed in a 48-well plate and various concentrations of nectandrin B were 

incubated for 24 h. Cell viability were estimated by MTT assay. Each bar represents the 

mean ± SD calculated from eight different samples (significant as compared to control, 

*p<0.05). 

 

Fig. 2. Effect of nectandrin B on eNOS phosphorylation and expression. (A) 

Concentration-dependent eNOS phosphorylation by nectandrin B. ECV 304 cells were 

treated with nectandrin B (1 - 10 μg/ml) for 1 h and the total cell lysates were subjected 

to immunoblottings with antibody against Ser-1177 phosphorylated eNOS or total 

eNOS. Relative changes in the eNOS phosphorylation were assessed by scanning 

densitometry. Data represent the means±SD of 3 separate experiments (significant as 

compared to control, *p<0.05; control level = 1). (B) Time course of eNOS 

phosphorylation by nectandrin B. ECV 304 cells were treated with nectandrin B (10 

μg/ml) for the indicated time (5 min to 60 min). Under identical condition, 

phosphorylated eNOS and total eNOS levels were detected by Western blot analyses. 

Relative changes in the eNOS phosphorylation were assessed by scanning densitometry. 

Data represent the means±SD of 3 separate experiments (significant as compared to 

control, *p<0.05; control level = 1). (C) No change of eNOS expression by nectandrin B. 

ECV 304 cells were treated with nectandrin B (10 μg/ml) for 3 to 24 h and the total cell 

lysates were subjected to immunoblottings with eNOS and β-actin antibodies. Relative 

change in the eNOS protein expression was assessed by scanning densitometry. Data 
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represent the means±SD of 3 separate experiments (control level = 1). Concentration-

(D) and time-dependent (E) NO production by nectandrin B. ECV 304 cells were 

serum-starved overnight and loaded with DAF2-DA as described under “Materials and 

Methods”. Cells were then stimulated with nectandrin B (0.5 - 10 μg/ml) for 60 min or 

nectandrin B (10 μg/ml) for the indicated time. After nectandrin B treatments, cells 

were fixed in 5% paraformaldehyde and visualized with an epifluorescent microscope. 

Emission of green fluorescence is indicative of NO production.  

 

Fig. 3. Effect of nectandrin B on eNOS phosphorylation and NO production in HUVEC 

cells. (A) Nitrite amounts in culture medium. ECV 304 cells were serum-starved 

overnight, incubated with nectandrin B (1 - 10 μg/ml) for additional 24 h and culture 

media were collected for nitrite determination. Data represent the means±SD of 3 

separate experiments (significant as compared to control, *p<0.05; control level = 1).  

(B) Concentration-dependent eNOS phosphorylation in HUVEC cells. HUVEC cells 

were treated with nectandrin B (1 - 10 μg/ml) for 1 h and the total cell lysates were 

subjected to immunoblottings with antibodies against Ser-1177 phosphorylated eNOS, 

total eNOS and β-actin. (C) NO production by nectandrin B in HUVEC cells. HUVEC 

cells were serum-starved overnight and loaded with DAF2-DA as described under 

“Materials and Methods.” 

 

Fig. 4. AMPK activation by nectandrin B. (A) Concentration-dependent 

phosphorylation of AMPK or ACC by nectandrin B in ECV 304 cells. The cells were 

incubated with nectandrin B (1 - 10 μg/ml) for 1 h. 1 mM AICAR was used as a 

representative AMPK activator. (B) Time course phosphorylation of AMPK, ACC or 
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CaMK II by nectandrin B in ECV 304 cells. 10 μg/ml nectandrin B was treated for the 

indicated time. (C) Concentration-dependent phosphorylation of AMPK or ACC by 

nectandrin B in HUVEC cells. The cells were incubated with nectandrin B (1 - 10 

μg/ml) for 1 h. 

 

Fig. 5. Involvement of AMPK in nectandrin B-induced eNOS phosphorylation. (A) NO 

production by AICAR. 1 mM AICAR was treated for 1 h in ECV 304 cells. (B) Effect 

of compound C on nectandrin B-induced eNOS phosphorylation. ECV cells were 

pretreated with 10 μM compound C (AMPK inhibitor) for 30 min and then incubated 

with 10 μg/ml nectandrin B for additional 60 min. Phosphorylated eNOS and ACC were 

detected by Western blot analyses. Relative changes in the eNOS phosphorylation were 

assessed by scanning densitometry. Data represent the means±SD of 3 separate 

experiments (significant as compared to control, *p<0.05; control level = 1; significant 

as compared to nectandrin B-treated group, #p<0.05). (C) Effect of DN-AMPK 

transfection on nectandrin B-induced eNOS phosphorylation. ECV 304 cells were 

transfected with DN-AMPK and pcDNA control for 24 h, the cells were then treated 

with 10 μg/ml nectandrin B for 60 min. Phosphorylated eNOS and ACC were detected 

by Western blot analyses. Relative changes in the eNOS phosphorylation were assessed 

by scanning densitometry. Data represent the means±SD of 3 separate experiments 

(significant as compared to control, *p<0.05; control level = 1; significant as compared 

to nectandrin B-treated group, #p<0.05). (D) Effect of CA-AMPK on the 

phosphorylation of eNOS and ACC. ECV 304 cells were transfected with CA-AMPK 

and pcDNA control for 24 h, the cells were then treated with or without 10 μg/ml 

nectandrin B for 60 min. Phosphorylated eNOS and ACC were detected by Western blot 
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analyses. Relative changes in the eNOS phosphorylation were assessed by scanning 

densitometry. Data represent the means±SD of 3 separate experiments (significant as 

compared to control, *p<0.05; control level = 1). (E) Role of CaMK II in nectandrin B-

mediated AMPK activation and eNOS phosphorylation. ECV 304 cells were pretretaed 

with 10 μM A3281 (Calmodulin inhibitor) for 30 min and then incubated with 10 μg/ml 

nectandrin B for additional 60 min. Phosphorylation intensity of eNOS, AMPK or ACC 

were detected by Western blot analyses. Relative changes in the eNOS phosphorylation 

were assessed by scanning densitometry. Data represent the means±SD of 3 separate 

experiments (significant as compared to control, *p<0.05; control level = 1; significant 

as compared to nectandrin B-treated group, #p<0.05). 

 

Fig. 6. Role of PI3K/Akt pathway in nectandrin B-stimulated eNOS phosphorylation. 

(A) Effect of nectandrin B on the activities of PI3-kinase, ERK, JNK and p38 kinase. 

ECV 304 Cells were treated with 10 μg/ml nectandrin B for the indicated times and then 

immunoblotted with phosphorylation-specific antibodies that recognize phospho-Akt 

(p-Akt), phospho-ERK (p-ERK), phospho-p38 kinase (p-p38) and phospho-JNK (p-

JNK). Parallel immunoblots were analyzed for total kinase levels with anti-Akt, ERK, 

p38, and JNK antibodies. (B) Effect of PI3-kinase inhibitor on nectandrin B-stimulated 

eNOS phosphorylation. ECV 304 cells were preincubated with 10 μM LY 294002 and 

then cells were incubated with 10 μg/ml nectandrin B for 60 min. Cell lysates were 

subjected to Western blotting analyses with antibodies against phosphortlated eNOS, 

eNOS, phosphorylated Akt or Akt. (C) Effects of JNK inhibitor on nectandrin B-

stimulated eNOS phosphorylation. ECV 304 cells were preincubated with 10 μM 

SP600125 (SP) and then cells were incubated with 10 μg/ml nectandrin B for 60 min. 
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Fig. 7. Role of estrogen receptor signaling in Akt-dependent eNOS phosphorylation. 

(A) Nectandrin B-induced ERE reporter activation. ECV 304 cells were transiently 

transfected with ERE-Luc plasmid. Following transfection, cells were treated with 

nectandrin B (1 - 10 μg/ml) or 17-β-estradiol (E2, 100 nM) for 24 h prior to lysis and 

measurement of ERE reporter activity. Data represent the means±SD of 4 separate 

samples (significant as compared to control, *p<0.05). (B) Effect of ER antagonist on 

nectandrin B-induced phosphorylation of Akt and eNOS. ECV 304 cells were 

preincubated with 100 nM ICI-182780 (ER antagonist). The cells were then incubated 

with 10 μg/ml nectandrin B for 60 min. Cell lysates were subjected to Western blotting 

analyses using antibodies against phosphorylated eNOS, eNOS, phosphorylated Akt or 

Akt. (C) Effects of PI3K inhibitor or ER antagonist on nectandrin B-mediated NO 

production. Under identical condition, the cells were serum-starved overnight and 

loaded with DAF2-DA as described under “Materials and Methods.” Cells were 

preincubated with inhibitors for 30 min and then incubated with with 10 μg/ml 

nectandrin B. L-NAME was used as a NOS inhibitor. 

 

Fig. 8. Crucial role of ERα/Src in nectandrin B-mediated eNOS phosphorylation. (A) 

eNOS activation effects of ERα and ERβ agonists in ECV 304 cells. Left, ERα and 

ERβ expression was detected by immunoblottings using specific antibodies. Right, 

DPN (ERα agonist, 100 nM) and PPT (ERβ agonist, 100 nM) were exposed to ECV 

304 cells for 60 min and eNOS phosphorylation was determined. (B) Effects of ERα 

(MPP) and ERβ (THC) antagonists on eNOS phosphorylation induced by nectandrin B. 

ECV 304 cells were preincubated with 10 μM MPP or 10 μM THC and then cells were 
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incubated with 10 μg/ml nectandrin B for 60 min. (C) Effects of siRNAs for ERα (left) 

and ERβ (right) on eNOS phosphorylation induced by nectandrin B. ECV 304 cells 

were preincubated with 60 pmole control siRNA, ERα siRNA or ERβ siRNA and then 

cells were incubated with 10 μg/ml nectandrin B for 60 min. (D) ERα binding activity 

of nectandrin B. 10 nM 17-β-estradiol (E2) or 1-10 μg/ml nectandrin B were incubated 

with 1 nM tritiated estradiol and 0.6 nM recombinant human ERα protein. Data 

represent the means±SD of 3 separate samples (significant as compared to control, 

*p<0.05; **p<0.01). (E) Effects of Gαi inhibitor (pertussis toxin, PTX, 10 nM) and Src 

inhibitor (PP2, 10 μM) on eNOS phosphorylation induced by nectandrin B. ECV 304 

cells were preincubated with 10 nM PTX or 10 μM PP2 and then cells were incubated 

with 10 μg/ml nectandrin B for 60 min. 

 

Fig. 9. AMPK is required for the activation of ER/Akt pathway by nectandrin B. (A) 

Effect of PI3K inhibitor on nectandrin B-stimulated AMPK activation. ECV cells were 

pretreated with 10 μM LY294002 (LY, PI3K inhibitor) for 30 min and then incubated 

with 10 μg/ml nectandrin B for additional 60 min. Phosphorylated AMPK was detected 

by Western blot analysis. (B) Effect of AMPK inhibitor on nectandrin B-stimulated Akt 

activation. ECV cells were pretreated with 10 μM compound C (AMPK inhibitor) for 

30 min and then incubated with 10 μg/ml nectandrin B for additional 60 min. 

Phosphorylated Akt was detected by Western blot analysis. (C) Effect of compound C 

on nectandrin B-induced increase in ERE activity. ECV 304 Cells were transiently 

transfected with ERE-Luc plasmid. Following transfection, cells were incubated with 

compound C (10 μM) and 10 μg/ml nectandrin B for 24 h prior to lysis and 

measurement of ERE reporter activity. Data represent the means±SD of 4 separate 
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samples (significant as compared to control, *p<0.05; significant as compared to 

nectandrin B-treated group, #p<0.05). 

 

Fig. 10. Role of ER/PI3-kinase and AMPK pathways in nectandrin B-mediated 

vasorelaxation. (A) Effects of inhibitors targeting ER, PI3-kinase and AMPK on 

nectandrin B-mediated vasorelaxation. Endothelium-intact aortic rings were anchored to 

the organ chamber and preincubated with or without LY294002 (LY, 10 μM), ICI-

182780 (ICI, 100 nM), or compound C (20 μM) for 30 min and 10 μg/ml nectandrin B-

mediated vascular relaxation was monitored in the precontracted aortic rings by 1 μM 

phenylephrine. Data are expressed as relative relaxation percent to acetylcholine (ACh, 

1 μM)-mediated relaxation and represent the means±SD of 4 separate experiments 

(significant as compared to nectandrin B-treated sample, *p<0.05; control level=1). (B) 

Effect of nectandrin B on eNOS phosphorylation in aortic rings. Rat aortic rings were 

incubated with 10 μM nectandrin B for the indicated time (5 min to 90 min) and the 

homogenates of aortic rings were subjected to phosphorylated eNOS immunoblotting. 
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This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on September 22, 2011 as DOI: 10.1124/mol.111.073502

 at A
SPE

T
 Journals on A

pril 20, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


Control 10 nM E2 1 3 10

E
R

α 
bi

nd
in

g 
in

hi
bi

tio
n 

(r
at

io
 to

 c
on

tr
ol

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

**

**

*

Nectandrin B (μg/ml)

ERα ERβ

ECV 304

A

eNOS

p-eNOS

- DPN
100 nM

PPT
100 nM

E2
10 nM

Actin

Fig. 8

-- + + +Nectandrin B (10 μg/ml) -

p-eNOS

eNOS

+- - + -MPP (10 μM) -

-- - - +THC (10 μM) +

B

C

-- + + +Nectandrin B -

p-eNOS

β-actin

+- - + -PTX -

-- - - +PP2 +

-- + +Nectandrin B

+- - +ERα siRNA
Control siRNA

p-eNOS

Αctin

p-eNOS

Αctin

-- + +Nectandrin B

+- - +ERβ siRNA
Control siRNA

D E

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on September 22, 2011 as DOI: 10.1124/mol.111.073502

 at A
SPE

T
 Journals on A

pril 20, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


Nectandrin B (10 μg/ml)

LY 10 μM

- +

- -

+

+

-

+

AMPK

p-AMPK

Nectandrin B (10 μg/ml)

Compound C 10 μM

- +

- -

+

+

-

+

Akt

p-Akt

A

Fig. 9

B

- + + -
0

1

2

3

#

*

Compound C (10 μM)

E
R

E
 lu

ci
fe

ra
se

 a
ct

iv
ity

Nectandrin B (10 μg/ml)

C

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on September 22, 2011 as DOI: 10.1124/mol.111.073502

 at A
SPE

T
 Journals on A

pril 20, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


Fig. 10

Control L-NAME Compound C ICI LY

R
el

at
iv

e 
re

la
xa

ti
on

 %
 to

 1
 μ

M
 A

C
h-

in
du

ce
d 

re
la

xa
tio

n

0

20

40

60

80

*
*

*

*

Nrctandrin B (10 μg/ml)

600 5 15 30Nectandrin B (10 μg/ml) min90

p-eNOS

β-actin

A

B

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on September 22, 2011 as DOI: 10.1124/mol.111.073502

 at A
SPE

T
 Journals on A

pril 20, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/

