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Abstract  

The adhesion family of G protein-coupled receptors (aGPCRs) comprises 33 human 

members. aGPCRs are characterized by their enormous size and complex modular 

structures. While the physiologic importance of many aGPCRs has been clearly 

demonstrated in recent years, the underlying molecular functions have only recently begun to 

be elucidated. In this minireview, we present an overview of our current knowledge on 

aGPCR activation and signal transduction with a focus on the latest findings regarding the 

interplay between ligand binding, mechanical force, and the tethered agonistic Stachel 

sequence, as well as implications on translational approaches that may derive from 

understanding aGPCR pharmacology. 
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Introduction  

G protein-coupled receptors (GPCRs) represent the largest superfamily of receptors 

in the human genome (Pierce et al., 2002). Based on phylogenetic comparison of their 

seven-transmembrane spanning (7TM) domain, GPCRs are classified into five families: 

Glutamate, Rhodopsin, Adhesion, Frizzled/Taste, and Secretin (Lagerström and Schiöth, 

2008). Their presence on every cell and responsiveness to diverse stimuli link GPCRs to a 

great variety of physiological processes.  

The 7TM domain with some phylogenetic relation to secretin-like receptors clearly 

groups adhesion GPCRs (aGPCRs) into the GPCR superfamily. The large extracellular 

N terminus of aGPCRs is not unique to this class, but is present in all members. A unique 

feature of the class is a juxtamembrane GPCR proteolysis site (GPS), within the highly 

conserved GAIN (GPCR autoproteolysis-inducing) domain), that facilitates autocatalytic 

processing such that the extracellular N-terminal fragment (NTF) and the 7TM/cytoplasmic 

C-terminal fragment (CTF) are non-covalently associated (Lin et al., 2004; Arac et al., 2012). 

While the NTF comprises most of the extracellular domain (ECD), the CTF is 

characteristically composed of a residual ECD, the 7TM domain, and the complete 

intracellular domain (ICD) (Fig. 1). Historically, orphan aGPCRs have been assigned 

numbers on discovery, which has led to a rather unstructured assembly of this receptor 

class. Upon the initiative of the Adhesion GPCR Consortium and the International Union of 

Basic and Clinical Pharmacology (IUPHAR), a new nomenclature was recently proposed 

(Hamann et al., 2015). The new names composed of ADGR, a letter, and a number will be 

presented alongside the old names with first use within this review. 

The NTF is responsible for the enormous size of most aGPCRs and presents 

characteristic modular protein domains. Many of the ~20 different protein domains found in 

aGPCR NTFs (e.g., cadherin, epidermal growth factor, immunoglobulin, leucine-rich repeat) 

can mediate contacts with cellular or extracellular matrix (ECM)-associated molecules. So 

far, about a dozen binding partners have been identified. Notably, these binding partners are 

structurally highly diverse and have been assigned to a relatively small number of aGPCRs, 

while the majority of aGPCRs remain orphan with respect to ligand binding (Hamann et al., 

2015). 

aGPCR family members facilitate cell adhesion, orientation, migration, and 

positioning in various organ systems, a concept that is based on in vivo data obtained in 

invertebrate and vertebrate models (Hamann et al., 2015). Studies in Caenorhabditis elegans 

and Drosophila melanogaster clearly indicate essential roles for the Latrophilin (ADGRL) 

homolog CIRL (Calcium- independent receptor of α- latrotoxin) and the CELSR (cadherin, 

EGF LAG seven-pass G-type receptors) (ADGRC) homolog Flamingo in planar cell and 

tissue polarity and in neuronal development. Studies in vertebrates unraveled roles of many 
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aGPCRs including ELTD1 (EGF, latrophilin, and seven transmembrane domain containing 1) 

(ADGRL4); CD97 (ADGRE5), EMR1 (EGF-like module-containing mucin-like hormone 

receptor-like 1) (ADGRE1), GPR124 (ADGRA2), CELSRs (ADGRCs), BAIs (brain-specific 

angiogenesis inhibitors) (ADGRBs), GPR56 (ADGRG1), GPR64 (ADGRG2), GPR126 

(ADGRG6), and GPR98/VLGR1 (very large GPCR 1) (ADGRV1) in various developmental 

processes, immunity, and tumor progression (Hamann et al., 2015). 

Despite their wide distribution and remarkable phenotypes associated with receptor 

dysfunction, aGPCRs remained ‘functional orphans’ for a long time (Hamann et al., 2015). 

Only recently have concepts emerged describing how these non-canonical GPCRs are 

activated. These models were discussed at the 2014 Lorentz Center Workshop on Exploring 

the biology of GPCRs - from in vitro to in vivo. 

 

In vitro pharmacology of aGPCRs 

Demonstration of G-protein coupling as one signaling mode of aGPCRs was a central 

issue in previous investigations. Early experiments showed that LPHN1 can be co-purified 

with Gαo (Lelianova et al., 1997) while stimulation with alpha-latrotoxin, a known LPHN1 

ligand, evokes neurotransmitter release in the presence of extracellular calcium in a 

phospholipase C-dependent manner (Rahman et al., 1999). Other indirect functional 

evidence came from second messenger assays (Mogha et al., 2013; Liebscher et al., 2014b 

Bohnekamp and Schöneberg, 2011; Gupte et al., 2012) and activated downstream 

components of G protein-signaling cascades (Iguchi et al., 2008; Yang et al., 2011; Giera et 

al., 2015; Ward et al., 2011; Bohnekamp and Schöneberg, 2011). 

Knock-down and overexpression of G proteins caused a depletion and increase, 

respectively, of second messenger accumulation (Bohnekamp and Schöneberg, 2011; 

Liebscher et al., 2014b), strongly supporting the concept of G protein/aGPCR interaction. 

Final proof of G protein-coupling was provided through [35S]GTPγS incorporation assays 

performed on GPR97 (ADGRG3) (Gupte et al., 2012) and GPR126 (Liebscher et al., 2014b) 

under basal and stimulated conditions. 

It is important to differentiate between binding partners and agonists for aGPCRs, as 

ligand-induced receptor activation has been demonstrated in only a few cases. For example, 

type III collagen can activate RhoA downstream of GPR56 (Luo et al., 2014) and type IV 

collagen can elevate cAMP via GPR126 (Paavola et al., 2014). A different ECM molecule, 

Laminin-211, appears to act in a more complex way on GPR126. Under static cell culture 

conditions, Laminin-211 inhibits cAMP accumulation, while dynamic conditions activate the 

Gs pathway (Petersen et al., 2015) (Fig. 2). 

Another intriguing observation on ligand-mediated aGPCR activation was reported by 

Luo and colleagues (Luo et al., 2014). Here, interaction between collagen III and GPR56 
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leads to the removal of the NTF followed by RhoA activation. This finding is consistent with 

earlier observations on other aGPCRs where NTF removal activates the receptor (Okajima et 

al., 2010; Paavola et al., 2011; Ward et al., 2011; Stephenson et al., 2013; Liebscher et al., 

2014b; Paavola et al., 2014). An activation scenario in which the release of the large ECD 

triggers receptor activation combines all proposed mechanisms. In this model, an abundant, 

but likely tissue-specific, ligand binds to the adhesive domains of the NTF, which then 

abrogates its inhibitory function, facilitated by a natural breakpoint at the cleavage site within 

the conserved GPS. However, the question remains whether this activation is due to the 

removal of an inhibitor and/or through the exposition of an agonist. The answer(s) to this 

question is key, as it will guide future approaches to externally activate or inactive these 

receptors. 

While the idea of an inhibitory NTF function has been widely discussed (Okajima et 

al., 2010; Paavola and Hall, 2012; Langenhan et al., 2013; Liebscher et al., 2013), examples 

among rhodopsin-like GPCRs provide a second model, in which a tethered agonist activates 

a GPCR upon NTF removal. Protease-activated receptors (PARs) are probably the best 

known example for this scenario (Vu et al., 1991a; Adams et al., 2011; Hollenberg et al., 

2014) (Fig. 2). Similarly, the deletion of the ECD of the (thyrotropin) TSH receptor was shown 

to lead to constitutive activity of the residual receptor, which was discussed to be either 

caused by the release of an activating or an inactivating fragment (Zhang et al., 1995; Zhang 

et al., 2000). However, they concluded that the release of an inhibitory element accounted for 

their observations. In vivo structure-function studies of the C. elegans latrophilin receptor 

LAT-1 initially suggested that the GPS motif can interact with the 7TM domain. lat-1 is a 

maternal gene and dynamically expressed during early embryonic development. Analysis of 

lat-1 null mutants showed that the receptor governs the establishment of tissue polarity 

across the developing embryo, and that loss of lat-1 function results in embryonic lethality 

(Langenhan et al., 2009). When receptor variants that lacked the 7TM domain but harbored 

an intact GPS motif, or alternatively contained a chimeric GPS motif but normal 7TM domain 

were expressed, neither receptor type was able to rescue the polarity defects of lat-1 

mutants individually. However, expression of both defective receptor fragments restored 

polarity, indicating that the GPS motif and 7TM domain cooperate during receptor activity 

(Prömel et al., 2012a). 

A recent study has now provided compelling evidence that the concept of a tethered 

peptide agonist is valid for aGPCRs (Liebscher et al., 2014b). Using GPR126 and GPR133 

(ADGRD1) mutants and receptor-derived synthetic peptide libraries, tethered agonists for 

these receptors were identified spanning 16 and 13 amino acids, respectively, between the 

natural GPS cleavage site and TM1 (Fig. 1). Referring to the protruding nature of this 

agonistic region after exposure, we termed this region the Stachel sequence (German word 
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for stinger). Due to the tethered nature of the agonist and its resulting 1:1 stoichiometry, high 

concentrations of the synthetic peptide are required to elicit an intracellular second 

messenger response. An estimated EC50 value of more than 400 µM was found to elicit Gs-

induced cAMP elevation in GPR126- and GPR133-overexpressing cells. In vivo, however, a 

peptide concentration of 100 µM was sufficient to suppress nervous system defects in 

gpr126 mutant zebrafish (Liebscher et al., 2014b). Even though high peptide concentrations 

were used to stimulate significant receptor activation, each peptide was highly specific for the 

aGPCR from which it originated. Future studies will focus on the discovery of agonists, 

antagonists, or inverse agonists that can bind aGPCRs with higher affinity and that can be 

easily diluted in physiologically inert solutions. This can further promote aGPCR studies in 

animal models and help to make aGPCRs feasible targets for pharmaceutical therapies. 

Starting points could be to optimize Stachel sequence-derived peptides or to identify small 

molecule agonists. The first and so far only successfully identified small molecule agonistic 

compound for an aGPCR is beclomethasone dipropionate for GPR97 (Gupte et al., 2012).  

Stachel-induced activation of aGPCRs follows rhodopsin-like GPCR kinetics. Label-

free analysis of dynamic mass redistribution (DMR) within the cell allows for real-time 

monitoring of agonist-induced intracellular signaling. An immediate DMR signal was 

observed for peptide-induced activation of GPR126, comparable to DMR signals induced by 

isoprenaline on endogenously expressed β adrenergic receptors (Liebscher et al., 2014b). 

Most GPCRs couple to more than one G-protein family, and aGPCRs are no 

exception. For example, GPR126 and GPR133 have been shown to interact with both Gs and 

Gi proteins (Liebscher et al., 2013; Mogha et al., 2013). Similarly, GPR64 interacts with Gs 

and Gq proteins (Kirchhoff et al., 2006), GPR56 can couple to Gq/11 (Little et al., 2004) as well 

as G12/13 (Iguchi et al., 2008), and VLGR1 can couple to Gi (Hu et al., 2014), Gq, and Gs 

proteins (Shin et al., 2013). While these studies measured basal G-protein signaling, it will be 

interesting to examine G protein-coupling specificities upon agonist activation. As aGPCRs 

interact with β-arrestin 2 (see below), biased signaling, as described for canonical GPCRs, is 

also very likely for aGPCRs and needs further elucidation. 

Classical GPCR signaling can be terminated by homologous (receptor-specific) 

desensitization or heterologous (via external stimuli) desensitization (Lohse, 1993). The 

result of both events is receptor internalization followed by either degradation or recycling. 

Homologous desensitization can be achieved through ubiquitination or phosphorylation of the 

receptor via second messenger kinases (e.g., protein kinase A and C (PKA, PKC)) or a 

distinct family of GPCR kinases (GRKs), the latter acting in concert with arrestins (Pierce et 

al., 2002). There are hints that aGPCRs follow these patterns of signal inactivation. A 

constitutively active GPR56 mutant enhances interactions with β-arrestin 2 and ubiquitination 

of the receptor (Paavola et al., 2011). Further, ligand-induced downregulation has been 
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demonstrated for CD97 in circulating leukocytes (Karpus et al., 2013). This downregulation of 

CD97 required shear stress and correlated with an increase in plasma levels of soluble 

CD97, suggesting that dissociation of the NTF triggers degradation of the CTF of the 

receptor. Whether this downregulation of CD97 is playing a role in aGPCR activation through 

revelation of the Stachel sequence remains to be examined. Another study shows that 

GPR56 is efficiently downregulated by stimulation with phorbol 12-myristate 13-acetate 

(PMA), a PKC activator (Little et al., 2004). These data provide evidence of aGPCR signal 

termination mechanisms comparable to rhodopsin-like GPCRs. Excitingly, the recently 

identified peptide agonists allow us to systematically investigate desensitization and 

downregulation kinetics of aGPCRs. 

 

In vivo mechanisms of aGPCR activation  

As noted in the minireview on ‘Model organisms in GPCR research’ (Langenhan et 

al., this issue), the first experiments suggesting that GPR126 can couple to G proteins 

derived from work in zebrafish. Addition of forskolin, an adenylyl cyclase activator, 

suppresses nervous system defects in gpr126 zebrafish mutants (Monk et al., 2009; Glenn 

and Talbot, 2013). Subsequent studies demonstrated that cAMP elevation could also 

suppress gpr126 zebrafish mutant ear defects (Geng et al., 2013) and mouse mutant defects 

(Mogha et al., 2013). Critically, these suggestive in vivo studies were complemented by in 

vitro approaches (Mogha et al., 2013; Liebscher et al., 2014b) clearly demonstrating the Gs-

coupling ability of GPR126. 

 Recent studies on GPR126 in zebrafish also shed light on the in vivo relevance of 

Stachel-mediated aGPCR activation. Liebscher et al. described a new zebrafish mutant in 

which two key amino acids in the Stachel domain are deleted. Critically, this mutant receptor 

is cleaved and traffics appropriately to the cell membrane, but the nervous system defect is 

identical to previously published strong loss-of-function mutants that lack the entire CTF 

(Liebscher et al., 2014b). Namely, Schwann cells (glial cells in the peripheral nervous 

system) cannot generate the myelin sheath. Thus, tethered agonist-mediated activation of 

GPR126 is essential for myelination in vivo. Interestingly, the GAIN domain crystal structures 

of other aGPCRs demonstrate that the tethered agonist is embedded between two beta-

sheets of the GAIN domain (Arac et al., 2012). This sequence is deeply buried and likely 

requires significant structural changes, perhaps mechanical removal of the NTF, to mediate 

aGPCR activation. At the Lorentz Center workshop in Leiden, a potential mechanism for 

mechanical NTF removal in vivo was proposed (Fig. 2). 

 During peripheral nerve development, Schwann cells synthesize and secrete ECM 

proteins that form a basal lamina. ECM proteins in the basal lamina include collagen IV and 

Laminin-211, known binding partners for GPR126 (Paavola et al., 2014; Petersen et al., 
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2015). Critically, during basal lamina maturation, Laminin-211 polymerizes and this is 

essential for proper Schwann cell development and myelination (McKee et al., 2012). 

Petersen et al. reasoned that Laminin-211 polymerization could facilitate GPR126-NTF 

removal, thereby exposing the tethered agonist to drive myelination. In line with this model, 

overexpression of wild-type but not non-polymerizing lama2 (the gene encoding the alpha 

chain of Laminin-211) could suppress myelin defects in gpr126 hypomorphic mutants. This, 

coupled with the dynamic culture assays described above support the notion that Laminin-

211 polymerization could be one mechanism that facilitates GPR126-NTF removal in vivo 

(see also Langenhan et al., this issue). 

Complementary evidence for mechanical activation of aGPCR signals in vivo comes 

from recent studies on the ADGRL homolog Latrophilin/CIRL of the vinegar fly D. 

melanogaster (Scholz et al., 2015). Here, the aGPCR is resident in mechanosensory 

neurons, which – upon mechanical stimulation through sound, touch or stretch – respond 

adequately with an increase in electrical activity. Removal of Latrophilin/CIRL results in a 

dramatic drop of this input-output relationship leading to profound insensitivity towards 

mechanical stimulation and blurred signal-to-noise discrimination. Genetic experiments have 

further indicated that Latrophilin/CIRL may act by modulating ionotropic mechanosensors of 

the transient receptor potential (TRP) channel family and may impinge on their properties in 

a mechanostimulus-dependent manner (see also Langenhan et al., this issue). Whether this 

effect of Latrophilin/CIRL is dependent on NTF, CTF, or both aGPCR fragments acting 

together, remains to be determined. 

How autoproteolysis as a prominent biochemical asset of aGPCRs and prerequisite 

for NTF removal is linked to signaling is still a conundrum, and may vary for different 

aGPCRs or even for the same aGPCR in different developmental or cellular contexts. The 

existence of cleavage-deficient aGPCR homologs due to lack of the consensus GPS site, 

like GPR123 (ADGRA1) or the conserved cleavage motif as in GPR111 (ADGRF2) and 

GPR115 (ADGRF4) (Prömel et al., 2012b) suggests that not all aGPCRs rely on a releasable 

NTF. Further, studies on LAT-1 in C. elegans have directly studied this phenomenon in vivo 

using the transgenic complementation assay described above. Intriguingly, autoproteolysis-

resistant lat-1 variants perform indistinguishably from wild-type versions of the receptor, 

suggesting that separation of NTF and CTF is not necessary for full receptor function 

(Prömel et al., 2012a). This indicates that not all aGPCRs require a Stachel sequence to 

signal and/or that accessibility of the Stachel sequence may not require NTF release. 

Additionally, metabotropic function may not be the sole biological signal controlled by 

aGPCRs. Many aGPCR layouts exhibit large interaction interfaces through their extracellular 

adhesion domains including the GAIN domain, through which they can form receptor 

complexes with other transmembrane signaling proteins such as frizzled GPCRs and the 
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tetraspanning polarity protein Van Gogh that execute their own signals (Chen et al., 2008; 

Nishimura et al., 2012). Secondly, aGPCR ECDs may even engage with signaling proteins 

located on neighboring cells and govern non-cell autonomous signals (Shima et al., 2007; 

Steimel et al., 2010). In this scenario, aGPCRs act as a ligand rather than a receptor. Finally, 

emerging evidence also suggests that the NTF and CTF of aGPCRs can have distinct 

biological functions (Prömel et al., 2012; Patra et al., 2013, Petersen et al., 2015). Continued 

work is required to more fully understand these non-metabotropic functions of aGPCRs and 

whether these properties can be modulated in future pharmacological strategies. 

  

Translational implications of aGPCR function  

aGPCRs are expressed in various tissues in the human body and play crucial roles in 

cellular and developmental processes (Hamann et al., 2015). In a time when knowledge on 

aGPCR structure and function was still limited, aGPCR mRNA variants and/or levels were 

correlated to biological phenotypes, and animal models have convincingly shown the 

importance of aGPCRs in development. Two well-known examples are GPR56 and 

GPR98/VLGR1, where gene mutations are causative for brain malformation (bilateral 

frontoparietal polymicrogyria) (Piao et al., 2004) and a form of Usher syndrome (Weston et 

al., 2004), respectively. Moreover, altered aGPCR gene expression is observed in several 

cancers (Aust et al., 1997; Fukushima et al., 1998; Carson-Walter et al., 2001; Kaur et al., 

2003; Kee et al., 2004; Shashidhar et al., 2005; Aust, 2010; Lum et al., 2010; Davies et al., 

2011; Favara et al., 2014; Liebscher et al., 2014a), suggest a promising role for these 

receptors as biomarkers for tumour recognition and possibly even targeting. 

With the recent elucidation and engineering of specific aGPCR ligands/agonists as 

well as antibodies, it became possible to dissect protein function and signaling properties of 

this receptor family and consequently to associate them with (patho)physiological conditions 

(e.g. cancer-related processes such as angiogenesis, adhesion, migration, and proliferation). 

In line with this, expression of GPR56 can inhibit VEGF (vascular endothelial growth factor) 

production in melanoma cell lines, thereby inhibiting melanoma angiogenesis and growth, a 

process involving the serine-threonine-proline-rich region in the ECD of GPR56, which leads 

to a PKCα-dependent signalling cascade (Yang et al., 2011). Similarly, expression of 

GPR116 (ADGRF5) has been shown to promote breast cancer metastasis via activation of 

Gaq-p63RhoGEF-Rho GTPase pathway (Tang et al., 2013). 

It was recently stressed that aGPCRs are frequently mutated in multiple human 

cancers (O'Hayre et al., 2013). Our improved understanding of receptor function will help to 

unravel the consequences of these mutations for aGPCR function. Coding region mutations 

range from the ECD and GAIN domain to the 7TM in aGPCRs. In CELSR1 and CELSR3, 

cancer-associated mutations in the GAIN domain did not alter receptor processing or 
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localization (Arac et al., 2012). It remains open whether these mutations contribute to tumor 

formation or are just a reflection of the higher tumor mutation rates. Perhaps ECD-mutations 

hamper cell-cell or cell-matrix interactions due to decreased adhesive capacity (Lagerström 

and Schiöth, 2008; Paavola and Hall, 2012). It is reasonable to assume that mutations in the 

ECD region could also affect potential ligand-binding properties or prevent NTF modulation 

and Stachel-mediated receptor activation. 

 

Conclusions  

Until recently it was unclear whether aGPCRs signal via G proteins at all. There is 

now mounting evidence from conventional pharmacological assays (e.g. [35S]GTPγS and 

second messenger detection) and in vivo studies that aGPCRs activate classic G protein-

signaling cascades. aGPCRs display similar signaling kinetics and coupling specificity upon 

activation when compared to rhodopsin-like GPCRs. β-arrestin interaction and ubiquitination 

of aGPCRs suggests that desensitization mechanisms are comparable to canonical GPCRs. 

Along these lines, it is likely that aGPCRs can also exhibit biased signaling, although this 

notion has not yet been formally tested. 

Despite these key similarities, aGPCRs are distinct from rhodopsin-like GPCRs in 

how receptor activation can be initiated (Fig. 2). While the generation of a tethered agonist is 

an accepted concept for some other GPCRs (e.g., PARs), generation of such an agonist in 

aGPCRs is not achieved by protease action. Rather, a unique and complex activation 

mechanism accounts for their stimulation, and we have only started to understand the 

requirements for this process. This includes binding of an extracellular ligand and, at least for 

some aGPCRs, potentially mechanical forces that expose a tethered agonist to the 7TM. 

GPCRs in general have consistently been of interest to the pharmaceutical world. 

Their ideal localization at the cell membrane combined with well characterized signaling 

properties make them excellent drug targets. Due to the plethora of aGPCR-signaling 

aspects, it is tempting to speculate that there are multiple manners to interfere with aGPCR 

function. The modulation of ECD-ligand interactions for example could prevent the interaction 

of the Stachel peptide with the 7TM region. Moreover, the 7TM could also be targeted in an 

allosteric manner to directly modulate receptor activation. Future works will focus on using 

these principles in ex vivo- and in vivo settings to elucidate their implications in the 

development and potential treatment of human diseases. 
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FIGURE LEGENDS 
 

Fig. 1 Architecture of a prototypic aGPCR 
Cartoon depicting structural components of a generic aGPCR. aGPCRs undergo 
autoproteolytic cleavage in the endoplasmatic reticulum at a highly conserved cleavage site 
that lies within the GPCR proteolysis site (GPS) motif, which is encompassed by the larger 
GPCR autoproteolysis-inducing (GAIN) domain. This cleavage event divides the receptor 
into an N-terminal fragment (NTF) and a C-terminal fragment (CTF). The NTF often contains 
conserved domains found in other proteins (LRR, Ig, EGF) and, along with most of the GAIN 
domain, comprises the majority of the extracellular domain (ECD). The CTF consists of a 
residual part of the GAIN domain/ECD, the 7TM domain, and the intracellular domain (ICD). 
The activating Stachel sequence is located within the residual ECD. Figure was adapted to 
include the Stachel sequence from (Liebscher et al., 2014a): New functions and signaling 
mechanisms for the class of adhesion G protein-coupled receptors, Ines Liebscher, Annals of 
the New York Academy of Sciences, 2014 Dec;1333:43-64, Copyright © 2014, Copyright 
owner: Wiley-Blackwell.  
 
Fig. 2 Proposed activation mechanisms of GPCRs  
(A) Canonical modes of GPCR activation include the classic binding of an agonist with high 
affinity to its cognate binding pocket for classic rhodopsin-like GPCRs. An exception lies with 
the protease-activated receptors (PARs) that expose a cryptic tethered agonistic region upon 
cleavage by a protease, which then activates the receptor. Synthetic peptides that mimic the 
tethered peptide sequence can also activate PARs (Vu et al., 1991b; Vu et al., 1991a). (B) 
Different activation mechanisms are proposed for aGPCRs. Similar to PARs, they possess a 
cryptic tethered agonist region, the Stachel sequence (S). Synthetic peptides derived from 
the Stachel amino acid sequence can activate aGPCRs. The activating Stachel sequence 
could be exposed upon NTF removal, which can then allow for CTF-mediated intracellular 
function(s) and independent NTF function(s). For GPR126 in peripheral nervous system 
development, Stachel exposure may require interaction with the ECM molecule Laminin-211, 
which is proposed to direct subsequent mechanical activation (Petersen et al., 2015). 
Mechanical stimulation of aGPCR has also been suggested for Latrophilin/CIRL in sensory 
neurons (Scholz et al. 2015), while other studies have shown a direct activation of aGPCRs 
through interactions with collagens (Luo et al., 2014; Paavola et al., 2014). 
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