Title page

A new molecular mechanism to engineer protean agonism at a G protein-coupled receptor

Anna De Min, Carlo Matera, Andreas Bock, Janine Holze, Jessica Kloeckner, Mathias Muth, Christian Traenkle, Marco De Amici, Terry Kenakin, Ulrike Holzgrabe, Clelia Dallanoce, Evi Kostenis, Klaus Mohr, Ramona Schrage

Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Straße 3, 53121 Bonn, Germany (A.D.M, J. H., C. T., R.S., K.M.).

Research Training Group 1873, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany (A.D.M., E.K., K.M.).

Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi', Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy (C.M., M.D.A., C.D.).

Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany (A.B.).

Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Am Hubland, 97074 Würzburg, Germany (J.K., M.M., U.H.).

Department of Pharmacology, University of North Carolina School of Medicine, 120 Mason Farm Road, Genetic Medicine Building, CB# 7365, Chapel Hill, North Carolina 27599-7365, United States (T.K.).

Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany (E. K.).

Corresponding senior authors (R.S., K.M.)

MOL #107276

Running Title Page

Designed dualsteric ligands act as protean agonists at M₂.

Corresponding authors:

Klaus Mohr, Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Gerhard-

Domagk-Straße 3, 53121 Bonn, Germany. Tel: +49 228 73 9103. Fax: +49 228 73 9215. E-mail:

k.mohr@uni-bonn.de;

Ramona Schrage, Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn,

Gerhard-Domagk-Straße 3, 53121 Bonn, Germany. Tel: +49 228736444. Fax: +49 228 73 9215. E-mail:

rschrage@uni-bonn.de.

Text pages: 18

Figures: 4

References: 65

Abstract: 201 words

Introduction: 756 words

Discussion: 1553 words

List of nonstandard abbreviations:

[35S]GTPyS: Guanosine 5'-O-(gamma-[35S]thio)triphosphate)

[³H]NMS: [³H]*N*-methylscopolamine

5-HT_{1B}R: serotonin receptor 1B

ACh: Acetylcholine

Atr: atropine sulfate

B₂R: bradykinin receptor 2

BSA: bovine serum albumine

CB₂R: cannabinoid receptor 2

CHO-hM₂: CHO stably expressing the human muscarinic acetylcholine M₂ receptor

DTT: DL-dithiothreitol

FCS: fetal calf serum

Flp-In-CHO: Flp-In-Chinese hamster ovary cells

G proteins: guanine nucleotide-binding proteins

GPCRs: G protein-coupled receptors

H₃R: histamine receptor 3

Ham's F-12: Ham's nutrient mixture F-12

iper: iperoxo

M₂AChR: muscarinic acetylcholine receptor 2

mAChR: muscarinic acetylcholine receptor

NMDG: N-methyl-D-glucamine

OOM: oxo-oxotremorine M

 $\alpha_{2A}AR$: alpha-2A adrenergic receptor

 β_2 AR: beta-2 adrenergic receptor

MOL #107276

Abstract

Protean agonists are of great pharmacological interest as their behavior may change in magnitude and direction depending on the constitutive activity of a receptor. Yet, this intriguing phenomenon has been poorly described and understood, due to the lack of stable experimental systems and design strategies. Here, we overcome both limitations: First, we demonstrate that modulation of the ionic strength in a defined experimental set-up allows for analysis of GPCR activation in the absence and presence of a specific amount of spontaneous receptor activity using the muscarinic M₂ acetylcholine receptor as a model. Second, we employ this assay system to show that a dualsteric design principle, i.e. molecular probes, carrying two pharmacophores to simultaneously adopt orthosteric and allosteric topography within a G protein-coupled receptor, may represent a novel approach to achieve protean agonism. We pinpoint three molecular requirements within dualsteric compounds that elicit protean agonism at the muscarinic M₂ acetylcholine receptor. Using radioligand binding and functional assays we posit that dynamic ligand binding may be the mechanism underlying protean agonism of dualsteric ligands. Our findings provide both new mechanistic insights into the still enigmatic phenomenon of protean agonism and a rationale for the design of such compounds for a G protein-coupled receptor.

MOL #107276

Introduction

G protein-coupled receptors (GPCRs) comprise the largest superfamily of cell-surface receptors, accounting for 3% of all genes in the human genome (Fredriksson and Schiöth, 2005). Upon activation, GPCRs undergo a global conformational rearrangement to transduce their signals from extracellular stimuli into the intracellular environment. *Via* this mechanism, binding sites for cytosolic adaptor proteins, for instance heterotrimeric G proteins, become exposed (Rasmussen, et al., 2011; Kruse et al., 2013), which then serve to propagate the signaling within the cell (Pierce et al., 2002; Lefkowitz, 2004). GPCRs are versatile membrane proteins that exist in ensembles of possible conformations (Manglik and Kobilka, 2014) and ligands can be classified according to their ability to stabilize subsets of these conformations (Rosenbaum et al., 2009). For instance, agonists favor active receptor conformations over inactive states. Of note, receptors can also spontaneously transit from inactive to active states and *vice versa* (Costa and Herz, 1989; Leff, 1995).

In addition to the binding site for the endogenous messenger, GPCRs carry distinct druggable sites, which are designated as *allosteric* sites. Compounds binding to these allosteric binding sites may alter the efficacy and/or binding affinity of orthosteric ligands but may also exhibit intrinsic efficacy for receptor activation/inactivation in their own right (Christopoulos, 2002). Allosteric modulation has extensively been studied at muscarinic acetylcholine receptors (mAChRs) which are prototypal class A ("Rhodopsin-like") GPCRs. Recent studies have also described *dualsteric* ligands which can simultaneously occupy the orthosteric and an allosteric binding site of the M₂ subtype of mAChRs. This results in a unique receptor binding profile and signaling pattern (Steinfeld et al., 2007; Gregory et al., 2010; Bock et al., 2012; Schrage and Kostenis, 2016). Dualsteric/bitopic ligands can switch between two binding poses, i.e. either a dualsteric or a purely allosteric binding pose (Bock et al., 2014; Bock et al., 2016) and thus may stabilize not only one but at least *two* distinct subsets of receptor conformations (dynamic ligand binding) (Bock et al., 2014).

A particularly fascinating, albeit seldom described, class of GPCR ligands are protean agonists, i.e. compounds which display agonism in quiescent receptor systems with low levels of spontaneous receptor activity and inverse agonism in constitutively active systems (Kenakin, 1995). One explanation for this phenomenon may be that protean agonists stabilize a receptor conformation with lower efficacy for a certain signaling pathway than the spontaneously active conformation of a given GPCR. Thus, even though the intrinsic efficacy of the ligand does not vary, its effect changes with the amount of spontaneously active receptors that are present within the experimental system (Kenakin, 1995, 1997). Up to now, protean agonists have only been identified for a handful of receptors, for instance cannabinoid receptor 2 (CB₂R) (Yao et al., 2006; Mancini et al., 2009; Xu et al., 2010; Bolognini et al., 2012), histamine receptor 3 (H₃R) (Gbahou et al., 2003), alpha-2A adrenergic receptor (α_{2A}AR) (Jansson et al., 1998; Pauwels et al., 2002), serotonin receptor 1B (5-HT_{1R}R) (Newman-Tancredi et al., 2003), bradykinin receptor 2 (B₂R) (Fathy et al., 1999; Marie et al., 1999) and beta-2 adrenergic receptor (β₂AR) (Chidiac et al., 1994; Chidiac et al., 1996). Nevertheless, protean agonists are highly valuable tools as they might be most useful for the identification of ligand-specific active states of GPCRs (Kenakin, 2001). Furthermore, protean agonists may represent a promising new class of pharmacologically active compounds in targeted drug therapy for those cases in which receptor mutations cause constitutive activity (Tao, 2008). Under these conditions, protean agonists can re-establish the original tone of receptor activation (Jansson et al., 1998; Mancini et al., 2009). Moreover, the classification of ligands as protean agonists is of significant importance and not trouble-free, because they may be mistaken for inverse agonists in in vitro assays with high levels of constitutive activity (Chidiac et al., 1994), but act as agonists in vivo (Yao et al., 2006; Mancini et al., 2009; Xu et al., 2010).

The rather few examples of GPCR protean agonists are, at least in part, due to the lack of experimental systems in which the amount of spontaneous GPCR activity is reliably and reproducibly controlled. Moreover, specific design strategies to generate protean ligands are missing. In this study, we overcome both limitations: we have developed an assay system to enable such control and employ it here to

MOL #107276

demonstrate that the dualsteric design approach may serve as a novel means to rationally create protean agonists using M₂AChR as a model system.

In particular, we establish and validate experimental conditions that permit analysis of M_2 receptor-mediated G_i protein activation, in the absence and presence of a defined amount of spontaneous receptor activity. We found that: first, dualsteric ligands were able to induce protean agonism at M_2AChR . Second, we identified specific pharmacophoric elements which have to be combined to induce protean agonism at this receptor subtype. Third, we propose that dynamic ligand binding (Bock et al., 2014; Bock et al., 2016) may be the underlying molecular mechanism of protean agonism of dualsteric compounds targeting M_2AChRs .

Therefore, our findings deliver a new experimental system to study spontaneous activity of GPCRs, two new protean agonists for M₂AChR, and a new strategy along with a potential molecular mechanism to achieve protean agonism at this receptor subtype, which may pinpoint to the design of protean agonists at other GPCRs.

MOL #107276

Materials and Methods

Materials and reagents

Acetylcholine (ACh) iodide, atropine sulfate (Atr), and pilocarpine hydrochloride were obtained from Guanosine 5'-O-(gamma-[³⁵S]thio)triphosphate Sigma-Aldrich Chemie (Steinheim, Germany). ([35S]GTPγS) and [3H]N-methylscopolamine bromide ([3H]NMS) were from PerkinElmer Life and Analytical 4-(2-hydroxyethyl)-1-Sciences (Homburg, Germany). Cell culture media, piperazineethanesulfonic acid (HEPES), N-methyl-D-glucamine (NMDG), sodium bromide (NaBr), bovine serum albumine (BSA), guanosine 5'-diphosphate (GDP) and DL-dithiothreitol (DTT) were purchased from Sigma-Aldrich (Taufkirchen, Germany). Magnesium chloride (MgCl) and sodium chloride (NaCl) were acquired from Acros Organics (Geel, Belgium). Ethylenediaminotetraacetic acid disodium salt (Na₂EDTA) was purchased from Applichem (Darmstadt, Germany). Tris(hydroxymethyl)aminomethane (Tris) and potassium chloride (KCl) were acquired from Carl Roth GmbH (Karlsruhe, Germany).

Chemical synthesis

The synthesis of all compounds which are not commercially available has been performed following the protocols described elsewhere: iperoxo (iper) (Klöckner et al., 2010), isox and oxo-oxotremorine M (OOM) (Dallanoce et al., 1999), isox-6-naph (Disingrini et al., 2006), isox-8-naph and 8-naph (Bock et al., 2014), iper-6-naph, 6-naph and 6-phth (Antony et al., 2009), iper-8-naph (Bock et al., 2012), isox-6-phth (Disingrini et al., 2006), iper-6-phth (Antony et al., 2009), OOM-6-naph and OOM-6-phth (Disingrini et al., 2006). All derivatives were obtained with comparable yields and the same analytical purity as reported in the literature.

MOL #107276

Cell culture

Flp-In-Chinese hamster ovary cells (Flp-In-CHO) stably expressing the human muscarinic acetylcholine M_2 receptor (CHO-h M_2 cells) were cultured in Ham's nutrient mixture F-12 (Ham's F-12) supplemented with 10% (v/v) fetal calf serum (FCS), 100 U/ml penicillin, 100 µg/ml streptomycin and 2 mM L-glutamine at 37 °C in a 5% CO_2 humidified incubator. The cells were passaged by trypsinization at nearly confluence.

Membrane preparation

CHO-hM₂ cells were grown to 90% confluence and treated with fresh medium supplemented with 5 mM sodium butyrate for 18–20 h. On the day of the membrane preparation, medium was aspirated and 2.4 ml ice-cold harvesting buffer (20 mM HEPES, 10 mM Na₂EDTA, pH 7.4) was added. Cells were mechanically detached with a cell scraper (Sarstedt AG & CO, Nümbrecht, Germany), before the cell suspension was homogenized using a Polytron homogenizer (1 × 25 s and 1 × 20 s, level 6). The suspension of lysed cells was centrifuged (10 min, $40,000 \times g$, 2 °C), and the pellet was resuspended in storage buffer (20 mM HEPES, 0.1 mM Na₂EDTA, pH 7.4). This centrifugation step was repeated twice. The remaining pellet was resuspended in an adequate amount of [35 S]GTP γ S assay buffer (50 mM Tris, 2 mM MgCl, 1 mM Na₂EDTA, 1 mM DTT, pH 7.4) and stored at -80 °C (Schrage et al., 2013).

Equilibrium binding assays

To estimate apparent agonist binding affinities, membranes from CHO-hM₂ cells were diluted in assay buffer, i.e. Tris buffer (50 mM Tris, 2 mM MgCl, 1 mM Na₂EDTA, 1 mM DTT, pH 7.4) or Tris NaCl buffer (50 mM Tris, 2 mM MgCl, 1 mM Na₂EDTA, 1 mM DTT, 200 mM NaCl pH 7.4), supplemented with 100 μM GDP. 30 μg/ml membrane suspensions were then incubated with 0.2 nM [³H]NMS and different concentrations of test compound in a 96-well microtiterplate (Thermo Scientific ABgene, Germany) in assay buffer in a final volume of 500 μl at 24 °C for 3 h to reach equilibrium conditions. Experiments were terminated by rapid vacuum filtration using a Tomtec Harvester (Tomtec Inc., Hamden,

MOL #107276

USA), and filter-bound radioactivity was calculated by solid scintillation. Non-specific binding was determined in the presence of $10 \,\mu\text{M}$ atropine.

Dissociation binding assays

To estimate ligand affinity to the allosteric binding site, [³H]NMS dissociation binding assays were conducted. 30 μg/ml membranes were pre-incubated with 2 nM [³H]NMS in assay buffer (Tris or Tris NaCl buffer (see above)) supplemented with 0.5% BSA and 1 μM GDP) for 45 min at 24 °C. Net dissociation of [³H]NMS was initiated by the addition of 10 μM atropine, with or without the indicated concentrations of test compound. After the appropriate time interval (12 and 9 min in Tris and 6 and 3 min in Tris NaCl buffer), the dissociation was terminated by rapid vacuum filtration with a Tomtec Harvester (Tomtec Inc., Hamden, USA) and filter-bound radioactivity was calculated by solid scintillation. Nonspecific binding was defined as the radioactivity bound in the presence of 10 μM atropine.

 $[^{35}S]GTP\gamma S$ binding assay

40 μg/ml CHO-hM₂ membranes were incubated with 0.07 nM [³⁵S]GTPγS, 1 μM GDP, 0.5% BSA and test compound in Tris buffer (50 mM Tris, 2 mM MgCl, 1 mM Na₂EDTA, 1 mM DTT, pH 7.4) or Tris NaCl buffer (50 mM Tris, 2 mM MgCl, 1 mM Na₂EDTA, 1 mM DTT, 200 mM NaCl pH 7.4) for 60 min at 24 °C. Experiments were terminated by rapid filtration a Tomtec Harvester (Tomtec Inc., Hamden, USA) and filter-bound radioactivity was measured by solid scintillation counting.

Data analysis

Equilibrium binding data were analyzed by a four-parameter logistic equation (Barlow and Blake, 1989) yielding IC_{50} values which were subsequently converted into apparent equilibrium dissociation constants (K_A) using the Cheng-Prusoff correction (Cheng and Prusoff, 1973). Data from two-point kinetic dissociation experiments were analyzed using a one-phase exponential decay as described elsewhere (Voigtländer et al., 2003). Data obtained from [^{35}S]GPT γS binding assays were fitted to a four-parameter

logistic equation yielding measures for agonist potency (pEC $_{50}$) and maximum effect (E_{max}). All nonlinear regression analyses were performed using Prism 5.03 (GraphPad Software, San Diego, CA).

Statistical analyses

Shown are mean values \pm standard error mean (SEM). Comparison of two single means was performed using an unpaired two sample Student t-test. In case the number of data sets was equal or superior to three, a one-way ANOVA test with Bonferroni's post-test was used.

MOL #107276

Results

Distinct binding poses of dualsteric ligands may result in protean agonism

To unravel potential protean agonism at the muscarinic M_2 receptor, we applied a variety of orthosteric agonists, allosteric fragments, and dualsteric ligands (i.e. iper-6-naph, iper-8-naph, iper-6-phth, isox-6-naph, isox-8-naph, isox-6-phth, OOM-6-naph, OOM-6-phth, Fig. 1A) and investigated receptor-mediated activation of inhibitory G_i proteins in [35 S]GTP γ S binding experiments.

The dualsteric ligands tested in the present study consist of an orthosteric part, i.e. iperoxo (iper), isox, or oxo-oxotremorine M (OOM), and an allosteric moiety, i.e. either the naphthalimide (naph) or phthalimide (phth) group. The two pharmacophores are covalently connected *via* a hexa- or octamethylene linker. The orthosteric building block provides high affinity for interaction with the binding site of the endogenous messenger, whereas the allosteric moiety has affinity for the allosteric binding site, which is located on top of the orthosteric site in the extracellular part of mAChRs (Prilla et al., 2006; Bock et al., 2012; Haga et al., 2012). In consequence, these "bipharmacophoric" ligands are able to bind in two orientations to a receptor protein (Bock et al., 2014): either both pharmacophores bind to their designated binding sites, yielding a *dualsteric* binding pose, or the compound only interacts with the allosteric site of the receptor, yielding a purely *allosteric* binding pose (Bock et al., 2016) (Fig. 1B). As the allosteric fragments are derived from allosteric antagonists/inverse agonists, the purely allosteric binding pose stabilizes an inactive receptor conformation (Tränkle et al., 1998; Disingrini et al., 2006; Bock et al., 2014; Matera et al., 2014). In contrast, the dualsteric binding pose stabilizes active receptor conformations, because the orthosteric moieties are agonists (Dallanoce et al., 1999; Schrage et al., 2013; Bock et al., 2014).

The unique ability of dualsteric compounds to bind in two different binding poses leads to a potential scenario in which these model derivatives may act as protean agonists because the affinities of the two pharmacophores may change in different systems (Bock et al., 2014). A dualsteric compound which prefers binding in an allosteric binding topography will result in inverse agonism in a system with

pronounced spontaneous receptor activity (red curve in lower panel of Fig. 1B). However, if this compound is also able to bind in a dualsteric binding pose, functional agonism may occur in a quiescent receptor system (blue curve in lower panel of Fig. 1B). Thus, the versatile behavior of dualsteric ligands may be an avenue towards the design of protean agonists.

Establishment of an experimental system with a stable amount of constitutive activity of the muscarinic M_2 receptor

The investigation of protean agonism is technically challenging because it requires a stable spontaneously active receptor system which is difficult to achieve for several GPCRs (Kenakin, 2001). To establish a system which displays a robust and substantial amount of spontaneous activity for the M2AChR, we investigated the M₂ receptor-mediated binding of [35S]GTPγS in CHO-M₂ membranes triggered by the endogenous agonist ACh or the inverse agonist atropine (Atr) in the presence of various concentrations of NaCl in a Tris buffer. NaCl was chosen as a buffer supplement because sodium ions are known to be important to maintain the inactive receptor conformation of class A GPCRs (Liu et al., 2012; Katritch et al., 2014; Miller-Gallacher et al., 2014). In line with this, an increase of NaCl led to a reduction in basal [35S]GTPyS binding to CHO-M2 membranes as well as to a decrease in spontaneous receptor activity (estimated in presence of Atr) and ACh-induced [35S]GTPγS (Fig. 2A(i)). To explore whether alternative conditions with an ionic strength equivalent to 200 mM NaCl may also be suitable to titrate spontaneous activity of the M₂AChR, we analyzed the effect of the inverse agonist Atr on M₂-mediated [35S]GTPyS binding in a Tris buffer with 2 mM sodium ions (low ionic strength Tris, Tris) in comparison to a Tris buffer substituted with 200 mM NaCl or equimolar concentrations of potassium chloride (KCl), sodium bromide (NaBr), or N-methyl-D-glucamine chloride (NMDGCl). NMDGCl is often used as a sodium substitute as it was found to be osmotically equivalent (Pihlavisto et al., 1998; Barann et al., 2004; Billups et al., 2006; Vivo et al., 2006). Interestingly, any increase in ionic strength led to a complete abolishment of spontaneous receptor activity regardless of whether sodium or potassium salts were applied, or

NMDGCl was used as a substitute (Fig. 2A(ii)). We conclude that conditions with an ionic strength equivalent to 200mM NaCl may also serve to keep the receptor in the inactive state.

Next, we were interested in the nature of the M₂ receptor system with high rates of spontaneous activity (low ionic strength Tris, Tris) in comparison to a quiescent M₂ receptor system (Tris supplemented with 200 mM NaCl, Tris NaCl, or KCl, Tris KCl). We hypothesized that high spontaneous M₂ activity may either (i) increase the basal level of [35S]GTPγS binding without altering the maximum inducible effect of the system (Supplemental Figure 1A) or (ii) lead to an increase in basal [35S]GTPyS binding and also a higher potential E_{max} of the system (Supplemental Figure 1B). To approach these hypotheses experimentally, we measured [35S]GTPyS binding in CHO-M2 membranes induced by the endogenous agonist ACh (Fig. 2B(i)) and the muscarinic superagonist iperoxo (Fig. 2B(ii)) in one system where the receptor was spontaneously active (red, Tris) and two systems where no spontaneous activity was apparent (light blue, Tris KCl, and blue, Tris NaCl). In line with our hypothesis number two (Supplemental Figure 1B), both basal and ligand-induced receptor activity was enhanced in the spontaneously active system. We next investigated [35S]GTPyS binding to CHO-M2 membranes induced by five different orthosteric muscarinic agonists in a Tris NaCl buffer (Fig. 2C(i), quiescent receptor) and a low ionic strength Tris buffer (Fig. 2C(ii), spontaneously active receptor). Agonists may prefer binding to spontaneously active receptors as this enhances the probability of ternary complex formation of agonist, receptor and G protein (De Lean et al., 1980; Strange, 2008). Accordingly, all muscarinic agonists displayed increased potency for M₂ receptor activation in a low ionic strength Tris buffer (Fig. 2C(i,ii), Supplemental Table 1), accompanied with higher apparent agonist binding affinities (Supplemental Figure 2, Supplemental Table 1).

Interestingly, iperoxo shows a higher E_{max} value than ACh, isox, and OOM. This might indicate a lower stimulus-response coupling in the quiescent system which enables to directly visualize the higher efficacy of iper over the other investigated agonists. Of note, the "classical" muscarinic partial agonist pilocarpine

is an exception to the observed trend, as the E_{max} value and the potency did not change with the spontaneous activity of the system.

Specific dualsteric compounds display protean agonism at muscarinic M2 receptors

The ability to reliably fine-tune spontaneous M₂ receptor activity enabled us to investigate [35S]GTPγS binding in CHO-M2 membranes induced by dualsteric compounds in a quiescent receptor system (Tris NaCl) or a spontaneously active receptor system (Tris). When the muscarinic superagonist iper was incorporated as the orthosteric part into the dualsteric skeleton, the three tested compounds behaved as agonists in both buffer systems (Fig. 3A-C). Iper-6-naph (Fig. 3A) and iper-6-phth (Fig. 3B) displayed higher agonist efficacy and potency in the spontaneously active receptor system in comparison to the quiescent receptor state, whereas iper-8-naph only slightly gained potency in Tris buffer over Tris NaCl (Fig. 3C). Conversely, when isox or OOM, which possess "ACh-like" efficacy, were applied as orthosteric building blocks (Fig. 3D-H), the effect induced by isox-6-naph (Fig. 3D) and OOM-6-naph (Fig. 3G) changed its direction, depending on the activity state of the M2 receptor: in an inactive M2 receptor system, both compounds behaved as partial agonists (blue), whereas in a system with spontaneous activity of the receptor both displayed inverse agonism (red) as expected for protean agonists. In contrast to this and in line with the findings for iper-6-phth, isox-6-phth (Fig. 3E) and OOM-6-phth (Fig. 3H) had increased efficacy in Tris buffer as compared with Tris NaCl. Likewise, we noted higher efficacy for the isox-derived hybrid carrying an allosteric naphthalimide residue with a linker length of 8 carbon atoms (isox-8-naph) in the spontaneously active receptor system over the quiescent system (Fig. 3F). As predicted and in agreement with previous findings (Jäger et al., 2007; Antony et al., 2009; Bock et al., 2014), the allosteric fragments 6-naph, 8-naph, and 6-phth (Fig. 1A) alone behaved as allosteric inverse agonists in presence of high spontaneous M2 receptor activity but were silent at the inactive receptor (Supplemental Figure 3).

Taken together, our data allow us to derive structure-activity relationships to induce protean agonism at muscarinic M_2 receptors: the orthosteric agonist should display an ACh-like efficacy for receptor

activation, the allosteric residue should be bulky - the sterically demanding 1,8-naphthalimide moiety being superior to the less voluminous phthalimide analog - and the two pharmacophores should be connected by an alkyl chain of optimally 6 carbon atoms.

Dissociation binding experiments point to an increased allosteric affinity to M_2 receptors in Tris buffer of a protean agonist

To assess whether protean agonism of isox-6-naph and OOM-6-naph was due to an increase in allosteric binding to the $[^3H]NMS$ -bound M_2 receptor in the low ionic strength buffer, we estimated binding affinities for selected compounds in the allosteric binding pose to M_2 . To this end, $[^3H]NMS$ dissociation experiments were performed in a low ionic strength Tris buffer (red curve) and Tris buffer supplemented with NaCl (blue curve) in order to measure allosteric binding affinities in the same ionic strength than the aforementioned $[^{35}S]GTP_YS$ binding experiments (Fig. 4A-E).

Both investigated dualsteric compounds carrying iper as the orthosteric building block, i.e. iper-6-naph and iper-8-naph, displayed a gain in affinity for allosteric binding (Fig. 4A,B, Supplemental Table 1) of about 3- and 7-fold, respectively, to M₂ receptor in Tris compared to Tris NaCl buffer. The protean agonist isox-6-naph displayed a greater increase in affinity, of about 20-fold, (Fig. 4C, Supplemental Table 1) in the low ionic strength over the NaCl supplemented buffer. In contrast to this, the affinity for the allosteric binding site of isox-8-naph appeared to be similar in both buffer systems (Fig. 4D). The allosteric affinity of the OOM-containing protean agonist OOM-6-naph was significantly increased in Tris buffer in comparison to Tris NaCl (6-fold), even though the gain in affinity was not as prominent as that reported for isox-6-naph (Fig. 4E). Taken together, these data indicate that both protean agonists may display increased allosteric binding under the assay conditions similar to the spontaneously active system compared with the conditions of the inactive system and that this may contribute to the inverse agonism we observed for isox-6-naph and OOM-6-naph.

Of note, we also observed an increase in allosteric binding for iper-6-naph and iper-8-naph to the M_2 receptor in Tris compared to Tris NaCl although these two compounds clearly did not display any protean

agonism. This might be explained by the higher intrinsic efficacy for receptor activation of the orthosteric moiety iper in comparison to isox and OOM. In consequence, the beneficial effect of the spontaneously active M₂ receptor on the orthosteric superagonist iper (increase in binding affinity 10-fold in Tris *vs.* Tris NaCl) surpassed the increase in allosteric binding (increase in allosteric binding affinity 3.5-fold and 7-fold for iper-6-naph and iper-8-naph, respectively) and this precluded protean agonism.

MOL #107276

Discussion

Protean ligands induce opposing effects (E_{max}) depending on the level of spontaneous activity of a G protein-coupled receptor. This phenomenon was first reported in 1995 (Kenakin, 1995) and is based on the assumption that ligand-bound GPCRs may adopt not only one (fully) active and one inactive conformation, but also intermediate conformations engendering intermediate intrinsic efficacies for activation of intracellular signaling pathways. In this regard, receptor species with a lower efficacy than the spontaneously active one yield *positive* signaling in the presence of quiescent receptors and *negative* signaling when the majority of receptors is constitutively active (Kenakin, 1997, 2001; Chidiac, 2002). Experimentally, the discovery of protean ligands remains challenging for two reasons, i.e. the lack of (i) stable and reliable spontaneously active systems for several GPCRs and (ii) strategies for the rational design of this class of ligands.

In the present study, we show that spontaneous activity of the muscarinic M_2 receptor can reliably be titrated by changing the ionic strength in CHO- M_2 [35 S]GTP γ S binding experiments. We used this system to identify dualsteric compounds as protean agonists at M_2 AChR. Structure-activity relationships allowed us to define the molecular features required for protean agonism at M_2 receptors among a set of dualsteric compounds and to introduce a new molecular mechanism for protean agonism.

In particular, we present two dualsteric ligands, i.e. isox-6-naph and OOM-6-naph, as new protean agonists at the muscarinic M_2 receptor. Interestingly, only slight alterations of the three chemical moieties were sufficient to shift the profile from protean agonism to "classical" agonism (Fig. 3). The molecular features required for protean agonism at the muscarinic M_2 receptor are: an orthosteric part endowed with an acetylcholine-like efficacy, a bulky allosteric part to impair the flexibility of the extracellular loop area, and a flexible linker chain of 6 carbon atoms.

Up until now, protean agonism was thought to reside in the intrinsic efficacy of a ligand (Kenakin, 1997). Our results point to an additional mechanism that may underlie this phenomenon at GPCRs in case a ligand can simultaneously occupy both the binding site for the endogenous messenger and an allosteric

binding site of the receptor protein. These dualsteric compounds may bind to a receptor protein in two

MOL #107276

distinct binding modes (Bock et al., 2014; Bock et al., 2016): a purely allosteric and a dualsteric mode (Fig. 1B) and may thus have two distinct efficacies for receptor activation. Our findings presented here go in line with the idea that the two protean agonists isox-6-naph and OOM-6-naph prefer binding in the purely allosteric binding pose, as has already been demonstrated for isox-6-naph in a previous study (Bock et al., 2014). Both compounds display functional inverse agonism under conditions in which the M₂ receptor displays a substantial amount of spontaneous activity (Fig. 3D,G). However, at least under conditions in which the receptor is silent, a significant fraction of receptors must be bound in a dualsteric binding pose, as we observed functional agonism in the quiescent M₂ system. This indicates dynamic ligand binding as the molecular mechanism of protean agonism of isox-6-naph and OOM-6-naph. Spontaneous activity of the M₂AChR could robustly be fine-tuned by changing the ionic strength of the applied buffer system, such as presence/absence of sodium ions. To test whether isox-6-naph and OOM-6naph swap their binding pose depending on the buffer system used, we performed radioligand binding experiments and estimated the allosteric binding affinity (EC_{50,diss} values) of several dualsteric ligands included in this study. The allosteric affinity measure of isox-6-naph was 20-times higher in Tris than in Tris NaCl buffer, whereas the orthosteric building block isox gained only 3.5-fold in affinity under these conditions (Fig. 4C, Supplemental Figure 2). Assuming that the affinities of the allosteric and of the orthosteric moiety determine the fraction of ligand bound in one or the other pose (Bock et al., 2014), this result supports the idea that isox-6-naph increases in allosteric binding pose in the low ionic strength buffer. Yet, OOM-6-naph displayed only a slight increase in allosteric binding affinity in Tris vs. Tris NaCl buffer. This effect was comparable to the increase in orthosteric affinity of the orthosteric building block OOM. Even if these data indicate that OOM-6-naph does not display increased allosteric binding in Tris buffer, the dominant binding pose under these conditions must be the allosteric pose, as we clearly see inverse agonism at the spontaneously active M₂AChR (Fig. 3G). Of note, changes in the ionic strength of the buffer may not only alter the spontaneous activity of the M₂AChR (see Fig. 2B, increase of the lower curve plateau), but may also affect the micro environment in the orthosteric and allosteric binding

pocket. Therefore, ligand binding behavior may be altered not only by the functional state of the receptor protein, but additionally be influenced by the presence/absence of ions in the binding pockets. Interestingly, all dualsteric compounds share a common bis-ammoniumalkane structure which is known to engage with the allosteric M_2AChR binding site via polar cation- π interactions (Dror et al., 2013), which are susceptible to variation of ionic strength (Papaneophytou et al., 2014).

However, our study clearly indicates a major impact of ionic strength on the macro level, i.e. the functional state of the receptor. A recent study by Yuan et al. (2016) has shown that a continuous channel of water molecules inside the receptor protein is an essential feature of the functionally active state of the adenosine A₁ receptor, another class A GPCR which likely shares a common activation mechanism with the M₂AChR. Therefore, one might speculate that ionic strength fine-tunes receptor activity by determining the amount of water molecules available within the binding pocket. Yet, albeit tempting, ultimate proof for such a hypothesis remains to be provided by crystallographic studies.

One might argue that protean agonism of isox-6-naph and OOM-6-naph resides in the rather low efficacy of the two ligands and is not necessarily due to dynamic ligand binding. However, dualsteric ligands like isox-6-phth and isox-8-naph did not display any protean agonism although the efficacy of these compounds did not differ significantly from the efficacy of the two protean agonists at the quiescent M₂AChR. Moreover, it has been demonstrated previously that a purely allosteric binding pose predominates for isox-6-naph (Bock et al., 2014). In sum, our data indicate that dynamic ligand binding (Bock et al., 2014) is the underlying molecular mechanism for protean agonism of isox-6-naph and OOM-6-naph at M₂AChR.

Protean agonism is still a seldom described phenomenon. Studies which identified protean agonists by comparison of agonist-induced signaling in two different functional assay systems may be compromised by biased signaling (Jansson et al., 1998; Gbahou et al., 2003). Therefore, two experimental systems which differ only in the amount of spontaneous activity are essential for the identification of protean agonists. To this end, several strategies have been employed to study agonism in presence and absence of spontaneously active receptors. For instance, constitutively activating receptor mutations (Ganguli et al.,

1998; Fathy et al., 1999; Pauwels et al., 2002), an increased expression of receptor/G protein (Jakubík et al., 1998), or a change in buffer composition (Newman-Tancredi et al., 2003), have been applied. Here, we choose to alter M_2 wild type receptor activity by variation in the concentration of sodium ions, because previous studies demonstrated that sodium ions can keep class A GPCRs in an inactive conformation (Liu et al., 2012; Katritch et al., 2014). Yet, our results indicate that inactivation of the M2AChR by a high concentration of sodium ions depends on high ionic strength in the buffer rather than the nature and/or composition of a particular salt. In a low ionic strength Tris buffer, basal as well as agonist-induced [35S]GTPyS incorporation was increased in CHO-M₂ membranes in comparison with a buffer system with high concentrations of sodium or potassium ions. This is in line with previous findings (Tian et al., 1994) for the adrenergic α₂-AR and reflects a stronger stimulus-response-coupling and ternary complex formation of agonist, receptor and G protein of the spontaneously active M2 receptor compared to quiescent M₂. Accordingly, the distinct efficacies of ACh and iper could only be detected in the inactive receptor system (Fig. 2C). Moreover, almost all dualsteric compounds which did not display protean agonism showed increased E_{max} values and all orthosteric agonists gained binding affinity and potency in Tris compared to Tris NaCl buffer, as agonists prefer binding to an active rather than an inactive receptor (De Lean et al., 1980). The classical muscarinic partial agonist pilocarpine is an exception to this behavior as the compound changed neither in potency nor in efficacy depending on the buffer composition. A previous work (Tota and Schimerlik, 1990) reported that pilocarpine does not distinguish between active and inactive receptors. However, direct labeling of active M2 receptors with a radioagonist indicated higher apparent affinity of pilocarpine for this receptor population in comparison to inactive receptors, albeit the affinity difference was lower than the respective difference for full agonists (Schrage et al., 2014). Together with the finding that pilocarpine activates M₂ receptors in native tissue as well as in recombinant cells (Seemann et al., 2016), this implicates that pilocarpine has higher affinity for the active M₂ receptor relative to the inactive form, although the nominal difference in affinity appears to be lower than for full agonists.

On the whole, we established an experimental system which allowed us to identify two new protean agonists at M₂ muscarinic acetylcholine receptors. We propose an unprecedented molecular mechanism by which protean agonism is induced at a class A GPCR, i.e. the M₂AChR, which may virtually be extended to generate protean agonists for other class A GPCRs harboring allosteric binding sites such as adenosine or dopamine receptors. It will be interesting to see if this dualsteric approach will furnish protean ligands for other receptor types.

Similar to the great potential of biased GPCR signaling, improved understanding of protean agonism may provide another level towards the targeted exploitation of the GPCR signaling machinery, which could be relevant to the knowledge-based design of innovative drug candidates.

Author contributions

Participated in research design: De Min, Schrage, Bock and Mohr.

Conducted experiments: De Min.

Contributed new reagents or analytical tools: Matera, Dallanoce, De Amici, Muth, Kloeckner and Holzgrabe.

Performed data analysis: De Min, Bock, Traenkle and Holze.

Wrote or contributed to the writing of the manuscript: Schrage, De Min, Kostenis, Kenakin,

Bock, De Amici, Holzgrabe and Mohr.

References

- Antony J, Kellershohn K, Mohr-Andrä M, Kebig A, Prilla S, Muth M, Heller E, Disingrini T, Dallanoce C, Bertoni S, Schrobang J, Tränkle C, Kostenis E, Christopoulos A, Höltje H, Barocelli E, De Amici M, Holzgrabe U, and Mohr K (2009) Dualsteric GPCR targeting: a novel route to binding and signaling pathway selectivity. *FASEB J* 23:442–450 doi: 10.1096/fj.08-114751.
- Barann M, Schmidt K, Göthert M, Urban BW, and Bönisch H (2004) Influence of sodium substitutes on 5-HT-mediated effects at mouse 5-HT3 receptors. *Br J Pharmacol* **142:**501–508 doi: 10.1038/sj.bjp.0705788.
- Barlow R and Blake JF (1989) Hill coefficients and the logistic equation. *Trends Pharmacol Sci* **10:**440–441 doi: 10.1016/S0165-6147(89)80006-9.
- Billups D, Billups B, Challiss RAJ, and Nahorski SR (2006) Modulation of Gq-protein-coupled inositol trisphosphate and Ca2+ signaling by the membrane potential. *J Neurosci* **26:**9983–9995 doi: 10.1523/JNEUROSCI.2773-06.2006.
- Bock A, Bermudez M, Krebs F, Matera C, Chirinda B, Sydow D, Dallanoce C, Holzgrabe U, Amici M de, Lohse MJ, Wolber G, and Mohr K (2016) Ligand Binding Ensembles Determine Graded Agonist Efficacies at a G Protein-Coupled Receptor. *J Biol Chem* doi: 10.1074/jbc.M116.735431.
- Bock A, Chirinda B, Krebs F, Messerer R, Bätz J, Muth M, Dallanoce C, Klingenthal D, Tränkle C, Hoffmann C, De Amici M, Holzgrabe U, Kostenis E, and Mohr K (2014) Dynamic ligand binding dictates partial agonism at a G protein-coupled receptor. *Nat Chem Biol* **10:**18–20 doi: 10.1038/nchembio.1384.
- Bock A, Merten N, Schrage R, Dallanoce C, Bätz J, Klöckner J, Schmitz J, Matera C, Simon K, Kebig A, Peters L, Müller A, Schrobang-Ley J, Tränkle C, Hoffmann C, De Amici M,

- Holzgrabe U, Kostenis E, and Mohr K (2012) The allosteric vestibule of a seven transmembrane helical receptor controls G-protein coupling. *Nat Commun* **3:**1044 doi: 10.1038/ncomms2028.
- Bolognini D, Cascio MG, Parolaro D, and Pertwee RG (2012) AM630 behaves as a protean ligand at the human cannabinoid CB2 receptor. *Br J Pharmacol* **165:**2561–2574 doi: 10.1111/j.1476-5381.2011.01503.x.
- Cheng Y and Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction.

 *Biochem Pharmacol 22:3099–3108.
- Chidiac P (2002) Considerations in the evaluation of inverse agonism and protean agonism at G protein-coupled receptors. *Meth Enzymol* **343:**3–16.
- Chidiac P, Hebert TE, Valiquette M, Dennis M, and Bouvier M (1994) Inverse agonist activity of beta-adrenergic antagonists. *Mol Pharmacol* **45:**490–499.
- Chidiac P, Nouet S, and Bouvier M (1996) Agonist-induced modulation of inverse agonist efficacy at the beta 2-adrenergic receptor. *Mol Pharmacol* **50**:662–669.
- Christopoulos A (2002) Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. *Nat. Rev. Drug Discov* **1:**198–210 doi: 10.1038/nrd746.
- Costa T and Herz A (1989) Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. *Proc Natl Acad Sci U.S.A.*:7321–7325.
- Dallanoce C, Conti P, De Amici M, De Micheli C, Barocelli E, Chiavarini M, Ballabeni V, Bertoni S, and Impicciatore M (1999) Synthesis and functional characterization of novel derivatives related to oxotremorine and oxotremorine-M. *Bioorg Med Chem* **7:**1539–1547.

- De Lean A, Stadel JM, and Lefkowitz RJ (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. *J Biol Chem* **255:**7108–7117.
- Disingrini T, Muth M, Dallanoce C, Barocelli E, Bertoni S, Kellershohn K, Mohr K, De Amici M, and Holzgrabe U (2006) Design, synthesis, and action of oxotremorine-related hybrid-type allosteric modulators of muscarinic acetylcholine receptors. *J Med Chem* **49:**366–372 doi: 10.1021/jm050769s.
- Dror RO, Green HF, Valant C, Borhani DW, Valcourt JR, Pan AC, Arlow DH, Canals M, Lane JR, Rahmani R, Baell JB, Sexton PM, Christopoulos A, and Shaw DE (2013) Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. *Nature* **503:**295–299 doi: 10.1038/nature12595.
- Fathy DB, Leeb T, Mathis SA, and Leeb-Lundberg LM (1999) Spontaneous human B2 bradykinin receptor activity determines the action of partial agonists as agonists or inverse agonists. Effect of basal desensitization. *J Biol Chem* **274**:29603–29606.
- Fredriksson R and Schiöth HB (2005) The repertoire of G-protein-coupled receptors in fully sequenced genomes. *Mol Pharmacol* **67:**1414–1425 doi: 10.1124/mol.104.009001.
- Ganguli SC, Park C, Holtmann MH, Hadac EM, Kenakin TP, and Miller LJ (1998) Protean effects of a natural peptide agonist of the G protein-coupled secretin receptor demonstrated by receptor mutagenesis. *J Pharmacol Exp Ther*:593–598.
- Gbahou F, Rouleau A, Morisset S, Parmentier R, Crochet S, Lin J, Ligneau X, Tardivel-Lacombe J, Stark H, Schunack W, Ganellin CR, Schwartz J, and Arrang J (2003) Protean agonism at histamine H3 receptors in vitro and in vivo. *Proc Natl Acad Sci U.S.A.* **100:**11086–11091 doi: 10.1073/pnas.1932276100.

- Gregory KJ, Hall NE, Tobin AB, Sexton PM, and Christopoulos A (2010) Identification of orthosteric and allosteric site mutations in M2 muscarinic acetylcholine receptors that contribute to ligand-selective signaling bias. *J Biol Chem* **285:**7459–7474 doi: 10.1074/jbc.M109.094011.
- Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C, Weis WI, Okada T, Kobilka BK, Haga T, and Kobayashi T (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. *Nature* 482:547–551 doi: 10.1038/nature10753.
- Jäger D, Schmalenbach C, Prilla S, Schrobang J, Kebig A, Sennwitz M, Heller E, Tränkle C, Holzgrabe U, Höltje H, and Mohr K (2007) Allosteric small molecules unveil a role of an extracellular E2/transmembrane helix 7 junction for G protein-coupled receptor activation. *J Biol Chem* **282**:34968–34976 doi: 10.1074/jbc.M705563200.
- Jakubík J, Haga T, and Tucek S (1998) Effects of an agonist, allosteric modulator, and antagonist on guanosine-gamma-[35S]thiotriphosphate binding to liposomes with varying muscarinic receptor/Go protein stoichiometry. *Mol Pharmacol* **54:**899–906.
- Jansson CC, Kukkonen JP, Näsman J, Huifang G, Wurster S, Virtanen R, Savola JM, Cockcroft V, and Akerman KE (1998) Protean agonism at alpha2A-adrenoceptors. *Mol Pharmacol* **53:**963–968.
- Katritch V, Fenalti G, Abola EE, Roth BL, Cherezov V, and Stevens RC (2014) Allosteric sodium in class A GPCR signaling. *Trends Biochem Sci* **39:**233–244 doi: 10.1016/j.tibs.2014.03.002.
- Kenakin T (1995) Pharmacological proteus? *Trends Pharmacol Sci* **16:**256–258.
- Kenakin T (1997) Protean agonists. Keys to receptor active states? *Ann N. Y. Acad Sci* **812:**116–125.

- Kenakin T (2001) Inverse, protean, and ligand-selective agonism: matters of receptor conformation. *FASEB J* **15**:598–611 doi: 10.1096/fj.00-0438rev.
- Klöckner J, Schmitz J, and Holzgrabe U (2010) Convergent, short synthesis of the muscarinic superagonist iperoxo. *Tetrahedron Letters* **51:**3470–3472 doi: 10.1016/j.tetlet.2010.04.130.
- Kostenis E and Mohr K (1996) Two-point kinetic experiments to quantify allosteric effects on radioligand dissociation. *Trends Pharmacol Sci* **17:**280–283.
- Kruse AC, Ring AM, Manglik A, Hu J, Hu K, Eitel K, Hübner H, Pardon E, Valant C, Sexton PM, Christopoulos A, Felder CC, Gmeiner P, Steyaert J, Weis WI, Garcia KC, Wess J, and Kobilka BK (2013) Activation and allosteric modulation of a muscarinic acetylcholine receptor. *Nature* **504:**101–106 doi: 10.1038/nature12735.
- Leff P (1995) The two-state model of receptor activation. *Trends Pharmacol Sci* **16:**89–97 doi: 10.1016/S0165-6147(00)88989-0.
- Lefkowitz RJ (2004) Historical review: a brief history and personal retrospective of seven-transmembrane receptors. *Trends Pharmacol Sci* **25:**413–422 doi: 10.1016/j.tips.2004.06.006.
- Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, IJzerman AP, Cherezov V, and Stevens RC (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. *Science* **337:**232–236 doi: 10.1126/science.1219218.
- Mancini I, Brusa R, Quadrato G, Foglia C, Scandroglio P, Silverman LS, Tulshian D, Reggiani A, and Beltramo M (2009) Constitutive activity of cannabinoid-2 (CB2) receptors plays an essential role in the protean agonism of (+)AM1241 and L768242. *Br J Pharmacol* **158:**382–391 doi: 10.1111/j.1476-5381.2009.00154.x.
- Manglik A and Kobilka B (2014) The role of protein dynamics in GPCR function: insights from the β2AR and rhodopsin. *Curr Opin Cell Biol* **27:**136–143 doi: 10.1016/j.ceb.2014.01.008.

- Marie J, Koch C, Pruneau D, Paquet JL, Groblewski T, Larguier R, Lombard C, Deslauriers B, Maigret B, and Bonnafous JC (1999) Constitutive activation of the human bradykinin B2 receptor induced by mutations in transmembrane helices III and VI. *Mol Pharmacol* **55:**92–101.
- Matera C, Flammini L, Quadri M, Vivo V, Ballabeni V, Holzgrabe U, Mohr K, De Amici M, Barocelli E, Bertoni S, and Dallanoce C (2014) Bis(ammonio)alkane-type agonists of muscarinic acetylcholine receptors: synthesis, in vitro functional characterization, and in vivo evaluation of their analgesic activity. *Eur J Med Chem* **75:**222–232 doi: 10.1016/j.ejmech.2014.01.032.
- Miller-Gallacher JL, Nehmé R, Warne T, Edwards PC, Schertler GFX, Leslie AGW, and Tate CG (2014) The 2.1 Å resolution structure of cyanopindolol-bound β1-adrenoceptor identifies an intramembrane Na+ ion that stabilises the ligand-free receptor. *PLoS ONE* **9:**e92727 doi: 10.1371/journal.pone.0092727.
- Newman-Tancredi A, Cussac D, Marini L, Touzard M, and Millan MJ (2003) h5-HT(1B) receptor-mediated constitutive Galphai3-protein activation in stably transfected Chinese hamster ovary cells: an antibody capture assay reveals protean efficacy of 5-HT. *Br J Pharmacol* **138:**1077–1084 doi: 10.1038/sj.bjp.0705140.
- Papaneophytou CP, Grigoroudis AI, McInnes C, and Kontopidis G (2014) Quantification of the effects of ionic strength, viscosity, and hydrophobicity on protein-ligand binding affinity. *ACS Med Chem Lett* **5:**931–936 doi: 10.1021/ml500204e.
- Pauwels PJ, Rauly I, Wurch T, and Colpaert FC (2002) Evidence for protean agonism of RX 831003 at alpha 2A-adrenoceptors by co-expression with different G alpha protein subunits.

 *Neuropharmacology** 42:855–863.

- Pierce KL, Premont RT, and Lefkowitz RJ (2002) Seven-transmembrane receptors. *Nat Rev Mol Cell Biol* **3:**639–650 doi: 10.1038/nrm908.
- Pihlavisto M, Sjöholm B, Scheinin M, and Wurster S (1998) Modulation of agonist binding to recombinant human alpha2-adrenoceptors by sodium ions. *Biochim Biophys Acta* **1448:**135–146.
- Prilla S, Schrobang J, Ellis J, Höltje H, and Mohr K (2006) Allosteric interactions with muscarinic acetylcholine receptors: complex role of the conserved tryptophan M2422Trp in a critical cluster of amino acids for baseline affinity, subtype selectivity, and cooperativity. *Mol Pharmacol* **70:**181–193 doi: 10.1124/mol.106.023481.
- Rasmussen, SGF, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah STA, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, and Kobilka BK (2011) Crystal structure of the β2 adrenergic receptor-Gs protein complex. *Nature* **477:**549–555 doi: 10.1038/nature10361.
- Rosenbaum DM, Rasmussen, SGF, and Kobilka BK (2009) The structure and function of G-protein-coupled receptors. *Nature* **459:**356–363 doi: 10.1038/nature08144.
- Schrage R, Holze J, Klockner J, Balkow A, Klause AS, Schmitz A-L, Amici M de, Kostenis E, Trankle C, Holzgrabe U, and Mohr K (2014) New insight into active muscarinic receptors with the novel radioagonist [3H]iperoxo. *Biochem Pharmacol* **90:**307–319 doi: 10.1016/j.bcp.2014.05.012.
- Schrage R and Kostenis E (2016) Functional selectivity and dualsteric/bitopic GPCR targeting.

 *Curr Opin Pharmacol 32:85–90 doi: 10.1016/j.coph.2016.12.001.
- Schrage R, Seemann WK, Klöckner J, Dallanoce C, Racké K, Kostenis E, De Amici M, Holzgrabe U, and Mohr K (2013) Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor. *Br J Pharmacol* **169:**357–370 doi: 10.1111/bph.12003.

- Seemann WK, Wenzel D, Schrage R, Etscheid J, Bodefeld T, Bartol A, Warnken M, Sasse P, Klockner J, Holzgrabe U, DeAmici M, Schlicker E, Racke K, Kostenis E, Meyer R, Fleischmann BK, and Mohr K (2016) Engineered context-sensitive agonism tissue-selective drug signaling through a G protein-coupled receptor. *J Pharmacol Exp Ther* doi: 10.1124/jpet.116.237149.
- Steinfeld T, Mammen M, Smith JAM, Wilson RD, and Jasper JR (2007) A novel multivalent ligand that bridges the allosteric and orthosteric binding sites of the M2 muscarinic receptor. *Mol Pharmacol* **72:**291–302 doi: 10.1124/mol.106.033746.
- Strange PG (2008) Agonist binding, agonist affinity and agonist efficacy at G protein-coupled receptors. *Br J Pharmacol* **153:**1353–1363 doi: 10.1038/sj.bjp.0707672.
- Tao Y-X (2008) Constitutive activation of G protein-coupled receptors and diseases: insights into mechanisms of activation and therapeutics. *Pharmacol Ther* **120:**129–148 doi: 10.1016/j.pharmthera.2008.07.005.
- Tian WN, Duzic E, Lanier SM, and Deth RC (1994) Determinants of alpha2-adrenergic receptor activation of G proteins: evidence for a precoupled receptor/G protein state. *Mol Pharmacol* **45:**524–531.
- Tota MR and Schimerlik MI (1990) Partial agonist effects on the interaction between the atrial muscarinic receptor and the inhibitory guanine nucleotide-binding protein in a reconstituted system. *Mol Pharmacol* **37:**996–1004.
- Tränkle C, Andresen I, Lambrecht G, and Mohr K (1998) M2 receptor binding of the selective antagonist AF-DX 384: possible involvement of the common allosteric site. *Mol Pharmacol* **53:**304–312.
- Vivo M, Lin H, and Strange PG (2006) Investigation of cooperativity in the binding of ligands to the D(2) dopamine receptor. *Mol Pharmacol* **69:**226–235 doi: 10.1124/mol.105.012443.

- Voigtländer U, Jöhren K, Mohr M, Raasch A, Tränkle C, Buller S, Ellis J, Höltje H, and Mohr K (2003) Allosteric site on muscarinic acetylcholine receptors: identification of two amino acids in the muscarinic M2 receptor that account entirely for the M2/M5 subtype selectivities of some structurally diverse allosteric ligands in N-methylscopolamine-occupied receptors. *Mol Pharmacol* **64:**21–31 doi: 10.1124/mol.64.1.21.
- Xu JJ, Diaz P, Astruc-Diaz F, Craig S, Munoz E, and Naguib M (2010) Pharmacological characterization of a novel cannabinoid ligand, MDA19, for treatment of neuropathic pain.

 Anesth Analg 111:99–109 doi: 10.1213/ANE.0b013e3181e0cdaf.
- Yao BB, Mukherjee S, Fan Y, Garrison TR, Daza AV, Grayson GK, Hooker BA, Dart MJ, Sullivan JP, and Meyer MD (2006) In vitro pharmacological characterization of AM1241: a protean agonist at the cannabinoid CB2 receptor? *Br J Pharmacol* **149:**145–154 doi: 10.1038/sj.bjp.0706838.
- Yuan S, Chan HCS, Vogel H, Filipek S, Stevens RC, and Palczewski K (2016) The Molecular Mechanism of P2Y1 Receptor Activation. *Angew Chem Int Ed Engl* **55:**10331–10335 doi: 10.1002/anie.201605147.

MOL #107276

Footnotes

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) by grants to K.M. and U.H. [HO1368/12-1 and MO821/2-1]. A.D.M. was supported by the DFG-funded Research Training Group 1873. The University of Milan financed a four-year postdoctoral position for C.M.

Current address of C.M.: Institute for Bioengineering of Catalonia (IBEC), Parc Cientific de Barcelona (PCB), Carrer Baldiri Reixac 15-21, 08028 Barcelona, Spain.

Current address of R. S.: CNS Discovery Research, UCB Pharma, Chemin du Foriest R4, B-1420 Braine-l'Alleud, Belgium.

Name and full address and email of the person to receive reprint request: Klaus Mohr, Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Straße 3, 53121 Bonn, Germany. Tel: +49 228 73 9103. Fax: +49 228 73 9215. E-mail: k.mohr@uni-bonn.de.

MOL #107276

Figure legends

Figure 1. Test compounds and proposed mechanism of action of dualsteric ligands acting as protean agonists. (**A**) Structures of the dualsteric ligands examined in this study, their respective orthosteric moieties isox, iperoxo (iper), and oxo-oxotremorine M (OOM), and the allosteric fragments C6-naphthalimide (6-naph), C6-phthalimide (6-phth) and C8-naphthalimide (8-naph). The classical muscarinic partial agonist pilocarpine and the endogenous agonist acetylcholine (ACh) were used as reference compounds. (**B**) Proposed model to clarify the mode of action of dualsteric protean agonists at the M₂ receptor. Dualsteric ligands may potentially bind either in a dualsteric binding pose, stimulating receptor signaling, or in a purely allosteric pose, inactivating the receptor (Bock et al., 2014). In this sense, dualsteric binding of protean agonists may lead to a positive signaling output in an inactive receptor system (hypothetical blue curve), whereas, the compound may behave as an inverse agonist in a receptor system with spontaneous activity (hypothetical red curve).

Figure 2. Establishment of a robust assay system with substantial amount of spontaneous activity for the muscarinic M_2 receptor. (A_i) Increasing concentrations of NaCl affecting basal, atropine-inhibited, and ACh-induced [35 S]GTP γ S binding. (A_{ii}) Effect of NaCl, KCl, NaBr, or NMDGCl (200 mM each) on the spontaneous activity of M_2 receptors in [35 S]GTP γ S experiments. ***: P<0.001, significantly different from Tris according to one-way ANOVA test with Bonferroni's post-test. (**B**) Experimental dose-response curves of (B_i) ACh and (B_{ii}) iper obtained in presence (Tris) or absence (Tris NaCl, Tris KCl) of constitutive activity of the M_2 receptor. In the spontaneously active system, the whole curve was translated to higher values, as proposed in Supplemental Figure 1B. (**C**) Orthosteric compounds-induced [35 S]GTP γ S binding in CHO-hM $_2$ membranes in absence (Tris NaCl, C_i) or presence (Tris, C_{ii}) of spontaneous receptor activity. While the maximum inducible effect (E_{max}) of isox and OOM were equal to that of ACh in both systems, iperoxo showed a superior E_{max} than ACh in a silent system. (A-C) Shown are mean values \pm SEM of three to seven independent experiments each performed in triplicate.

MOL #107276

Figure 3. Isox-6-naph and OOM-6-naph display protean agonism in CHO-hM2 membranes in

absence (Tris NaCl) or presence (Tris) of spontaneous receptor activity. (A,B,C) Dualsteric ligands

which carry iperoxo as the orthosteric building block displayed partial agonism in both the silent and the

spontaneously active set-up regardless of their C6-naph (A), C6-phth (B), or C8-naph (C) allosteric

moiety. Noteworthy, iper-6-naph and iper-6-phth displayed significantly higher E_{max} values in the

spontaneously active system. (D,E,F,G,H) Isox-6-naph, isox-6-phth, isox-8-naph, OOM-6-naph and

OOM-6-phth were all weak partial agonists in the quiescent system (blue curve) but changed their E_{max} in

the presence of constitutive receptor activity (red curve). Isox-8-naph displayed increased receptor

activation (F), isox-6-phth (E) and OOM-6-phth (H) showed no difference in effect, whereas the two

compounds with a C6-naph moiety, i.e. isox-6-naph (D) and OOM-6-naph (G), switched from partial to

inverse agonism and were thus classified as protean ligands. (A-G) Shown are mean values ± SEM of

three to seven independent experiments each performed in triplicate.

Figure 4. Isox-6-naph displayed enhanced affinity to the allosteric binding site of the [3H]NMS-

bound M₂ receptor in Tris. (A-E) [³H]NMS dissociation experiments performed in presence of (A) iper-

6-naph, (B) iper-8-naph, (C) isox-6-naph, (D) isox-8-naph and (E) OOM-6-naph in Tris or Tris NaCl

buffer. Depicted are concentration-effect curves which show the delay of [3H]NMS dissociation rate (k₁)

induced by the dualsteric test compounds in two point kinetic experiments (Kostenis and Mohr, 1996).

The inflection point of the curves represents the allosteric affinity of the tested compounds for the

[3 H]NMS-bound receptor. (A-E) Shown are mean values \pm SEM of three to five independent experiments

each performed in duplicate.

Figures

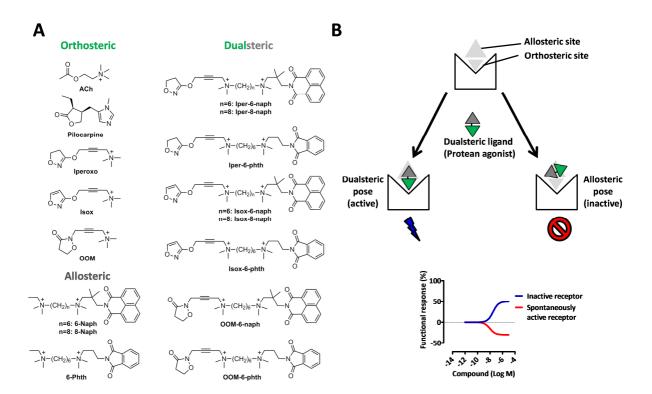


Figure 1

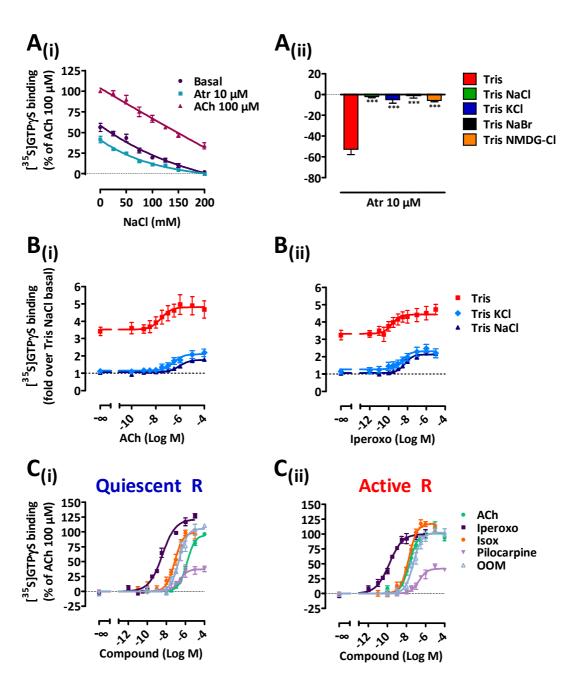


Figure 2

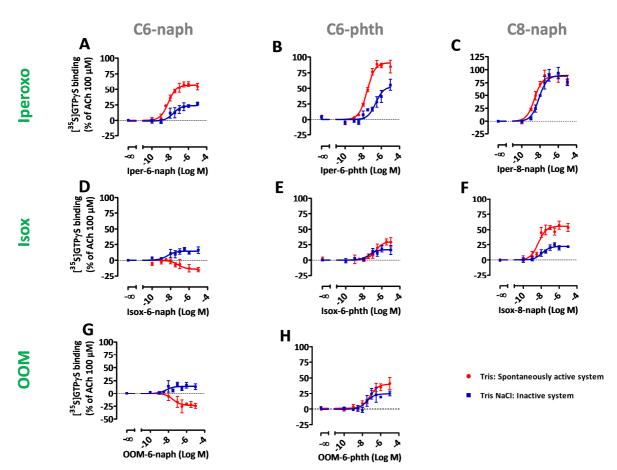


Figure 3

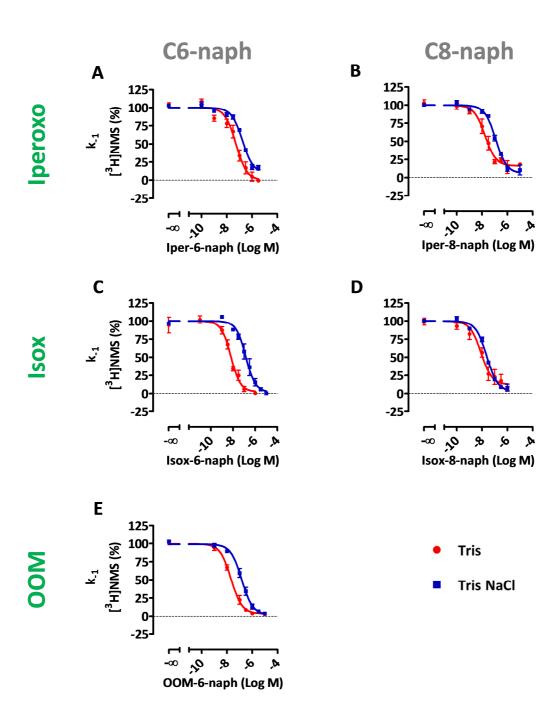


Figure 4