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Abstract 

 
G protein coupled receptors (GPCRs) are integral membrane proteins that change 

conformation subsequent to ligand binding so that they can transduce signals from an 

extracellular ligand to a variety of intracellular components.  The detailed interaction of a 

molecule with a GPCR is a complicated process that is influenced by the receptor 

conformation, thermodynamics, and ligand conformation and stereoisomeric 

configuration. To better understand the molecular interactions of fenoterol analogs with 

the β2-adrenergic receptor, we developed a new agonist radioligand for binding assays.  

[3H]-(R,R’)-methoxyfenoterol was used to probe the binding affinity for a series of 

fenoterol stereoisomers and derivatives.  The results suggest that the radioligand binds 

with high affinity to an agonist conformation of the receptor, which represents about 25% 

of the total β2-AR receptor population as determined with the antagonist [3H]-CGP-

12177.  The β2-AR agonists tested in this study have considerably higher affinity for the 

agonist conformation of the receptor and Ki values determined for fenoterol analogs 

model much better the cAMP activity of the β2-AR elicited by these ligands.  The 

thermodynamics of binding are also different when interacting with an agonist 

conformation, being purely entropy driven for each fenoterol isomer, rather than a 

mixture of entropy and enthalpy when the fenoterol isomers binding was determined 

using [3H]CGP-12177.  Finally, computational modeling identified the molecular 

interactions involved in agonist binding and allow for the prediction of additional 

novel β2-AR agonists.  The study underlines the possibility of using defined radioligand 

structure to probe a specific conformation of such shape-shifting system as the β2-

adrenoceptor. 
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Introduction 

The binding affinity of a compound to the β2-adrenoceptor (β2-AR) is routinely 

determined using competitive binding assays based upon the concentration dependent 

displacement of a marker radioligand. While this technique is used to characterize the 

binding of β2-AR agonists and antagonists, the most often employed marker ligands are 

non-selective β-AR antagonists, which often have significant binding affinities to the β1-

AR, β2-AR and β3-AR (Baker, 2005; Brodde et al., 1983; Hoffmann et al., 2004; Joseph 

et al., 2004; Nikulin et al., 2006; Perrone et al., 2008; Staehelin et al., 1983; Toews et al., 

1983).  These radioligands include (-)-3-[125I]-iodocyanopindolol ([125I]-CYP) (Brodde et 

al., 1983), [3H]-CGP-12177 (Staehelin et al., 1983), [125I]-iodopindolol (Toews et al., 

1983) and [3H]-dihydroalprenolol (Perrone et al., 2008; Staehelin et al., 1983). One of the 

most widely used markers, [3H]-CGP-12177, is a non-conventional antagonist of the β1-

AR that binds at two sites on the receptor (Joseph et al., 2004).  Thus, it is not clear 

which site or sites on the β2-AR interact with [3H]-CGP-12177, nor how these 

interactions affect the identification and characterization of β2-AR agonists.   

The concerns associated with the use of [3H]-CGP-12177 as a marker ligand was 

evident in our recent work on the characterization of the individual stereoisomers of the 

β2-AR agonist fenoterol (Fen) and a series of Fen analogues, c.f. Fig. 1 (Jozwiak et al., 

2007; Jozwiak et al., 2010a; Jozwiak et al., 2010b; Toll et al., 2011).  During the course 

of these studies, we determined the binding thermodynamics of the four stereoisomers of 

Fen, (R,R')-, (R,S')-, (S,R')- and (S,S')-Fen to the β2-AR (Jozwiak et al., 2010a).  All of 

these compounds are full agonists of the β2-AR with respect to the stimulation of cAMP 
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accumulation in HEK293 cells stably transfected with β2-AR (HEK-β2-AR), and the 

binding studies were performed using membranes obtained from these cells.  In these 

studies, [3H]-CGP-12177 was used as the marker ligand and the binding affinities were 

expressed as KiCGP values. The results indicated that there were significant 

stereochemistry-based differences in the binding mechanisms as this process was 

entropy-driven when (R,R')- and (R,S')-Fen were the ligands, while the binding of the 

(S,R')- and (S,S')- isomers was an enthalpy-driven process.  In addition the calculated 

Hill’s coefficients (n values) also differed as an n = ~1 was calculated for the (R,R')- and 

(R,S')-isomers and an n = ~2 was determined for the (S,R')- and (S,S')-isomers. These 

binding studies have also been used to develop Comparative Molecular Field Analysis 

(CoMFA) models for the interaction of the Fen analogs, and other agonists and 

antagonists for the β2-AR, and we have been able to model the differential interactions of 

the stereoisomers.  However, binding studies using the antagonist [3H]-CGP-12177 may 

only explore a portion of the binding interactions.  

It is well known that GPCRs, such as the β2-AR, bind ligands in multiple 

conformations.  In particular, antagonists seem to have similar affinities to most or all 

receptor conformations, while an agonist will stabilize the receptor in a conformation for 

which it has high affinity, but it will bind with low affinity to other “antagonist” 

conformations (Kent et al., 1980).  Therefore, our (and most other) previous studies have 

primarily examined the interaction of Fen analogs and other agonists with the antagonist 

conformation.  This is evident if one compares the binding affinity of (R,R')-Fen when 

competing with [3H]-CGP-12177, Ki = 345 nM, versus its potency for stimulation of 

cAMP accumulation in the same cells, EC50 = 0.30 nM (Jozwiak et al., 2010b).   
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In order to examine the binding of Fen analogs to a different conformation of the 

β2-AR, we synthesized [3H]-(R,R')-4-methoxyfenoterol, [3H]-MFen, Fig.1, to use as the 

marker ligand in receptor binding studies (Kozocas et al., 2010).  We have previously 

characterized MFen as a potent and selective β2-AR agonist which stimulates cAMP 

accumulation in HEK-β2-AR cells, (Toll et al., 2011), induces cardiomyocyte 

contractility in a mouse cardiomyocyte model, (Jozwiak et al., 2010b), and inhibits 

1321N1 mitogenesis (Toll et al., 2011).  Here we report the initial study of the use of this 

compound as a marker in the determination of β2-AR agonist binding affinities, examine 

the thermodynamics of Fen binding to an “agonist” conformation, and employ molecular 

dynamics calculations to perform in silico docking of Fen analogs to this agonist 

conformation.  
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Materials and Methods 

Materials  

The Fen analogues used in this study, Fig. 1, were synthesized as previously described 

(Jozwiak et al., 2007) and the preparation of [3H]-MFen (25 Ci/mmol), Fig. 1, has been 

recently reported (Kozocas et al., 2010).  Dulbecco’s Modified Eagle Medium (DMEM) 

was purchased from Lonza Walkersville, Inc. (Walkersville, MD), fetal bovine serum 

(FBS) was purchased from Mediatech, Inc. (Manassas, VA), penicillin-streptomycin and 

geneticin (G418) were purchased from Invitrogen (Carlsbad, CA), sodium chloride and 

calcium chloride were purchased from Mallinckrodt (Phillipsburg NJ) and (rac)-

propranolol, (R)-isoproterenol, ICI-118-551, Tris-HCl, Trizma Base, potassium chloride, 

magnesium chloride and D-(+)-glucose were purchased from Sigma-Aldrich (St. Louis, 

MO). 

Membrane binding studies 

HEK cells stably transfected with cDNA encoding human β2-AR (HEK-β2-AR, provided 

by Dr. Brian Kobilka, Stanford University Medical Center, Palo Alto, CA) were grown in 

DMEM containing 10% FBS and 0.05% penicillin-streptomycin with 400 µg/ml G418. 

The cells were scraped from the 150 x 25 mm plates and centrifuged at 500 x g for 5 min.  

The pellet was washed twice by homogenization in Tris-HCl [50 mM, pH 7.7] and 

centrifugation at 27,000 x g for 10 min.  The pellet was resuspended in Tris-HCl [15 mM, 

pH 7.4], containing 120 mM sodium chloride, 5.4 mM potassium chloride, 1.8 mM 

calcium chloride, 0.8 mM magnesium chloride, and 5 mM glucose. The binding assays 

contained 3.9 nM [3H]-MFen and 60 μg cell membranes, in a volume of 1.0 ml.  The 

mixture was incubated at 25°C for 2 h and filtered over glass fiber filters soaked in 0.05% 
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polyethyleneimine (PEI).  Nonspecific binding was determined using 10 μM (rac)-

propranolol.  The reaction was terminated by filtration using a Tomtec 96 harvester 

(Orange, CT) through glass fiber filters.  Bound radioactivity was counted on a 

Pharmacia Biotech beta-plate liquid scintillation counter (Piscataway, NJ) and expressed 

in counts per minute.  Saturation experiments were conducted using concentrations 

ranging from 0.2 to 20 nM [3H]-MFen. 

Docking simulations 

The 2RH1.pdb and 3POG.pdb molecular models of the β2-AR were used in the simulated 

docking studies.  Ligand molecules were prepared using HyperChem 6.03 (HyperCube 

Inc., Gainesville, FL) software using Model Build procedure.  Molegro Virtual Docker 

(MVD v. 2010.4.0.0) software was employed for docking simulations.  The MolDock SE 

search algorithm was used, and the number of searching runs was set to 100.  The 

following parameters were set during docking simulation:  population size = 50, 

maximum iteration = 1500, energy threshold = 100.00, max steps = 300.  The estimation 

of ligand-protein interactions was described by the MVD implemented scoring functions: 

MolDock Score, Rerank Score, Hbond Score, Similarity Score, Docking Score. 

Statistical analysis 

Results were analyzed by non-linear regression analysis using the program 

Graphpad/Prism (ISI, San Diego, CA).  For competition experiments, IC50 values and 

Hill’s coefficients (n) were determined using at least six concentrations of each Fen 

analog.  The Ki values were calculated by the method of Cheng and Prusoff (Cheng and 

Prusoff, 1973).  
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Results 

Characterization of [3H]-MFen binding to membranes from HEK-β2-AR cells 

Saturation analysis of [3H]-MFen binding to membranes from HEK-β2-AR cells 

indicated, a single binding component with a KdMFen of 4.88 ± 0.41 nM and a Bmax of 

2136 ± 114 fmol/mg protein.  Non-specific binding represented less than 20% of total 

binding (Fig. 2). The binding was inhibited by the non-selective β-AR antagonist (rac)-

propranolol and the selective β2-AR antagonist ICI 118,551 indicating that [3H]-MFen 

specifically bound to the β2-AR.  The calculated KdMFen value was ~100-fold lower than 

the previously reported β2-AR affinity of MFen determined using the same cellular 

membranes and [3H]-CGP-12177 as the marker ligand, KiCGP = 473 nM, Table 1 

(Jozwiak et al., 2007).  The calculated Bmax value was also lower than the previously 

reported value, 8,901 ± 1,161 fmol/mg protein, also determined using [3H]-CGP-12177 

as the marker ligand (Jozwiak et al., 2007).  These results suggest that [3H]-MFen binds 

with high affinity to an agonist conformation of the receptor, and that, under these 

conditions, the agonist conformation represents only about 25% of the total β2-AR 

receptor population.   

Unlike saturation analysis, the kinetic analysis of [3H]-MFen binding suggested 

that there was more than one binding conformation or component.  The analysis of the 

relationship between specific binding and time revealed that the data fit better to a two-

component model of binding than a single component, Fig. 3, making it impossible to 

calculate definitive kinetic binding constants. Non-linear regression analysis of the data 

indicated that the association rate appears to be biphasic, with kon of 1.21 min-1 for about 

35% of the sites and 0.016 min-1 for the remaining 65%.  The same results were obtained 
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from the analysis of the koff data as approximately 35% of the receptors have a koff of 

0.018 min-1 and 65% have a koff of 0.20 min-1. The data supports the supposition that 

[3H]-MFen binds to at least two sites on or conformations of the β2-AR, although this 

cannot be readily detected by saturation analysis. 

Determination of β2-AR binding affinities using [3H]-MFen as the marker ligand  

[3H]-MFen was used as the marker ligand in the determination of the β2-AR 

binding affinities (KiMFen) of 22 fenoterol analogs, isoproterenol, propranolol and ICI-

118-551 and the data is presented in Table 1.  In these experiments a low concentration 

(3.9 nM) of [3H]-MFen was used consequently, greater than 75% of the binding 

represents the high affinity binding conformation.  The KiMFen value observed for the non-

selective β-AR antagonist (rac)-propranolol, 3.69 nM, was nearly 10-fold higher than the 

KiCGP value, 0.46 nM, determined using [3H]-CGP-12177 as was the calculated affinity of 

the selective β2-AR antagonist ICI 118,551, KiMFen, 2.52 nM and KiCGP = 0.60 nM, Table 

1.  The opposite result was obtained with the β2-AR agonist isoproterenol as the KiMFen 

was 79-fold lower than the KiCGP, 2.44 nM and 192 nM, respectively, and more in line 

with the EC50 value that induced cAMP accumulation in HEK-β2-AR cells, 0.20 nM, 

Table 1.  The calculated Hill’s coefficients for the agonist compounds were slightly less 

than 1.0, suggesting there is some heterogeneity of binding, consistent with the saturation 

and kinetic experiments.  Interestingly, the Hill coefficient for the antagonists rac-

propranolol and ICI 118,551 were 2.10 and 1.84, respectively, suggesting that some 

degree of positive cooperativity of binding may exist.    

The data obtained with the 22 fenoterol analogs tested in this study are consistent 

with the supposition that KiMFen values better reflect the β2-AR agonist properties than 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on March 20, 2012 as DOI: 10.1124/mol.111.077347

 at A
SPE

T
 Journals on A

pril 10, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL #77347 

 11

KiCGP values.  The apparent affinities uniformly increased when [3H]-MFen was the 

marker ligand relative to the KiCGP values for each of the compounds tested, Table 1 

(Competition curves are shown in Supplemental Figure S1).  The changes ranged from a 

116-fold decrease in Ki (increase in affinity) for (R,R')-MFen, to a 4-fold decrease when 

(S,S')-1-naphthylfenoterol and (R,S')-2-naphthylfenoterol were studied.  Nevertheless, 

there was a good correlation between the Ki values using the two radioligands, with a 

correlation coefficient of R2 = 0.7899 (see Supplemental Figure S2).  In general, the 

magnitude of the change was dependent upon the configuration at the β-OH carbon with 

an R configuration producing a greater enhancement in the binding affinity when [3H]-

MFen was the marker ligand.   

When the Ki values were compared to the corresponding EC50 values determined 

for the stimulation of cAMP accumulation in HEK-β2-AR cells, the magnitude of the 

KiMFen values were more reflective of this activity than the KiCGP values, Table 1.  For 

each compound, the binding affinity using  [3H]-MFen was closer to the EC50 value for 

cAMP accumulation that was the Ki for [3H]-CGP-12177 binding.   In addition, the pKi 

[3H]-MFen  is significantly better correlated with pEC50 cAMP than the pKi [3H]-CGP-

12177 , 0.5532 vs. 0.4143, respectively (Supplemental Figure S2). These results suggest 

that the high affinity site probed by [3H]-MFen is associated with the cAMP activity of 

the β2-AR and that all of the agonists used in this study, bind to this site to a greater 

extent than to a lower affinity site probed by [3H]-CGP-12177.  

Effect of GTP on β2-AR binding 

Experiments were conducted to determine how GTP and GTPγS affect binding of [3H]-

MFen and compare that to their effect on the binding of the antagonist [3H]-CGP-12177.  
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GTP and its non-hydrolyzable analog GTPγS both dose dependently reduced binding of 

[3H]-MFen, although the potency of GTP and particularly GTPγS were lower than what 

might be expected from literature values (Fig. 4).  Presumably this is not competitive 

antagonism but reflect a GTP-induced decrease in agonist affinity.  Interestingly, GTP 

and GTPγS did not have much effect on [3H]-CGP-12177 binding.  As expected, [3H]-

CGP-12177 binding remained high in the presence of GTP.  However, surprisingly, GTP 

did not induce a decrease in affinity of R,R’-fenoterol, and slightly increased the affinity 

of R,R’-methoxyfenoterol (Table 2). 

Thermodynamic studies 

In a previous study, the effect of temperature on the binding of (R,R')-Fen, (R,S')-Fen, 

(S,R')-Fen, (S,S')-Fen, propranolol and isoproterenol was determined using [3H]-CGP-

12177 as the radioligand and the data were subjected to van’t Hoff analysis (Jozwiak et 

al., 2010a).  In the current study, the temperature dependence of the KiMFen values of the 

same test compounds was determined at 4°C, 25°C and 37°C, Table 3.  The three 

temperature points were used to construct van’t Hoff plots ( )1ln( Ki  vs. T1 ), which 

were further employed to calculate enthalpic and entropic contribution to the free energy 

change of binding by linear regression of the equation 
TR

H

R

S
Ki

1
)1ln(

oo Δ−Δ= . oHΔ . 

oSΔ  and oGΔ  values calculated using [3H]-MFen affinity data are presented in Table 4.  

The calculations indicate that the binding of all of the test compounds was purely entropy 

driven, oHΔ >0 and oSTΔ− <0. These results differ from the results of the previous study 

using [3H]-CGP-12177 as the marker ligand in which the binding of (S,S')-Fen was an 

enthalpy driven process ( oHΔ = -35.8 kJ/mol; oSTΔ− =+6.3 kJ/mol) and the binding of 
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(S,R')-Fen, isoproterenol and propranolol were combined enthalpy/entropy driven 

processes, Table 3 (Jozwiak et al., 2010a). This observation was confirmed using the 

approach developed by Borea, et al., c.f. (Merighi et al., 2010), in which the data 

obtained in this study and the data previously obtained using [3H]-CGP-12177 as the 

radioligand (Jozwiak et al., 2010a) were placed in a scatter plot of –ΤΔS° versus ΔH°.  As 

seen in Fig. 5, all of the data from the current study was located within the quadrant 

associated with an entropy driven process, which is in contrast to the data obtained using 

[3H]-CGP-12177, in which the data span quadrants. 

Simulated docking studies 

The hypothesis that [3H]-CGP-12177 and [3H]-MFen can be used to probe different 

conformations of the β2-AR was tested using simulated receptor-ligand docking studies.  

Two molecular models of the β2-AR binding site have been recently reported and were 

used in the studies: 1) the 2rh1.pdb model {β2-AR-In} derived using β2-AR co-

crystalized with (S)-carazolol, which is regarded as an inactive form of the receptor 

(Rasmussen et al., 2007); and 2) the 3pog.pdb model {β2-AR-Ac} obtained from β2-AR 

co-crystalized with the agonist, BI-167,107 and the NB90 nanobody, which is regarded 

as an active form of the receptor (Rasmussen et al., 2011).   

 The lowest energy poses obtained in docking simulations of (S)-CGP-12177 were 

obtained with the β2-AR-In model, Fig. 6a.  In these simulations, the position of (S)-

CGP-12177 shares a number of similarities with the position (S)-carazolol co-crystalized 

in the binding site of the β2-AR-In model. As depicted in Fig 6a, there is a network of 

four hydrogen bonds formed between the amino and the beta-hydroxy moieties of (S)-

CGP-12177 and two protein residues, Asp113 of TM3 and Asn312 of TM7. In addition (S)-

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on March 20, 2012 as DOI: 10.1124/mol.111.077347

 at A
SPE

T
 Journals on A

pril 10, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL #77347 

 14

CGP-12177 forms a hydrogen bond with Ser203 of TM5. A similar interaction was 

originally observed between (S)-carazolol and the β2-AR in the crystal model, 2RH1.pdb. 

Thus, docking of (S)-CGP-12177 reveals the mode of binding conserved for other 

antagonists or inverse agonists like (S)-carazolol or ICI-118,551 interacting with the 

receptor.    

The inward shift of the TM5 in the ligand binding domain of the β2-AR-Ac model 

results in a condition such that the (R,R')-MFen molecule can achieve a similar network 

of four hydrogen bonds between amino and beta-hydroxy moieties of the ligand and 

Asp113 and Asn312 residues, as depicted in Fig. 6b.  In addition, Ser203 and Ser207, of TM5, 

interact with two meta-hydroxyl moieties of MFen, and Lys305 of TM7 interacts with the 

4’-methoxy moiety of the ligand.  The latter interaction for compounds like formoterol 

and fenoterol (having para-hydroxy moiety at the aminoalkyl tail) was recently proposed 

as an important factor in disrupting the ionic lock switch between Lys305 and Asp192 of 

extracellular loop 2 occurring in the inactive state and postulated to break during the 

activation of the receptor (Bokoch et al., 2010). Thus the docking simulations support the 

assumption that binding of (R,R')-MFen should stabilize the active form of the receptor.  

The binding of the marker ligands to the β2-AR-Ac and β2-AR-In models was 

also examined using the scoring functions, MolDockScore values, generated by MVD 

software, which energetically characterizes the simulated ligand – receptor complexes. 

The MolDockScore value calculated for the (R,R')-MFen- β2-AR-Ac complex, shown in 

Fig.6b, was significantly lower than the analogous value calculated for (R,R')-MFen- β2-

AR-In complex, -136.98 kJ/mol vs. -132.53 kJ/mol, respectively.  Interestingly, the 

difference in MolDockScore values was very small in docking simulations between 
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antagonist (S)-CGP-12177 and β2-AR-In (Fig.5a), compared to β2-AR-Ac models, -

116.60 kJ/mol and -115.82 kJ/mol, respectively.  This result is consistent with the 

observation that antagonists bind with roughly equal affinity to agonist and antagonist 

conformations of GPCRs and suggests that the binding of (S)-CGP-12177 to the inactive 

conformation is slightly more favorable than its interaction with active conformation.  
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Discussion 

The thermodynamics of the binding of agonists and antagonists to β-ARs have 

been described as fundamentally different processes in which the binding of an agonist is 

enthalpy-driven while the binding of an antagonist is entropy-driven (Contreras et al., 

1986; Miklavc et al., 1990; Weiland et al., 1979).  This observation was generalized as 

the principle of “thermodynamic agonist-antagonist discrimination” (Borea et al., 2000).  

We have recently reported the results of a study of the binding thermodynamics of (R,R')-

Fen, (S,S')-Fen , (R,S')-Fen, and (S,R')-Fen to the β2-AR (Jozwiak et al., 2010a).  In this 

study, the binding affinities were determined at five different temperatures using [3H]-

CGP-12177 as the marker ligand and cellular membranes obtained from HEK-β2-AR 

cells.  The data indicated that the binding of (S,S')- and (S,R')-Fen were predominately 

enthalpy-driven processes while the binding of (R,R')- and (R,S')-Fen were entropy-

driven.  Since all of the Fen stereoisomers were full β2-AR agonists in the HEK-β2-AR 

cells, the results were inconsistent with the principle of “thermodynamic agonist-

antagonist discrimination.”  In the discussion of this inconsistency we suggested that the 

results of our study might reflect the fact that the β2-AR exists in an inactive (R) 

conformation and one or more ligand-specific active conformations (R*n) (Seifert and 

Dove, 2009) and that displacement binding studies using [3H]-CGP-12117, a high-

affinity neutral antagonist (Baker et al., 2008), may reflect the relative affinity of the Fen 

stereoisomers for the inactive receptor state.  We also suggested that a potential approach 

to clarifying these interactions was to conduct the displacement binding studies with the 

β2-AR agonist [3H]-(R,R')-MFen and this manuscript reports the results of this study. 
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The data from the current study indicate that the binding properties of [3H]-MFen 

are what one would expect for a high affinity β2-AR agonist, and similar to those 

previously described for [3H]-formoterol and earlier studies with 

[3H]hydroxybenzylisoproterenol (Lefkowitz and Williams, 1977; Mak et al., 1994) .  

[3H]-MFen has high affinity for β2-AR with a Kd = 4.88 nM, and binding is decreased by 

the presence of GTP analogs.  In addition, saturation and kinetic analyses indicate that the 

binding occurs at a single high affinity binding site, or perhaps two independent but high 

affinity sites, which appears to differ from the site probed by [3H]-CGP-12177.   

While the data from the saturation analysis indicated that [3H]-MFen binds to a 

single high affinity conformation of the receptor, the results from association and 

dissociation experiments suggested binding to two conformations of the receptor, as both 

curves fit 2-binding site models better than single site models.  In addition, low Hill 

coefficients for the agonist inhibition of [3H]-MFen binding also are consistent with two 

potential binding sites or conformations.  These results suggest the potential of two 

independent high affinity receptor conformations, since kinetic experiments, but not 

equilibrium experiments, such as saturation, can identify different binding components 

with roughly equal affinity but different kinetics.  These results are consistent with 

biophysical experiments that demonstrated two kinetically distinguishable 

conformational states after agonist binding (Swaminath et al., 2004). 

In the analysis of the [3H]-MFen saturation binding studies with the membranes 

from the HEK-β2-AR, the maximum binding capacity, Bmax value, was 2136 fmol/mg 

protein.  This was significantly lower than the Bmax value calculated for [3H]-CGP-12177 

binding to the same membranes, 8,901 fmol/mg protein (Jozwiak et al., 2007).  The most 
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reasonable explanation for this observation is that in the HEK-β2-AR cell line, the 

majority of the β2-AR receptors reside in a conformation that has low affinity for [3H]-

MFen.  Therefore, the data suggest that, in these saturation binding studies, [3H]-MFen  

probes a subset of the conformations probed by [3H]-CGP-12177.  In the binding 

experiments, the low affinity binding is absent.  This is consistent with the results from 

the docking studies in which the difference in MolDockScore values was very small in 

docking simulations between (S)-CGP-12177 and either β2-AR-In (Fig.6a), and β2-AR-

Ac models, -116.60 kJ/mol and -115.82 kJ/mol, respectively, while the difference for 

MFen was relatively much larger (-136.98 kJ/mol vs. -132.53 kJ/mol).  Due to the high 

dissociation rate of agonists from low affinity sites, presumably, bound radioactivity 

dissociates during the washing in a filtration assay, and accordingly, the [3H]-agonist 

does not appear to easily recognize a low affinity binding site.  This is consistent with the 

Hill coefficients close to but slightly less than 1.0 for agonists inhibiting [3H]-MFen 

binding.  Interestingly, agonists also have high Hill coefficients when inhibiting [3H]-

CGP-12177 (see Supplemental Table T1).  Furthermore, GTP and GTPγS, which 

stabilize a low affinity agonist conformation, have very little effect on [3H]-CGP-12177 

binding, or on the ability of the fenoterol analogs to compete with [3H]-CGP-12177 

binding.  Together, these data indicate that [3H]-CGP-12177 binds preferably to and 

stabilizes the low affinity agonist conformation, without much overlap with the high 

affinity agonist conformation, the one to which [3H]-MFen presumably binds. 

The assumption that [3H]-MFen binds to a high affinity conformation of the β2-

AR is supported by the comparative Ki values determined using [3H]-MFen and [3H]-

CGP-12177 as the marker ligands.  For the Fen analogs and (R)-isoproterenol, which are 
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all full β2-AR agonists in the HEK-β2-AR cell line, each of the KiMFen values were 

considerably lower (i.e. higher affinity) than the corresponding KiCGP values, Table 1.  

The magnitude of the increase in binding affinity when using [3H]-MFen was, to a great 

extent, dependent upon the configuration at the β-OH carbon, with an R configuration 

producing a greater enhancement in the binding affinity when [3H]-MFen was the marker 

ligand.  (R,R')-Fen and (R,S')-Fen far prefer binding to the high affinity state probed by 

[3H]-MFen as the KiCGP/KiMFen ratios are 86-fold and 20-fold, respectively.  (S,R')-Fen 

and (S,S')-Fen have little preference between the two states as the KiCGP/KiMFen ratios are 

6-fold and 8-fold, respectively.  The opposite effect was observed with the two β-AR 

antagonists used in this study, propranolol and ICI-118-551, as the KiMFen values were 8-

fold and 4-fold higher than the corresponding KiCGP values, Table 1.  The apparent 

decrease in binding affinity when using [3H]-MFen suggests that the antagonists have a 

lower, but still significant affinity for the high affinity agonist conformation of the 

receptor.  For each of the agonists, the KiMFen values were consistent with ligand potency 

and there was a considerably better correlation between binding affinity and functional 

activity measured as EC50 values for stimulation of cAMP accumulation.  

The data from the thermodynamic studies also support the hypothesis that the 

binding studies using [3H]-MFen reflect ligand binding to a subset of the conformations 

probed by [3H]-CGP-12177.  The results indicate that the binding to the conformation 

probed by [3H]-MFen was entropy-driven for all of the competing ligands used in the 

thermodynamic section of the study, including the antagonists, Table 3.  In our previous 

studies using [3H]-CGP-12177, the binding of (S,S')-fenoterol to the β2-AR was found to 

be a purely enthalpy-driven process, the binding of (S,R')-fenoterol, (R)-isoproterenol 
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and rac-propranolol were enthalpy-entropy driven and the binding of (R,S')-fenoterol and 

(R,R')-fenoterol were purely entropy-driven, Table 3, Fig. 5. (Jozwiak et al., 2010a). In 

all, these results suggest that the thermodynamic properties obtained using [3H]-CGP-

12177 represent the sum total of multiple factors including unequal distributions of high 

and low affinity receptor conformations leading to a mixture of enthalpy and entropy 

driven processes.    

The hypothesis that [3H]-MFen can be used to explore an active, high affinity 

conformation of the β2-AR was tested using simulated receptor-ligand docking studies 

employing the 2rh1.pdb model {β2-AR-In} regarded as an inactive form of the receptor 

(Rasmussen et al., 2007) and the 3pog.pdb model {β2-AR-Ac} which is regarded as an 

active form of the receptor (Rasmussen et al., 2011).  The docking of [3H]-CGP-12177 

and [3H]-MFen in the β2-AR-In and β2-AR-Ac models confirmed a conserved binding 

mode proposed earlier for this group of molecules (Weis and Kobilka, 2008), with amino 

and β-hydroxy groups of both ligands trapped in the network of cross-interactions with 

Asp113 and Asn312 residues. Small differences in topological organization of ligand 

binding sites in the β2-AR-In and β2-AR-Ac models allows both MFen and CGP-12177 to 

adopt positions in which their aromatic ring systems may exercise optimized interactions 

with Ser203 ((S)-CGP-12177 and (R,R')-MFen) and Ser207 ((R,R')-MFen) of TM5, Fig. 6. 

The comparison of the MolDockScore functions generated during docking simulations 

suggest that (R,R')-MFen should preferentially bind to the β2-AR-Ac model while (S)-

CGP-12177 would bind to both the β2-AR-In and β2-AR-Ac models, with a slight 

preference for the inactive conformation of the receptor.  This is consistent with the 

relative Ki values obtained in the saturation binding studies utilizing the two probes.  
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 In conclusion, the results of this study indicate that [3H]-MFen can be used as a 

probe in the determination of binding affinities to the β2-AR.  The data also indicate that 

this compound binds to a high affinity active conformation of the receptor and allows for 

the characterization of selective β2-AR agonists.  [3H]-MFen may also be useful in the 

experimental verification of predictions made using the β2-AR-Ac model and for QSAR 

studies aimed at the development of highly selective and active β2-AR agonists.  
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Legends for Figures 

Figure 1.  The structures of the compounds used in this study, where only the (R,R') 

configurations of the stereoisomers are presented. 

Figure 2.  Saturation binding of [3H]-MFen to membranes obtained from HEK-β2-AR 

cells, showing non-specific, specific and total binding.  Non-specific binding was 

determined in the presence of 10 μM propranolol.  Data shown is from a single 

experiment conducted in triplicate.  This experiment was repeated two additional times 

with similar results. 

Figure 3. Dissociation (A) and association (B) kinetics of [3H]-MFen binding to 

membranes obtained from HEK-β2-AR cells, where:  solid lines represent a 2-site model 

and dashed lines represent best fit to a one-site binding model.   

Figure 4.  Effect of GTP and GTPγS on [3H]-MFen binding.  Binding was conducted to 

HEK-β2-AR cell membranes as described above in the presence of various 

concentrations of GTP, GTPγS, and propranolol as a standard.  Values shown are average 

± SD of three experiments conducted in triplicate.   

Figure 5. Scatter plot of  versus  values for the compounds used in the 

thermodynamic studies where the values denoted by � were previously determined using 

[3H]-CGP-12177 as the marker ligand (Jozwiak et al., 2010b) and the values denoted by 

� were determined in this study using [3H]-MFen as the marker ligand. 

Figure 6.  Molecular models of a) (S)-CGP-12177 interacting with an inactive model of 

β2-AR (2RH1.pdb, β2-AR-In) and b) (R,R')-MFen interacting with an active model of β2-

AR (3POG.pdb, β2-AR-Ac) obtained during docking simulations. For clarity of both 

figures, TM1, TM2 and extracellular loop2 were hidden and remaining transmembrane 

oSTΔ− oHΔ
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segments are color coded, TM3 –red; TM4 – green; TM5 – magenta; TM6 – yellow and 

TM7 – blue. Only the residues forming hydrogen bonds (shown as green arrows) with a 

ligand molecule are shown explicitly. All aliphatic hydrogen atoms are hidden. 
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 Receptor Binding  cAMP 

Stimulation 
Compound 

[3H]-CGP-12177a [3H]-MFen 
KiCGP/ 
KiMFen 

 

 Ki (nM) HS Ki (nM) HS  EC50(nM) 
(R)-
Isoproterenol 192 ± 24 0.85 ± 0.1 2.44 ± 0.28 0.78 ± 0.1 79 

0.2 

Propranolol 0.46 ± 0.06 1.24 ± 0.1 3.69 ± 1.36 1.88 ± 0.3 0.1 NA 
ICI-118,551 0.60 ±  0.3 1.34 ± 0.4 2.52 ± 0.29 2.01 ± 0.2 0.2 NA 
(R,R')-Fen 345 ± 33.8 0.92 ± 0.1 4.00 ± 0.75 0.76 ± 0.1 86 0.3 
(R,S')-Fen 3,695 ± 245 0.81 ± 0.1 183 ± 30.0 0.97 ± 0.1 20 4.7 

(S,R')-Fen 
10,330 ± 
1,405 1.02 ± 0.1 1,827 ± 117 0.92 ± 0.1 6 

8.5 

(S,S')-Fen 
27,749 ± 
6,816 ND 3,370 ± 210 1.34 ± 0.2 8 

580.2 

(R,R')-MFen 473 ± 35 0.98 ± 0.1 4.09 ± 0.55 0.80 ± 0.1 116 0.3 
(R,S')-MFen 1,929 ± 135 1.01 ± 0.1 26.1 ± 2.44 1.00 ± 0.1 74 2 
(S,R')-MFen ,268 ± 508 1.28 ± 0.1 91.3 ± 32.01 0.86 ± 0.1 58 7.2 

(S,S')-MFen 
5,880 ± 
2,722 2.30 ± 0.3 2,870 ± 234 1.68 ± 0.5 6 

33.2 

(R,R')-PhFen ,864 ± 248 0.97 ± 0.02 26.6 ± 1.49 0.79 ± 0.1 70 ND 
(R,R')-1-
NapFen 41 ± 38 1.06 ± 0.2 3.66 ± 0.42 0.88 ± 0.2 66 

12.5 

(R,S')-1-
NapFen 341 ± 32 0.93 ± 0.01 3.67 ± 1.32 0.86 ± 0.1 93 

2.7 

(S,R')-1-
NapFen 1,783 ± 208 1.06 ± 0.1 57.6 ± 4.73 

0.91 ± 
0.04 31 

66.7 

(S,S')-1-
NapFen 2,535 ± 295 1.12 ± 0.1 615 ± 85.2 

0.99 ± 
0.04 4 

29.7 

(R,R')-2-
NapFen 404  ± 97 0.97 ± 0.04 4.52 ± 1.14 0.83 ± 0.1 89 

0.4 

(R,S')-2-
NapFen 509  ± 5 1.06 ± 0.1 134 ± 10.7 1.04 ± 0.2 4 

7.6 

(R,R')-
NH2Fen 2,933 ± 238 1.01 ± 0.1 42.8 ± 11.3 

0.83 ± 
0.05 69 

2.42 

(R,S')-
NH2Fen 7,937 ± 561 1.07 ± 0.03 187 ± 42.6 

0.91 ± 
0.03 42 

ND 

(S,R')-
NH2Fen 

23,125 ± 
2,093  ND  463 ± 103 1.00 ± 0.1 50 

ND 

(R,R')-EtFen 1,273  ± 81 1.01 ± 0.01 39.1 ± 5.38 0.93 ± 0.1 33 2.8 
(R,S')-EtFen 5,758 ± 833 2.07 ± 0.4 294 ± 45.1 0.87 ± 0.2 20 16.6 
(R,R')-MNF 277 ± 11 1.07 ± 0.09 13.3 ± 2.72 0.86 ± 0.1 21 3.9 
(R,S')-MNF 317 ± 6 1.06 ± 0.02 12.7 ± 1.83 0.90 ± 0.2 25 4 

 

Table 1. The β2-adrenoreceptor (β2-AR) binding affinities (Ki) determined using either 

[3H]-4-methoxyfenoterol (KiMFen) or [3H]-CGP-12177 (KiCGP) as the marker ligand and 
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membranes obtained from HEK-β2-AR cells and the induced cAMP accumulation in 

HEK-β2-AR cells presented as EC50 values. The Ki values were determined at 25°C and 

are presented as ± SEM with n ≥ 3, see text for experimental details.  ND = Not 

Determined.  For binding experiments this was because binding affinities were too low to 

obtain Hill coefficients.   b data obtained from  Jozwiak et al., 2010a; Jozwiak et al., 

2010b; Toll et al., 2011)  
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Table 2.  Effect of GTP on agonist inhibition of [3H]-CGP-12177 binding.  Binding 

was conducted as described above in the presence and absence of 10 μM GTP. 

 

  

Compound -GTP +GTP 

propranolol 2.27 ± 0.78 2.03 ± 1.26 

R,R’-fenoterol 560 ± 116 553 ± 151 

R,R’-methoxyfenoterol 411 ±  229 220 ± 111 
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Table 3. The influence of temperature on the binding to the β2-AR of the antagonist 

propranolol and the agonists isoproterenol, (R,R')-Fen, (R,S')-Fen, (S,R')-Fen and (S,S')-

Fen using [3H](R,R')-MFen as the maker ligand where n = 3.  All values are Ki except for 

(R,R’)-MFen which are Kd values derived from saturation analysis.  These Kd values 

were used to calculate Ki for the remaining compounds, as described in Materials and 

Methods.  See text for experimental procedures. 

 4°C 25°C 37°C 

Compound Ki (nM) Ki (nM) Ki (nM) 

(R,R’)-MFen 5.68 ± 1.35 nM 4.88 ± 0.41 nM 3.66 ± 0.82 nM 

Propranolol 4.74 ± 1.94 3.69 ± 1.36 3.66 ± 0.66 

Isoproterenol 4.40 ± 0.59 2.44 ± 0.28 1.89 ± 0.53 

(R,R')-Fen 7.97 ± 3.79 4.00 ± 0.75 2.59 ± 0.20 

(R,S')-Fen 187.40 ± 35 183 ± 30 83.00 ± 3.22 

(S,R')-Fen 3,338 ± 764 1,827 ± 117 1,798.50 ± 198 

(S,S')-Fen 3,800 ± 482 3,370 ± 210 1,639 ± 340 
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Table 4.  Thermodynamic parameters of binding to the β2-AR, using [3H]-MFen as the 

marker ligand as compared to the previously reported parameters obtained using [3H]-

CGP-12177 as the marker ligand (Jozwiak et al., 2010a). Distance parameter is the 

Euclidean distance describing a shift of the ( oHΔ ; 
oSTΔ− ) point, determined in the [3H]-

MFen experiment with respect to the [3H]-CGP-12177 derived point, as illustrated in Fig. 

4. 

 

 
oHΔ MFen 

[kJ/mol] 

oHΔ  
CGP 

[kJ/mol] 

oSTΔ− MFen 
[kJ/mol] 

oSTΔ−
CGP 

[kJ/mol] 

oGΔ  MFen 
[kJ/mol] 

oGΔ  CGP 
[kJ/mol] 

distance 
[kJ/mol] 

Propranolol 
+5.98 

(±0.04) 
–4.5 

-54.32 
(±0.04) 

–48.95 
-48.3 

(±0.06) 
–53.5 11.8 

(R)-
Isoproterenol 

+18.4 
(±0.13) 

–18.03 
-67.9 

(±0.13) 
–19.5 

-49.5 
(±0.2) 

–37.6 60.6 

(R,R')-Fen 
+24.1 

(±0.52) 
0 

-72.6 
(±1.4) 

–38.8 
-48.5 
(±1.5) 

–38.8 41.5 

(R,S')-Fen 
+15.3 
(±3.0) 

+7.1 
-54.9 
(±1.2) 

–40.0 
-39.6 
(±3.2) 

–31.1 17.0 

(S,R')-Fen 
+18.4 

(±0.13) 
–23.0 

-47.0 
(±1.1) 

–8.1 
-32.7 
(±1.6) 

–31.1 53.9 

(S,S')-Fen 
+16.2 
(±2.2) 

–35.8 
-48.5 
(±2.2) 

+6.3 
-32.2 
(±3.1) 

–29.5 75.6 
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Thermodynamics and Docking of Agonists to the β2-Adrenoceptor Determined 
Using [3H]-(R,R’)-4-Methoxyfenoterol as the Marker Ligand 

Lawrence Toll, Karolina Pajak, Anita Plazinska, Krzysztof Jozwiak, Lucita Jimenez, 
Joseph A. Kozocas, Mary J. Tanga, James E. Bupp, Irving W. Wainer, 

 

 

Supplemental Figure S1.  Inhibition curves generated using [3H]M-Fen.  Each 

experiment was conducted in triplicate.  Data was analyzed using GraphPad Prism. 

  



Supplemental Figure S1 
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Supplemental Figure S2.  Figure of correlation matrix for pKi values determined with 
[3H]-CGP-12177 (pKi CGP), [3H]-MFen (pKi MFen) and pEC50 values in cAMP 
accumulation experiments (pEC50 cAMP). 
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Matrix of correlation coefficients. 
 

R2 values pKi_MFen pKi_CGP pEC50_cAMP 

pKi_MFen 1 0.7899 0.5532 

pKi_CGP  1 0.4143 

pEC50_cAMP   1 
 
 



 


