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Abstract 

Previous studies have shown that the transcription factor signal transducer and activator of 

transcription-3 (STAT3) in podocytes plays an important role in progression of HIV nephropathy 

and in collapsing forms of glomerulonephritis.  Here we have observed that application of 100 

nM angiotensin II (Ang II) to cultured podocytes for 6-24 hr causes a marked increase in the 

phosphorylation of STAT3 on tyrosine Y705 but has no effect on phosphorylation at serine 

S727. By contrast, Ang II treatment for short periods (20-60 min) caused a small but consistent 

suppression of tyrosine phosphylation of STAT3.  A similar biphasic effect was seen after 

treatment with the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol (OAG), an agent that 

causes activation of Ca
2+

-permeable anonical transient receptor potential-6 (TRPC6) channels in 

podocytes.  The stimulatory effects of Ang II on STAT3 phosphorylation were abolished by 

siRNA knockdown of TRPC6 and also by inhibitors of the Ca
2+

-dependent  downstream enzymes 

calcineurin and Ca
2+

-calmodulin-dependent protein kinase II (CaMKII).  The stimulatory effects 

of Ang II appear to be mediated by secretion and accumulation of an unknown factor into the 

surrounding medium, as they are no longer detected when medium is replaced every two 

hours, even if Ang II is continuously present. By contrast, the inhibitory effect of Ang II on STAT3 

phosphorylation persists with frequent medium changes.  Experiments with neutralizing and 

inhibitory antibodies suggest that the STAT3 stimulatory factor secreted from podocytes is not 

interleukin-6 (IL-6), but also suggest that this factor exerts its actions through a receptor system 

that requires glycoprotein 130 (gp130). 
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Introduction 

A subset of glomerular diseases including HIV-associated nephropathy (HIVAN), collapsing 

glomerulopathy and crescentic glomerulonephritis are characterized by de-differentiation, cell 

cycle dysregulation, and proliferation of podocytes (Schwimmer et al., 2003; Bariety et al., 

1998; Barisoni et al., 1999). In these diseases, podocytes detach from the glomerular basement 

membrane, cease to express proteins characteristic of their fully differentiated state, and 

inappropriately re-enter the cell cycle. The resulting proliferation of epithelial cells fills 

Bowman’s space resulting in collapse of the capillary tuft (Bariety et al., 1998; Barisoni et al., 

1999). Proliferative podocyte diseases are exacerbated by activation of STAT3 (Dai et al., 2013, 

Gu et al., 2013, Feng et al., 2009).  STAT3 is a widely-expressed cytoplasmic transcription factor 

engaged in signal transduction cascades, including those evoked by binding of IL-6 and related 

growth factors to their receptors.  Tyrosine phosphorylation of STAT3 at residue 705 causes it 

to homodimerize and translocate into the nucleus.  Additional phosphorylation at serine 727 

allows for full transcriptional activity (Wegenka et al., 1993; Schindler and Darnell, 1995). Active 

STAT3 regulates the expression of genes involved in cell proliferation, apoptosis, and 

inflammation (Darnell et al., 1994; Darnell, 1997; Aaronson et al., 2002). The degree of STAT3 

activation correlates with glomerular cell proliferation in glomerulonephritis (Arakwa et al., 

2008). In mice, podocyte-specific deletion of STAT3 reduces the glomerular and 

tubulointerstitial pathology seen in transgenic models of HIVAN (Feng et al., 2009) and in a 

mouse model of crescentic glomerulonephritis (Dai et al., 2013).    

TRPC6 channels have also been implicated in the pathophysiology of glomerular 

diseases (Dryer and Reiser, 2010; Reiser et al., 2005). TRPC6 are Ca
2+

–permeable cationic 
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channels that become active in phospholipase C (PLC) signaling cascades that cause breakdown 

of phosphoinositol bisphosphate (PIP2) into diacylglycerol (DAG) and inositol triphosphate (IP3) 

(Dryer and Reiser, 2010). TRPC6 channels can also be activated by mechanical stimuli in 

podocytes (Anderson et al., 2013), and their expression on the podocyte cell surface is 

increased by oxidative stress (Kim et al., 2010, 2012; Liu et al., 2013). Activation of TRPC6 

channels leads to the influx of Ca
2+

 and other cations, which in turn causes activation of a 

variety of downstream effectors including calcineurin, RhoA, and Ca
2+

-calmodulin–dependent 

protein kinase II (CaMKII) (Schlöndorff et al., 2009; Tian et al., 2010; Nijenhuis et al., 2011). 

TRPC6 channels expressed in podocyte foot processes occur in a complex with nephrin, podocin 

and other slit diaphragm molecules (Dryer and Reiser, 2010; Reiser et al., 2005). However, 

TRPC6 channels are also expressed in other parts of the cell, including major processes and the 

cell body, and the gating of TRPC6 in those locations may be regulated somewhat differently 

(Anderson et al., 2013; Dryer and Reiser, 2010).   

Gain-of-function mutations in the gene encoding TRPC6 channels result in focal 

segmental glomerulosclerosis (FSGS) in humans, and podocyte-specific over-expression of 

mutant or wild type TRPC6 channels in transgenic mice results in proteinuria, foot process 

effacement, and glomerulosclerosis (Krall et al., 2010).  Moreover, podocyte TRPC6 channel 

expression is increased in certain acquired proteinuric diseases such as membranous 

glomerulonephritis, FSGS, and minimal change disease, as well as in related rodent models of 

these diseases (Moller et al., 2007).  The endogenous TRPC6 channels of podocytes are 

activated by Ang II (Anderson et al., 2014), and this appears to play a role in glomerular 

pathology caused by sustained elevation of Ang II (Ruster and Wolf, 2006; Eckel et al., 2011). 
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Previous studies suggest that Ang II contributes to podocyte injury in a transgenic mouse model 

of HIVAN (Ideura et al., 2007), and blockade of Ang II receptors reduces the progression of 

HIVAN in these mice (Hiramatsu et al, 2007).  Given these observations, we hypothesized that 

Ang II might activate STAT3 in podocytes as a result of its signaling through TRPC6 channels.  

We now report that several hours of continuous exposure of cultured podocytes to Ang II, or a 

membrane-permeable DAG analog, results in increased STAT3 phosphorylation at tyrosine 705.  

Ang II-evoked STAT3 activation requires TRPC6 channels and their downstream effectors 

including calcineurin and CaMKII.  However, Ang II-evoked STAT3 activation in podocytes 

appears to be an indirect process mediated by secretion or shedding of an autocrine/paracrine 

factor that can activate STAT3 signaling owing to activation of a receptor complex containing 

gp130.  The identity of this secreted factor is not known, but it cannot be absorbed by 

antibodies that neutralize IL-6, suggesting that this effect is mediated by secretion of some 

other cytokine.       
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Materials & Methods 

Cell culture protocols, transfection, and chemicals.  Cell culture protocols have been described 

previously (Kim et al., 2008, 2009). Mouse podocyte cell lines (MPC-5 cells) were obtained from 

Dr. Peter Mundel of Harvard Medical School and cultured in RPMI-1640 medium with 10% fetal 

bovine serum (FBS), 1% penicillin-streptomycin, and 0.2% plasmocin. Undifferentiated cells 

were propagated in the presence of recombinant mouse interferon-γ at 33°C. In order to 

differentiate cells, mouse interferon was removed and cells were incubated at 37 °C for two 

weeks. Differentiated podocytes were treated with 100 nM Ang II or 100 µM OAG for various 

lengths of time.  In some experiments, this was done in the presence of inhibitors, or after 

siRNA knockdown. For this, a specific siRNA directed against TRPC6, as well as non-targeted 

siRNAs for use in control experiments, was obtained from Santa Cruz Biotechnology (Santa 

Cruz, CA) and transfected into podocytes using Lipofectamine™ (Invitrogen) in serum-reduced 

medium according to the manufacturer’s directions and as previously described (Kim et al., 

2011; Anderson et al., 2013; Roshanravan and Dryer, 2014). Analysis was carried out 48 hr after 

transfection with siRNA targeting TRPC6 or control siRNA.  Ang II, OAG, and rapamycin were 

obtained from Sigma (St. Louis, MO).  SKF-96365 was obtained from EMD Millipore (Billerica, 

MA). Cyclosporine, KN-93, and AG490 were from Tocris Bioscience (Minneapolis, MN). 

Recombinant mouse IL-6 was obtained from BioLegend (San Diego, CA). Chelerythrine was 

purchased from RBI, (Natick, MA). Anti-gp130 and anti-IL-6 neutralizing antibodies were from 

R&D Systems and were used at concentrations that produce maximum inhibition based on data 

supplied by the manufacturer (Minneapolis, MN). 
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Immunoblot analysis.  These were carried out by standard methods as described previously 

(Kim et al., 2010). Briefly, prior to lysis, podocytes were rinsed with ice-cold phosphate buffered 

saline (PBS). Total lysate was prepared using protein lysis buffer M-PER (Thermo Scientific) and 

centrifuged at 12,500 g for 10 min at 4°C. Equal amount of samples were separated on 10% 

SDS– PAGE. The gels were then blotted onto nitrocellulose membrane and blocked with 5% 

non-fat dry milk in Tris-buffered saline containing 0.05% Tween-20, pH 7.6 at 4 °C for 4 hr. The 

membrane was probed with a 1:1,000 dilution one of the following primary antibodies: anti-

STAT3 (Cell Signaling Technology, Danvers MA); anti-phospho-STAT3 Y705 or anti-phospho-

STAT3 S727 (GeneTex, Irvine, CA); anti phospho-mTOR, anti-mTOR, or anti-β-actin (Cell 

Signaling Technology); and anti-nephrin (Abcam, Cambridge, MA). The membranes were then 

probed with a 1:10,000 dilution of corresponding HRP-conjugated secondary antibody (Cell 

Signaling Technology). Signals were visualized using chemiluminescence from Thermo Scientific. 

Densitometry analysis was performed using Image J (Ver. 1.46). The signals obtained for each 

protein were normalized to β-actin and plotted as mean ± SEM for at least three independent 

experiments.  

 

Conditioned medium and IL-6 or gp130 neutralization. Podocytes were treated with RPMI 

medium containing 100 nM Ang II or with control RPMI medium for 8 hr. In one set of cells 

these media were left undisturbed for the entire 8 hr, so as to allow any secreted factors to 

accumulate in the media.  In another set the two types of media were replaced at 2 hr intervals 

during the 8 hr duration of the experiment. After 8 hr, cells were lysed and STAT3 activation 

was measured by immunoblot. In another set of experiments, podocytes were treated with 100 
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nM Ang II for 24 hr in the presence or absence of IL-6 or gp130 neutralizing antibodies (R&D 

Systems, Minneapolis, MN) and STAT3 phosphorylation was measured by immunoblot.   
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Results 

In a recent study we demonstrated that Ang II evokes concentration-dependent activation of 

podocyte TRPC6 channels with maximal responses occurring at 100 nM (Anderson et al., 2014). 

In the initial experiments of this study, we treated differentiated cells of an immortalized 

mouse podocyte cell line with 100 nM Ang II for various periods of time. We then quantified 

STAT3 phosphorylation at tyrosine-705 and serine-727 by immunoblot using antibodies specific 

for the phosphorylation state of the protein (Fig. 1).  Ang II had no discernible consistent effect 

on STAT3 phosphorylation at serine-727 at any time point.  It should be noted that oladaic acid 

can increase phosphorylation at serine-727 (supplemental figure S1).  It also had no effect on 

total levels of STAT3 (measured using an antibody insensitive to phosphorylation state). 

However, Ang II consistently evoked a biphasic effect on phosphorylation of tyrosine-705, and 

the rest of the experiments in this study focused on modification at that residue. Hereafter we 

will refer to this phenomenon simply as “STAT3 phosphorylation”. We observed a small but 

quite reproducible reduction in STAT3 phosphorylation at early time points, after 20-60 min of 

continuous exposure to Ang II.  With longer exposures (≥6 hr), we observed a marked increase 

in STAT3 phosphorylation that occurred with some variation from experiment to experiment, 

but which was generally maximal after 12-24 hr of continuous exposure to Ang II (Fig. 1).  There 

are a variety of transduction pathways whereby growth factors signal to STAT3.  One of these is 

through the mammalian target of rapamycin (mTOR) pathway (Yokogami et al., 2000).  In 

podocytes we observed that Ang II also evoked an increase in serine phosphorylation of mTOR, 

but this response was monophasic and was easily seen with as little as 20 min exposure to Ang 

II (Fig. 2).  In these experiments we also noted that Ang II treatment for 20 min to 24 hr had no 
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consistent effect on total nephrin expression, indicating that the podocytes were well 

differentiated and could survive sustained Ang II treatment (Fig. 2).   

In order to address whether TRPC6 channels might be involved in the response to Ang II, 

we treated podocytes with 100 µM OAG, a membrane-permeable analog of DAG that evokes 

robust activation of TRPC6 channels in podocytes (Anderson et al., 2013; Kim et al., 2013).  OAG 

evoked the same biphasic response as Ang II. Specifically we observed a small decrease in 

STAT3 phosphorylation with 40-60 min of OAG exposure, and this was followed by a robust 

increase in STAT3 phosphorylation that was maximal with 12-24 hr of exposure, but no effect 

on total STAT3 (Fig. 3).  Consistent with this, we observed that transient siRNA knockdown of 

TRPC6 expression in podocytes eliminated the increase in STAT3 phosphorylation evoked by 24 

hr exposure to either 100 nM Ang II or 100 μM OAG compared to cells treated with a non-

coding siRNA (Fig. 4). We also reduced Ang II-evoked STAT3 phosphorylation by treating cells 

with 10 μM SKF-96365, a non-specific inhibitor of most TRP superfamily channels including 

TRPC6 (supplemental figure S2). These data suggest that Ca
2+

 influx through TRPC6 is part of the 

pathway leading from AT1 receptors to STAT3. In support of this theory, we also observed that 

Ang II-evoked phosphorylation of STAT3 was completely blocked by treating cells with 

cyclosporine (20 µM) to inhibit calcineurin, or with the CaM kinase II inhibitor KN-93 (10 µM) 

(Fig. 5A, B). This response was also blocked by the janus kinase (JAK) inhibitor AG490 (20 µM) 

(Fig. 5A, B). By contrast, we observed that treatment with the pan-protein kinase C inhibitor 

chelerythrine (1 µM) had no effect on Ang II-evoked STAT3 phosphorylation, even though DAG 

is produced during Ang II signaling.  In addition, the mTOR inhibitor rapamycin (10 nM) had no 
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effect on Ang II-evoked STAT3 phosphorylation (Fig. 5B) even though mTOR phosphorylation is 

increased in podocytes by Ang II (Fig. 2).  

We were surprised by the slow time course of Ang II-evoked STAT3 phosphorylation and 

also by the biphasic effect. In several other cell types Ang II has been reported to stimulate 

secretion of pro-inflammatory cytokines such as IL-6, which activate STAT3 signaling pathways 

(Sano et al., 2000; Skurk et al., 2004). Therefore we considered the possibility that Ang II 

stimulates the secretion or shedding of some other factor that accumulates in the medium over 

time. To test this hypothesis, we carried out a two-factor experiment on STAT3 phosphorylation 

in which podocytes were cultured for 8 hr (Fig. 6). The first independent variable was whether 

or not 100 nM Ang II was present. The second independent variable was whether or not the 

medium was changed during the 8 hr stimulation period. In one group, the medium was 

replaced every two hours in order to prevent accumulation of any secreted factors. In the other 

group, the medium was undisturbed for the entire 8 hr.  Ang II was always present in the 

treated cells, even in the group in which the medium was changed. We observed that Ang II 

was able to evoke robust STAT3 activation only when the medium was undisturbed. By 

contrast, when medium was changed every 2 hr, continuous exposure to Ang II actually caused 

a reduction of STAT3 phosphorylation. From this we conclude that Ang II stimulates the 

secretion or shedding of some factor into the medium that is capable of activating STAT3 

signaling pathways. The slower onset of STAT3 activation could then reflect time required for 

sufficient amounts of this material to accumulate in surrounding medium. A similar pattern was 

seen in response to 100 µm OAG (supplemental figure S3). Independent of this effect, Ang II 

and OAG appear to cause a modest suppression of STAT3 signaling that is more significant at 
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earlier time points, or if secreted factors are not allowed to accumulate (Fig. 6). Because this 

effect persists with medium changes, we believe that it is a direct effect of Ang II. 

IL-6 was an attractive candidate for the secreted factor, since Ang II has been shown to 

stimulate its secretion from other cell types (Sano et al., 2000; Skurk et al. 2004). We observed 

that 20 ng/ml of IL-6 evokes a robust activation of STAT3 in podocytes (Fig. 7A, left).  This effect 

was not seen in the presence of a commercially-available IL-6-neutralizing antibody (1 µg/ml) to 

the culture medium (Fig. 7A, right).  However, adding this IL-6–neutralizing antibody to culture 

media had no effect on STAT3 activation evoked by 5-24 hr of exposure to Ang II (Fig. 7B). This 

indicates that Ang II is stimulating secretion or shedding of some other factor capable of 

activating the STAT3 pathway. Nevertheless, this secreted factor acts on receptors similar to 

those used by IL-6, as responses require gp130, an essential co-receptor in signaling by IL-6 and 

several other cytokines (Taga et al., 1997; Fakuda et al., 1996). Specifically, the effects of 24-hr 

exposure to Ang II were inhibited by a function-blocking antibody against gp130 (2 µg/ml) (Fig. 

7C). In addition, we observed that IL-6 activation of STAT3 in podocytes persists in the presence 

of inhibitors of calcineurin, CaMKII, and TRPC6 (data not shown). This suggests that TRPC6 is 

required for processes upstream of the gp130 activation, e.g. synthesis, secretion, and/or 

shedding of this unknown factor.           
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Discussion 

The main result of this study is that activation of TRPC6 channels by Ang II or OAG can stimulate 

secretion of an unknown STAT3-activating factor from mouse podocytes. The stimulatory 

effects of this factor overcome a small but direct effect of Ang II to suppress tyrosine 

phosphorylation of STAT3.  Secretion of cytokines or growth factors is a novel output of TRPC6 

signaling in podocytes, and one that may be of considerable interest in the context of 

pathophysiology.  

Previous work in podocytes has identified three biochemically distinct classes of stimuli 

that cause TRPC6 channels to become active: canonical lipid signals such as DAG generated 

during G protein signaling, for example AT1 receptors for Ang II (Anderson et al., 2014); 

mechanical stimuli, which appear to act directly on the channel complex and which proceed 

independent of any G protein signaling in these cells (Anderson et al., 2013); and oxidative 

effects caused by agents or treatments that increase the local concentration of reactive oxygen 

species (ROS) (Kim et al., 2012, 2013; Liu et al., 2013) and which increase steady-state surface 

expression of TRPC6 channels in podocytes.  These stimuli can produce additive effects on total 

TRPC6 activation, and we have presented evidence that ROS generated by NADPH oxidases play 

an important role in mobilization of TRPC6 channels in response to circulating and locally 

produced factors such as Ang II (Anderson et al., 2014).  

All three classes of stimuli are likely to be engaged in podocytes during inflammatory 

glomerular diseases. For example, there is evidence of marked oxidative stress in nephrotoxic 

serum models of mouse glomerulonephritis, and in particular marked up-regulation of NADPH 

oxidase (NOX2) and increased generation of superoxide free radicals (Kinoshita et al, 2011). 
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Interestingly, these effects were reduced by AT1 antagonists which have long been known to 

reduce histopathological changes and proteinuria in this model (Suzuki et al., 1998; Mii et al., 

2009; Aki et al., 2010).  In addition there is an increase in glomerular intracapillary pressure in 

these diseases (Maddox et al., 1975; Brenner, 1978) which may lead to increased mechanical 

stimulation of podocytes (Endlich and Endlich, 2006). The synergistic effects of these stimuli on 

TRPC6, if sustained, could provide a mechanism for secretion of pro-inflammatory cytokines. 

In other cell types, the secretion of cytokines proceeds by variety of classical and non-

classical pathways (Stow et al., 2009). For instance IL-6  and tumor necrosis factor-α (TNFα), are 

ultimately released by a Ca
2+

-dependent exocytotic process (Bost et al., 1995; Kuhns et al., 

1998; Rao et al., 2013). Indeed, the degranulation of mast cells evoked by crosslinking of the 

high affinity IgE receptor appears to be mediated by channels of the TRPC3/6/7 family 

(Sanchez-Miranda et al., 2010). It is possible that a similar process occurs in podocytes. Previous 

work has shown that all of the apparatus required for Ca
2+

-dependent exocytosis is present in 

podocytes, which express secretory vesicles, Rab3A, synaptotagmins, synaptobrevins, and 

synaptophysins (Rastaldi et al., 2003, 2006). It bears noting, however, that voltage-activated 

Ca
2+

 channels are not present in podocytes, and transient receptor potential family channels 

such as TRPC6 must therefore carry most or all of the Ca
2+

 influx required to activate this mode 

of secretion. It is also possible that Ca
2+

 influx stimulates ectodomain shedding of molecules 

that are in some way able to drive or modulate pathways that feed into STAT3. For example, 

TNFα and macrophage colony-stimulating factor-1 (M-CSF) are secreted by Ca
2+

-dependent 

cleavage of membrane-spanning precursor proteins (Massague and Pandiella, 1993; Le Gall et 

al., 2009). In this regard, monocyte chemoattractant protein-1 (MCP-1), M-CSF, TNFα, and 
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certain EGF receptor ligands are among the cytokines capable of causing activation of STAT3 

(Darnell et al., 1994; Yu et al., 2009; Fitzgerald et al., 2008). Moreover MCP-1 and TNFα are 

known to cause changes in podocyte function, leading to increases in albumin permeability of 

the glomerular filtration barrier (Matsui and Meldrum, 2012; Fornoni et al., 2008). 

These data therefore suggest a model in which sustained TRPC6 activation in podocytes 

contributes to glomerular inflammation by inducing the secretion of a cytokine (or even 

multiple cytokines).  These cytokines could act in an autocrine and paracrine manner to 

regulate gene expression or other aspects of podocyte cell biology, and they could conceivably 

cause changes in the behavior of other neighboring cell types, for example parietal cells 

(Migliorini et al., 2013). The resulting changes may be adaptive in the short run, but over time it 

is possible that they compromise glomerular function and lead to dysregulation. The secreted 

factor activates STAT3 signaling by means of a receptor that contains gp130. The role of gp130 

signaling in podocytes is not well understood, and has only been studied in the role of IL-6 

signaling in this cell type (Kim and Park, 2013). In rat podocytes, IL-6 evokes an increase in 

expression of apoptotic markers that coincides with stimulation of p53 expression (Kim and 

Park, 2013), along with expression of inflammatory markers (lee et al., 2012). 

The consequences of STAT3 activation have not been comprehensively studied in 

podocytes, but it is known that proliferative podocyte diseases are reduced by podocyte-

specific deletion of STAT3 (Dai et al., 2013; Gu et al., 2013; Feng et al., 2009) and that inhibition 

of STAT3 can reduce proliferation of cultured podocytes (He et al. 2004). STAT3 may also 

function in podocytes to regulate expression of molecules such as vascular endothelial growth 

factor (VEGF) (Korgaonkar et al., 2008).  It is possible therefore that STAT3 activation in 
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podocytes is responsible for changes in both the differentiation state and in control of cell 

cycle, and that this can occur in response to stimuli that cause sustained activation of TRPC6.  

In summary, we have demonstrated that Ang II and a DAG analog simulate 

phosphorylation of the transcription factor STAT3 in podocytes. This effect requires TRPC6 

channels, and is mediated by secretion of an unidentified gp130 ligand into the medium. 
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Figure legends 

Figure 1.  Angiotensin II (Ang II) evokes tyrosine phosphorylation of STAT3.  A, Representative 

immunoblot showing biphasic changes in phosphorylation of STAT3 on tyrosine 705 (Y705) but 

not on serine 727 (S727). These blots were obtained using antibodies that selectively recognize 

the phosphorylated forms of STAT3.  The antibody against STAT3 Y705 often shows two bands, 

one of which is non-specific.  The lower molecular weight band (arrow) is Y705.  There is a 

discernible decrease in tyrosine phosphorylation at early time points (20-60 min of continuous 

exposure) followed by an increase in tyrosine phosphorylation at 6-24 h.  Quantitative 

densitometric analysis of3 repetitions of this experiment are shown in B (for Y705) and C (for 

S272). In this and subsequent figures, bar graphs denote mean ± s.e.m.  

 

Figure 2.  Ang II evokes a rapid increase in the phosphorylation of mTOR but has no effect on 

expression of nephrin in cultured podocytes. A, Representative immunoblot.  Quantitative 

analyses of 3 repetitions of this experiment are shown in B and C. 

 

Figure 3.  OAG, a membrane-permeable analog of diacylglycerol that activates TRPC6 channels, 

causes biphasic change in tyrosine phosphorylation of STAT3. A, Representative immunoblot. B, 

Densitometric analysis of 3 repetitions of this experiment. Note decrease in phosphorylation of 

Y705 at 40 and 60 min, and sustained increase after 6-24 hours of continuous exposure to OAG.  

 

Figure 4.  Knockdown of TRPC6 channels eliminates Ang II-evoked increases in STAT3 

phosphorylation.  A, Immunoblot analysis of proteins extracted from podocytes exposed to 
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control siRNA or siRNAs that target TRPC6.  Ang II was applied for 24 hr. B, Densitometric 

analysis of 3 repetitions of this experiment.  

 

Figure 5.  Effects of various signaling inhibitors on STAT3 signaling in podocytes.  Inhibitors of 

CaMK II (KN-93), JAK (AG490) and calcineurin (cyclosporine) eliminate increases in STAT3 

phorphorylation evoked by 24-hr exposure to Ang II (A, B).  Inhibitors of protein kinase C 

(chelerythrine) and mTOR (rapamycin) have no effect (C, D). 

 

Figure 6.  Ang II-evoked stimulation of STAT3 signaling in podocytes requires secretion of an 

unknown factor into the medium.  In one group of cells (control or Ang II-treated, as indicated), 

media was changed every 2 hr (left). In another group of cells (control or Ang II-treated) the 

medium was undisturbed for the entire 8 hr duration of the experiment, so that anything 

secreted into the medium had time to accumulate (right).  Ang II treatment evoked a large 

activation when medium was undisturbed but actually caused a decrease in STAT3 

phospyhorylation when medium was changed every 2 hr.  A, shows a representative 

immunoblot and B shows densitometric analysis of three repetitions of this experiment. The 

suppression seen when medium is changed frequently corresponds to the suppression seen at 

early time points in Fig. 1.  

 

Figure 7.  Ang II-evoked signaling is not mediated by secretion of IL-6, but requires activation of 

receptors containing gp130.  A, An IL-6– neutralizing antibody is able to suppress STAT3 

phosphorylation evoked by IL-6.  B, Effects of Ang II persist in the presence of a neutralizing 
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antibody against IL-6. The neutralizing antibody has no effect by itself.  C, An antibody that 

blocks function of gp130 inhibits STAT3 signaling evoked by 24-hr exposure to 100 nM Ang II.   

 

Figure 8. A model of Ang II and STAT3 signaling in podocytes.  Ang II and mechanical stimuli 

causes activation of TRPC6 channels in podocytes through mechanisms described elsewhere 

(Anderson et al., 2013, 2014). The resulting Ca
2+

 influx causes activation of a variety of signaling 

pathways including calcineurin/NFAT and CaMKII, which results in secretion of an unknown 

cytokine or signaling molecule, possibly by exocytosis. The autocrine and paracrine actions of 

this factor cause activation of a receptor complex that includes gp130, resulting in tyrosine 

phosphorylation of STAT3. This transcription factor can then translocate into the nucleus and 

regulate gene expression.  TRPC6 channels can stimulate their own expression (Nijenhuis et al. 

2011) and thereby become self-sustaining. This could cause cytokine secretion to become 

chronic, resulting in global changes in glomerular function. Ang II also appears to produce a cell-

autonomous inhibitory effect on STAT3 signaling that is seen at early time points or when 

gp130 signaling is inhibited.   
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Supplemental Figure 1 (S1).  Increase in phosphorylation of STAT3 at serine-727 observed after treating 
podocytes with okadaic acid, an inhibitor of serine-threonine protein kinases.

Supplemental data for MOL #92536, MOUSA ABKHEZR AND STUART E. DRYER, Angiotensin II and TRPC6 activation 
stimulate release of a STAT3-activating factor from mouse podocytes.  
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Supplemental Figure 2 (S2).  Pan-TRP channel inhibitor SKF-96365 reduces Ang II-evoked STAT3 tyrosine 
phosphorylation in podocytes.
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Supplemental Figure 3 (S3).  Repeated medium changes eliminates STAT3 phosphorylation evoked by 8 hr exposure to 
OAG and uncovers an inhibitory effect.  


