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Abstract 

Combining chemotherapeutics to treat malignant tumors has been shown to be effective in 

preventing drug resistance, tumor recurrence, and reducing tumor size.  We modeled 

combination drug therapy in PC-3 human prostate cancer cells using mixture design response 

surface methodology (MDRSM), a statistical technique designed to optimize compositions that 

we applied in a novel manner to design combinations of chemotherapeutics.  Conventional 

chemotherapeutics (mitoxantrone, cabazitaxel, and docetaxel) and natural bioactive compounds 

(resveratrol, piperlongumine, and flavopiridol) were used in twelve different combinations 

containing three drugs at varying concentrations.  Cell viability and cell cycle data were 

collected and used to plot response surfaces in MDRSM that identified the most effective 

concentrations of each drug in combination.  MDRSM allows for extrapolation of data from 

three or more compounds in variable ratio combinations, unlike the Chou-Talalay method.  

MDRSM combinations were compared with combination index data from the Chou-Talalay 

method and were found to coincide.  We propose MDRSM as an effective tool in devising 

combination treatments that can improve treatment effectiveness, and increase treatment 

personalization because MDRSM measures effectiveness rather than synergism, potentiation or 

antagonism.  
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Introduction 

Drug resistance is one of the greatest problems facing chemotherapy, and is believed to be the 

cause of over 90% of failed treatments of metastatic cancer patients in 2005, and continues to be 

a major problem to this day (Kachalaki et al., 2016; Longley and Johnston, 2005).  Personalized 

and targeted therapies, such as immunotherapy, have shown great potential in combating cancer, 

but are still affected by chemoresistance (Bozic et al., 2013). Prostate cancer frequently becomes 

resistant to commonly used treatments (Li et al., 2001; Liang et al., 2010; Theyer et al., 1993; 

Tilley et al., 1995), and is the second most commonly diagnosed cancer in men in the United 

States (Siegel et al., 2018). Of the diagnosed prostate cancers 10% are metastatic (Jemal et al., 

2011).  Metastatic prostate cancer is incurable and highly fatal (Gundem et al., 2015; Hegeman et 

al., 2004; Kim et al., 2003; Kim et al., 2004; Patel et al., 2004; Pinthus et al., 2004).  PC-3 

human prostate cancer cells, a cell line derived from metastatic prostate cancer, have been shown 

to be chemoresistant to some common chemotherapeutics (Li et al., 2001; Theyer et al., 1993; 

Tilley et al., 1995).   One way to combat chemoresistance is combination drug therapy.  

Combination therapy uses a combination of drugs with different mechanistic actions.  It has also 

been theorized that multi-mechanistic drugs may be helpful in preventing the development of 

resistance (Zimmermann et al., 2007).  Many naturally occurring compounds such as resveratrol 

(RES), flavopiridol (FLAV), and piperlongumine (PIP) are multi-mechanistic compounds that 

have been identified as putative chemotherapeutics (Pan et al., 2012).  Treatment with RES has 

been shown to cause increases in cytosolic calcium (Ma et al., 2007; Peterson et al., 2016), bind 

to various proteins to induce intrinsic apoptosis (Calamini et al., 2010; Hsieh et al., 2014; 

Locatelli et al., 2005), and cause production of ROS (Miki et al., 2012).  FLAV inhibits cyclin 

dependent kinases (CDK) to disrupt the cell cycle, and causes production of ROS (Gupta et al., 
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2010; Iyer et al., 2013; Shao et al., 2016), while PIP has been shown to cause ROS production 

and inhibit STAT3 and NF-κB (Adams et al., 2012; Ahn, 1994; Bharadwaj et al., 2015; Ginzburg 

et al., 2014; Gong et al., 2014).  Cabazitaxel (CAB), docetaxel (DOC), and mitoxantrone (MIT) 

are all conventional chemotherapeutics which are used to treat prostate cancer (De Bono et al., 

2010; Paller and Antonarakis, 2011; Tannock et al., 2004).  CAB and DOC are both tubulin 

inhibitors (Galsky et al., 2010; Jordan and Wilson, 2004). However, resistance develops to DOC, 

but not CAB in some forms of prostate cancer likely because CAB has a lower binding affinity 

to the drug efflux pump, P-glycoprotein (Galsky et al., 2010; OPREA-LAGER et al., 2013; 

Paller and Antonarakis, 2011).  Mitoxantrone is a DNA intercalating agent, and topoisomerase II 

inhibitor which prevents DNA replication (Ehninger et al., 1990).  DOC, CAB, and MIT are all 

used in treating advanced prostate cancer, and have often been used in combination therapies (De 

Bono et al., 2010; Petrylak et al., 2004).   

The most commonly used statistical model to define and test chemotherapeutic drug 

combinations is the Chou-Talalay method for measuring drug synergism (two-way complement 

between drugs) and antagonism (two-way interference between drugs) (Chou, 2010).  However, 

the Chou-Talalay method is limited by: (1) only directly analyzing drug combinations of two 

drugs, (2) focusing on constant ratio combinations, and (3) measurements of synergism that are 

not directly correlated with effectiveness.  The Chou-Talalay method uses the 1:1 mixtures of the 

two drugs being tested at concentrations that are multiples of the Ic50 (0.50x, 1.0x, 2.0x, and 

4.0x Ic50), and requires collection of data of each drug alone (Chou and Talalay, 1983; Chou and 

Talalay, 1984).  Using Chou-Talalay data you infer how three drug interactions may work, but 

you never directly measure how synergistic the drugs are together. Chou recognized this 

limitation when he stated that combinations do not act as two different drugs, but act as a third 
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drug altogether (Chou, 2010).  The advantage of measuring non-constant ratio combinations, is 

that non-constant ratios provide a broader range of mixtures that enable the discovery of novel 

drug interactions.  The Chou-Talalay method can be used to test variable ratio combinations, but 

it requires a significant amount of data collection.  Lastly, to find the most effective 

chemotherapeutic mix one is not necessarily interested in the drugs with the strongest synergism, 

but the ultimate goal is to identify the combination that is most effective at reducing the tumor. 

Response surface methodologies (RSM) are a compilation of mathematical and statistical models 

that create a 3-dimentional map based on interpolating defined data points.  A number of 

different RSMs have been used in cancer research.  For example, the Box-Behnken design was 

used to optimize the incorporation of chemotherapeutics into nanoparticles (Gupta et al., 2016). 

Additionally, fractional factorial design was used to maximize extraction of putative 

chemotherapeutics from plants (Lu et al., 2008) and Plackett-Burman was used to optimize the 

growth media for tumor cells to enable the discovery of a potential cancer vaccine (Zhao et al., 

2017).  To a lesser extent RSM has also been used to optimize combination chemotherapy.  For 

example, a multifactorial design was used to identify the most effective chemotherapeutic 

combination in prostate cancer (Jia et al., 2017).  Given how widely used RSM is in engineering 

and other fields it is unclear why it has been underutilized in chemotherapy.    

Mixture design response surface methodology (MDRSM) is a type of RSM that can test 

combinations with two or more compounds, and interpolate effective mixtures from non-constant 

ratio combinations.  MDRSM can be constrained by desired parameters as designated by the 

researcher, such as making the model define a combination that has between 20-80% of one drug 

(Dejaegher and Heyden, 2011).  MDRSM has been used in many other fields to create the most 

effective or desirable product, such as soil composition for a landfill, the most desirable mixture 
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of ingredients for any given food product, and developing pharmaceutical formulations (Cornell, 

2011; Lawson and Erjavec, 2000). MDRSM can be used to develop maximally effective drug 

combinations for treating cancer, because it is not limited to measuring only synergism, or 

antagonism, but takes into account any potentiation and indicates the most effective combination.  

Although a mixture of two or three drugs is most common in drug combination studies, MDRSM 

can be used to optimize combinations of two or more compounds.  The effects of such mixtures 

on outcomes such as cell viability or cell cycle inhibitions is experimentally determined and 

normalized to a control. The derived data for percent viability or percent inhibition are then used 

to construct the response surface.  The surface predicts the outcome of any combination of the 

tested compounds, including the unique blend that would minimize or maximize the desired 

response. In this study we compare MDRSM to the Chou-Talalay model, and test 12 different 

combinations of 3 drugs using 6 different chemotherapeutic agents.  We demonstrate that 

MDRSM can be used to determine the efficacy of three drug mixtures in non-constant ratios.  

Materials & Methods 

Cell lines.   

PC-3 human prostate cancer cells were obtained from ATCC (Rockville, MD), and were cultured 

in F12-K medium containing 10% FBS and 1% antibiotic (penicillin/streptomycin).  Cells were 

grown in an incubator at 37 ͦ C and 5% CO2. Cells from passage numbers 3-17 were used. 

Reagents.   

Cabazitaxel was obtained from APExBIO (Houston, TX) and dissolved in dimethyl sulfoxide 

(DMSO) to make a 40 µM stock solution.  Docetaxel, flavopiridol, mitoxantrone hydrochloride, 

and piperlongumine were obtained from Sigma Aldrich (St. Louis, Missouri) and were dissolved 

in DMSO to make a 45 µM, 160 µM, 400 µM, and 8 mM stock solution, respectively.  Trans-
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resveratrol was obtained from Cayman Chemical (Ann Arbor, MI) and dissolved in DMSO to 

make a 75 mM stock solution.  Alamarblue was obtained from Remel (Lenexa KS).  Propidium 

iodide was obtained from Sigma Aldrich (St. Louis, Missouri) and dissolved in PBS for a stock 

concentration of 50 µg/mL.   

Cell Viability.   

Cells were grown near confluency, trypsinized, and 10,000 cells were seeded on 96-well plates.  

Cells were allowed to adhere to the plate for 24 hours before treatment with the vehicle control 

(DMSO 0.1%) or 1 of 10 drug combinations and allowed to incubate for 48 hours (37oC and 5% 

CO2).  DMSO only control was set as 100% viability.  Each data point was normalized to the 

DMSO control and is presented as a percent reduction in cell viability so that the strongest 

reduction in cell viability would give us a maximum on the surface.  Each combination treatment 

also had its own control where treatment medium, without cells, was analyzed with Alamarblue 

to eliminate background fluorescence and interactions between the drugs and the Alamarblue 

reagent.   After 48 hours, the cells were treated with 10 µL of Alamarblue (1:10 ratio of 

Alamarblue to media), and incubated for 6 hours (37oC and 5% CO2).  The fluorescence was 

then analyzed on a BMG LABTECH FLUOstar OPTIMA plate reader (BMG LABTECH Inc., 

Cary, NC) using the 544 nm excitation filter and the 612 nm emission filter.  All treatments were 

done with three biological replicates and in triplicate within each biologic replicate. 

Ic50’s. 

The cell viability method above was used to collect data for varying concentrations above and 

below the Ic50 as shown in figure 2. GraphPad Prism 7 (Graphpad Software, San Diego, 

California) was used to fit a variable slope non-linear regression model to the data that had been 

normalized to a control (DMSO).  After the model identified the Ic50 we further refined the Ic50 
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by testing several drug concentrations near the calculated Ic50 to establish a drug concentration 

that reliably reduced cell viability by 50%.  The data for the additional experiments and the 

statistics for the models can be found in supplemental tables 1-7. 

Flow cytometry.  Cells were grown near confluency, trypsinized, and seeded on 12-well plates at 

150,000 cells per well.  Cells were allowed to adhere to the plate for 24 hours before treatment 

with the specified 10 combinations or the vehicle control (DMSO 0.2%) for 48 hours (incubated 

at 37o and 5% CO2).  After 48 hours, the treatment medium was removed, and the cells were 

washed twice with PBS before being trypsinized and harvested.  To each aliquot of cells 500 µL 

of 70% EtOH was added, and samples were stored at 4o C.  When analyzed, samples were 

stained with propidium iodide, and 40,000 counts per sample were collected on a BD Accuri C6 

Flow cytometer (BD bioscience).  Gates were drawn for the DMSO control using BD Accuri C6 

Software, and the same gates were used for data collection from each sample for data collection.  

Percentages of cells in G0, G1, S, and G2/M phases were calculated and normalized to the DMSO 

control.  All samples were done in triplicate. 

Chou-Talalay.   

Cell viability assays (Alamarblue) for 0.25x, 0.50x, 1x, 2x, and 4x IC50 for each dual 

combination of the six drugs was performed and normalized to a 0.8% DMSO control.  The data 

were input into the program CompuSyn (ComboSyn Inc., Paramus, New Jersey), as well as the 

concentration ratios, to find the combination index for each combination to determine synergism 

or antagonism.  All data was collected and analyzed as directed by the Chou-Talalay method 

(Chou and Talalay, 1983). 

Mixture design and model.   
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The statistical software JMP 12 (SAS Institute, Cary, North Carolina) was used to create and 

analyze the response surfaces.  A simplex lattice (3,2) mixture design, augmented by a center 

point and 3 axial points, was used (figure 1) (Cornell, 2011). Each mixture combination was 

replicated three times resulting in a design with 30 total experiments. After conducting each 

experiment, two responses: 1) cell viability and 2) cell cycle analysis were obtained and 

recorded.  Next, the method of least squares was used with the resulting data to estimate the 

coefficients in the quadratic mixture model used to define the response surface (Cornell, 2011).  

The quadratic mixture model is based on a Taylor series expansion with a second-degree 

polynomial (equation 1). 

                 Equation 1 

Where  is the predicted response  is the slope of the response and X is the concentration of the 

compounds which are indicated by the subscripts a, b, and c.  The predicted maximum for each 

combination was identified using the JMP profiler (that allows visualization of cross sections of 

the predicted response surface as one or two mixture components are varied at a time). The 

resulting maximum can also be identified on a contour plot of the fitted quadratic model over the 

simplex design region (for combinations of 3 compounds only).  The lack of fit F-test was 

performed, to check the adequacy of the quadratic model.  Statistical significance of the lack of 

fit (equation 3) was determined by an p-value ≤ 0.10.  

Response surfaces.  

The coordinate system for the simplex is present on each ternary plot.  In figure 1 the axes for 

compound 1 are negative sloping lines, the axes for compound 2 are parallel lines (zero slope), 

and the axes for compound 3 are positive sloping lines.  For example, point 10 on figure 1 

represents 16.67% compound 1 (following negative sloping lines to the bottom of the plot), 
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16.67% compound 2 (following the parallel lines to the left side of the plot), and 66.67% 

compound 3 (following the positive sloping lines to the right side of the plot).  Three 

combinations are in the corners of the ternary plot (points 1, 2, and 3 of figure 1) and represent 

the use of only the single compound specified in that corner.  Three combinations (points 4, 5, 

and 6 of figure 1) are in the middle of the axis between two corners, and represent a 50-50 

combination of the two compounds named at those corners.  The other four points (7, 8, 9, and 

10 of figure 1) are located in the middle of the ternary plot, and represent mixtures containing 

various concentrations of all three compounds.  The 10 points create an even spread over the plot 

that produces a strong surface for differentiating mixtures (Dejaegher and Heyden, 2011).  

Adding more compounds to the mixture design increases the amount of combinations that will 

need to be empirically tested to define the response surface.  For example, optimization of a 

mixture of 10 compounds would require testing of at least 66 different combinations.  Here we 

focused on combinations of 3 compounds, which require only 10 points.  The coordinate system 

produced on the simplex represents a percentage of a selected maximum concentration for each 

compound (table 1).  The maximum for each compound can be set to any concentration.  For 

example, 100% of compound 1 could be set to the maximum tolerable dose, while the maximum 

of compound 2 is set to 3X the IC50, and compound 3 to a therapeutic dose. We set the 

maximum concentration to the IC50 for each compound (figure 2), as determined by Alamarblue 

cell viability assay in PC-3 human prostate cancer cells.  The IC50 was used as the maximum 

specifically to have direct comparisons with the 0.5X IC50 combination index from the Chou-

Talalay method (correlates with points 4, 5, and 6 of the MDRSM model).  We used Alamarblue 

to measure relative cell viability of the 10 points, and set our DMSO control as 100% viability.  

We subtracted the normalized cell viability from 100 to express the data as a percent reduction in 
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cell viability so that the strongest reduction in cell viability would give us a maximum on the 

surface.  The maximum, or ideal combination, can be easily identified by the model.  The 

predicted points defined by the model are given 95% confidence intervals, and allow for 

statistical conclusions to be made about that point by comparing the confidence intervals. 

Results 

Drug combination modeling using MDRSM.   

We tested 12 different combinations. We limited each combination to three of the six total 

compounds (figure 3). Each data set is represented in a ternary plot.  The ternary plots can be 

read like topographical maps.  The red area indicates the area with the largest decrease in tumor 

cell viability.  The dark red area is the next most effective chemotherapeutic mixtures with gray, 

dark blue, and blue indicating the areas with successively lower decrease in tumor cell viability. 

Ten combinations were made with every possible three component arrangements of five 

compounds (DOC not included), and two combinations were formulated with DOC and CAB 

together.  Combinations containing DOC always contained CAB, to determine if MDRSM could 

differentiate between possible additive effects produced by drugs with similar mechanisms, 

however we found a synergistic interaction between them. CAB was used in the rest of the 

combinations because it was effective at a slightly lower concentration than DOC.     

We found that CAB is more effective than DOC when combined with PIP, and the surface favors 

a combination of CAB and DOC while excluding PIP from the mixture (figure 3A).  The model 

reveals the maximum reduction in cell viability to be 33% DOC, 67% CAB, and 0% PIP (table 

2) which causes a 45% decrease in viability.  When DOC and CAB are combined with FLAV 

(figure 3B) the surface favors a combination of FLAV (67.36%) and CAB (32.64%) and causes a 

52% decrease in cell viability, indicating that anti-tumor effect of CAB is stronger than DOC 
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when combined with FLAV.  This does not match the Chou-Talalay data that will be discussed 

later.  The data support the ability of MDRSM to identify the most effective combinations, even 

when those drugs have similar mechanisms.   

Each compound in the combination has an equal role in defining the surface, even if that 

compound is not included in the most effective combination. This phenomenon can cause the 

most effective combination to change between surfaces.  For example, the most effective 

combination for DOC-CAB-FLAV (figure 3B) is 0% DOC, 33% CAB, and 67% FLAV, but the 

most effective combination for FLAV-PIP-CAB (figure 3D) is 54% FLAV, 0% PIP, and 46% 

CAB.  The change of 13% in concentrations is caused by the presence of PIP in the model, and 

therefore such results should be confirmed with another combination model, or by reducing the 

MDRSM model to only look at combinations between the two compounds.  The 13% decrease is 

not a significant difference when the confidence intervals are compared, but with more precise 

measurements, or a mixture using a higher concentration than the Ic50, the difference may be 

significant.  

Our three drug mixtures also demonstrated that PIP, an effective agent against cancer when used 

in isolation, decreases the effectiveness of the other compounds when in combination (figure 3A, 

D, E, F, I, K, L).  PIP does not appear to be effective in combination with any of the other 

compounds that we tested, which the model shows by removing it from any combination that it 

has been used in.  This limited effectiveness of PIP in combination with other compounds may 

be in part due to its steep hill slope.  The Ic50 for PIP is 7 µM the next highest concentration 

used is 4.7 µM which only reduces tumor cell viability by 15%.  Subsequent experiments could 

be done redefining the mixture ratios to remain within the effective dose of PIP.  The effects of 

PIP are not only due to its steep hill slope; however, as RES has a similar effect to PIP, but does 
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not have the steep hill slope.  RES causes the effective area between RES (0%)-FLAV (0%)-MIT 

(100%) (figure 3H) to entirely change as compared to FLAV (56%)-PIP (0%)-MIT (44%) 

(figure 3E).  PIP does not appear to disrupt to the effectiveness of combinations like RES.  RES 

disrupts the effective of combinations, causing the surface to favor the use of only one 

compound, except between FLAV-CAB (figure 3G).  The model reveals that 0.28% RES slightly 

increases the effectiveness of (potentiates) FLAV and CAB; however, the concentration of 

resveratrol is not a significant amount, and becomes 0% (Table 2). The presence of RES in the 

model shifts the concentration higher for FLAV, and lower for CAB as compared to figure 3A 

(33% CAB and 67% FLAV) to 73% FLAV and 27% CAB (table 2).  The handling of RES and 

PIP in these combinations identify the ability of MDRSM to find the most effective 

combinations both in the presence of antagonism.  The antagonistic actions identified by RES 

and PIP coincide with antagonism measured by the Chou-Talalay method (figure 4).   

Of the 12 combinations performed, only one combination (FLAV-MIT-CAB figure 3C) called 

for a mixture of all three compounds (table 2).  The combinations favor higher percentages of 

FLAV (55%) and MIT (44%) while only having a minute amount of CAB (1%) figure 3C). 

However, the predicted maximum viability decreases of 56% and 95% confidence interval of 

44% to 69% suggests that there is not a significant difference in reduced viability from that slight 

addition of CAB (table 2).  As stated previously, this may be significant if higher concentrations 

were used, or if a more precise response was measured.  

The Chou-Talalay method identifies synergism and confirms some MDRSM mixtures.   

MDRSM identifies the optimal concentration, but the Chou-Talalay method differentiates 

between synergism, additive and antagonistic effects.  The combination index curve produced by 

the Chou-Talalay equation cannot be extrapolated to include combinations with non-constant 
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ratios without collecting significantly more data.  As per our design, the equal mixture of 0.5X 

IC50 of the Chou-Talalay data is included in the MDRSM data as a 50-50 mixture (points 4, 5, 

and 6 of Table 1) between two compounds.  Interestingly, there is synergism between DOC-CAB 

at 0.5X IC50 (figure 4) which is close to what is identified as the most effective dose in the 

MDRSM seen in figure 3A (33% DOC, 67% CAB, 0% PIP).  The MDRSM model accounts for 

that point, and still identifies the ideal combination as 33% DOC and 67% CAB (table 2), 

although this may be influenced by PIP.  In the mixture of DOC-CAB-FLAV (figure 3B) there is 

stronger synergism between DOC-FLAV (0.63441) than CAB-FLAV (0.79421) or DOC-CAB 

(0.73087) (figure 4).  However, MDRSM places the ideal combination between CAB-FLAV 

because it is measuring the effectiveness of the combination, and not the synergism.  Perhaps this 

is due to the ability of PC-3 cells to become resistant to DOC more readily than CAB, which 

makes the CAB-FLAV mixture more effective. 

The Chou-Talalay model identified synergism between CAB and FLAV (figure 4) which 

correlates with most effective dose identified using MDRSM data.  MDRSM places the optimal 

concentration between CAB and FLAV in figure 3B, D, and G.  The concentrations vary 

between mixtures, but this is due to the change in the surface caused by the third compound.  The 

optimal concentration identified by MDRSM appear to correlate strongly with synergistic actions 

identified by the Chou-Talalay method, and we conclude that the most effective mixture 

identified by MDRSM is strongly affected by synergism, but not in every circumstance.  

MDRSM provides and advantage over the Chou-Talalay model because it identifies the most 

effective combination irrespective of the mechanism. 

Cell cycle data is a valid input for MDRSM.   
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To further show the robustness of MDRSM, we performed cell cycle analysis for the 10-point 

mixture of CAB-FLAV-MIT because all three drugs have a different effect on the cell cycle.  

CAB inhibits microtubule formation, FLAV inhibits CDK’s, and MIT inhibits topoisomerase II 

and prevents DNA unwinding (Ehninger et al., 1990; Galsky et al., 2010; Gupta et al., 2010; Iyer 

et al., 2013).  We treated the samples with the ten combinations of three compounds described 

above with the maximum concentration being 80 nM CAB, 320 nM FLAV, 800 nM MIT in 

order to see pronounced effects on the cell cycle.  After 48 hours of treatment we harvested the 

cells, stained them with propidium iodide and used a flow cytometer to analyze the cell cycle 

phase for cells treated with the 10 mixtures.  This data was then normalized to the DMSO control 

and used to produce the surfaces in figure 5.  The combination that gives the largest decrease of 

cells in the G1 phase is a combination that includes CAB (figure 5A), and the model shows 100% 

CAB (table 3).  However, the lack of fit is significant (p-value = 0.0087), meaning the model 

does not fit the data properly, or the combination defined by this model is not significant.  

Maximizing the number of cells in the S phase requires a mixture of MIT and CAB (figure 5B), 

which is 32% CAB and 68% MIT (table 3).  This is perhaps due to the inability of cells to divide, 

caused by the microtubule inhibitor CAB, and the DNA damage, as well as halting of DNA 

replication by MIT.  The most effective dose at trapping cells in the G2/M phase is 100% CAB 

because of the inability of the cells to form microtubules and divide (figure 5C).  Maximizing 

cells in the sub G1 phase, or causing the most damage to DNA, requires a combination of MIT 

and FLAV (figure 5D), and the model shows the ideal combination is 48% MIT and 52% FLAV 

(table 3).  Comparisons between the MDRSM model produced by cell viability (figure 3C), and 

the models produced here cannot be made because the same concentrations were not used.  

However, comparisons between cell viability and cell cycle phase, when the same concentrations 
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are used, may help to determine the mechanism by which the drugs are reducing cell viability, 

whether it be cell death, halting of the cell cycle, or a mixture of both.  It is interesting to note 

that the ratio between drugs in the cell viability treatment, and that of the sub G1 phase are 

similar even though the concentrations are different. 

Discussion 

In this work, we have reviewed the basic uses and application of MDRSM in combination 

chemotherapy.  We show several models of three-drug combinations and the limitations and 

advantages of MDRSM.  We demonstrate that cell viability and cell cycle assays are valid inputs 

for creating a surface.  We have demonstrated beneficial combinations for treating PC-3 human 

prostate cancer cells between standard chemotherapeutics, and FLAV, a naturally occurring 

bioactive compound.  We have shown that RES and PIP can interfere with standard 

chemotherapeutics.  However, we speculate that RES may potentiate CAB-FLAV.  We have also 

shown that the optimal combination defined by MDRSM is affected by the response that is 

chosen to define the surface. MDRSM, in companion with the Chou-Talalay method, can be 

used to identify strong combination treatments that can increase the effectiveness of 

chemotherapy.   

MDRSM has the potential to bring a new perspective to developing drug combinations.  

MDRSM can be used to measure the effectiveness of drug mixtures targeting specific aspects of 

cancer such as those defined in the hallmarks of cancer (Hanahan and Weinberg, 2011).  Further, 

by collecting multiple responses for one combinations, such as the effects of the combinations on 

healthy tissue as well as cancerous tissue, the models for each response can be merged into a new 

model known as the desirability function.  The desirability function can be used to maximize the 

effect on cancerous tissue, while minimizing the effects on healthy tissue.  Developing such a 
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treatment would be a major step forward in improving the quality of life for cancer patients.  

MDRSM could also be used to develop treatments based on the prominent theory of tumor 

heterogeneity (Singh and Settleman, 2010), which is the existence of frequently-chemoresistant 

tumorigenic cancer stem cells (CSC) that produce a genetically diverse tumor.  This theory cites 

the existence of resistant CSCs to be the cause of chemoresistance and tumor recurrence 

(Housman et al., 2014; Marusyk and Polyak, 2010).  MDRSM could model a combination of 

common chemotherapeutics along with a targeted treatment of CSCs that could lead to 

maximum tumor reduction, and minimal risk of tumor recurrence. 

Although we collected ten data points for each simplex lattice design, more data points could 

have been added to the design.  Adding more points to a design can allow for fitting a higher 

order polynomial model (such as cubic or quartic) to the data, however, this is not guaranteed to 

make the fitted model more reliable.   When fitting an empirical model, a higher order term may 

just model the random experimental noise.  Normally in response surface methods a quadratic 

model based on the two term Taylor series expansion is sufficient to identify interactions and the 

combination of compounds predicted to result in the maximum response.  However, MDRSM 

can be used in an iterative process to further refine the optimal mixtures.  This can be 

accomplished by performing subsequent MDRSM(s), but this time defining the points more 

narrowly within the region identified in the preceding MDRSM as the optimal mixture. 

MDRSM is a powerful tool for measuring combination chemotherapy, but the data can easily be 

overinterpreted.  For example, a response for MDRSM could be as simple as a cell viability 

experiment in a cell model, but the ideal combination given by the surface would only be ideal 

for reducing cell viability.  Response surfaces produced by an apoptotic assay, or cell cycle 

analysis may have similar results as the cell viability surface, but the differences between ideal 
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combinations will be specific for the response.  One can compare multiple responses of the same 

combination of drugs in MDRSM by merging the models to form a desirability function as 

mentioned above.  Choosing the response for MDRSM should be specific to the cell, or animal 

model, and should be reflective of a desired effect for combating the specific type of cancer 

being researched.  A potential limitation of MDRSM is the choice of maximum concentrations.  

Preliminary data from a Chou-Talalay combination index analysis may be helpful in choosing a 

maximum concentration.   

We propose MDRSM as an effective tool for modeling and defining drug combinations in cell, 

animal, and clinical models.  MDRSM can also be a tool in combating chemoresistance by using 

a combination of drugs at their maximal effectiveness for decreasing tumor size, while 

minimizing the ability of the remaining tumor cells to become resistant.  MDRSM has the ability 

to develop combinations using two or more drugs, and provides a novel and improved way of 

measuring the effectiveness of multiple compounds.  MDRSM in combination with the Chou-

Talalay method can cover a broad area of drug combinations, providing a multiplicity of data 

while being both cost- and time-effective. 
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Figure Legends 

Figure 1 – JMP ternary plot with combination points.  Ternary plot of a three-compound 

combination containing the ten points used to define a surface.  Concentrations for each point are 

read by following the left diagonal lines for compound 1, horizontal lines for compound 2, and 

right diagonal lines for compound 3. 

Figure 2 – Ic50 graphs for chemotherapeutics in PC-3 human prostate cancer cells.  (A) DOC – 

45 nM (B) CAB – 40 nM (C) MIT – 400 nM (D) RES – 75 µM (E) FLAV – 160 nM (F) PIP – 7 

µM. n=3 

Figure 3 – Response surfaces of 12 different mixtures. Bright red areas represent the most 

effective combinations at reducing cell viability.  Deep red, grey, and blue are listed in 

descending order of effectiveness.  The numbers within each contour represent the maximum 

prediction found within that contour, meaning that all predictions within that contour are less 

than or equal to the number found within but greater than the numbers found in the lower 

contours.  The maximum point on the surface is indicated by a diamond symbol.  The mixtures 

for each ternary plot are: (A) DOC, CAB, PIP (B) DOC, CAB, FLAV (C) FLAV, MIT, CAB (D) 

FLAV, PIP, CAB (E) FLAV, PIP, MIT (F) PIP, MIT, CAB (G) RES, FLAV, CAB (H) RES, 

FLAV, MIT (I) RES, FLAV, PIP (J) RES, MIT, CAB (K) RES, PIP, CAB (L) RES, PIP, MIT.  

All data were obtained by Alamarblue cell viability assay with three biological replicates in 

triplicate. 

Figure 4 – Chou-Talalay combination index (CI) chart for all combinations.  Red represents 

synergistic CI’s, grey represents additive CI’s, and blue represents antagonistic CI’s.  CI’s were 

all obtained by Alamarblue cell viability assay with three biological replicates in triplicate. 
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Figure 5 – Response surfaces produced by cell cycle analysis.  Bright red areas represent the 

most effective combinations.  Deep red, grey, and blue are listed in descending order of 

effectiveness.  The numbers within each contour represent the maximum prediction found within 

that contour, meaning that all predictions within that contour are less than or equal to the number 

found within but greater than the numbers found in the lower contours.  The maximum point on 

the surface is indicated by a diamond symbol.  (A) Surface for relative decrease in G1 phase 

populations.  (B) Surface for maximizing S phase populations.  (C) Surface for maximizing 

G2/M phase populations.  (D) Surface for maximizing sub G1 populations.  All data were 

obtained from flow cytometry of propidium iodide stained cells.  All samples were analyzed in 

triplicate. 
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Table 1 – Ternary Plot Coordinate System Represented as Percentages – 100% can be artificially set to any desired concentration. 

 Ternary point Compound 1 Compound 2 Compound 3 

1 1 100% 0% 0% 

2 2 0% 100% 0% 

3 3 0% 0% 100% 

4 4 50% 50% 0% 

5 5 50% 0% 50% 

6 6 0% 50% 50% 

7 7 33.33% 33.33% 33.33% 

8 8 66.67% 16.67% 16.67% 

9 9 16.67% 66.67% 16.67% 

10 10 16.67% 16.67% 66.67% 
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Table 2 – Optimal Concentration and Percentages for Maximizing a Reduction in Cell Viability - *Values less than or equal to 

0.10 indicate that the model does not fit the data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Compound 1 Compound 2 Compound 3 Predicted 

Decrease in 
% Cell 

Viability 

95% 
Confidence 

Interval 

Lack of Fit 
Prob > F* Percentage 

of IC50 
Concentration 

Percentage 
of IC50 

Concentration 
Percentage 

of IC50 
Concentration 

1 DOC, CAB, PIP 33 15 nM 67 27 nM 0 0 µM 45 39, 52 0.7069 

2 DOC, CAB, FLAV 0 0 nM 33 13 nM 67 108 nM 52 45, 59 0.5903 

3 FLAV, MIT, CAB 55 89 nM 44 176 nM 1 0.4 nM 56 44, 69 0.2957 

4 FLAV, PIP, CAB 54 86 nM 0 0 µM 46 18 nM 61 46, 76 0.9568 

5 FLAV, PIP, MIT 56 90 nM 0 0 µM 44 175 nM 58 40, 76 0.9961 

6 PIP, MIT, CAB 0 0 µM 100 400 nM 0 0 nM 55 35, 75 0.5780 

7 RES, FLAV, CAB 0 0 µM 73 117 nM 27 11 nM 56 48, 63 0.8182 

8 RES, FLAV, MIT 0 0 µM 0 0 nM 100 400 nM 61 46, 76 0.9841 

9 RES, FLAV, PIP 0 0 µM 100 160 nM 0 0 µM 50 36, 65 0.9657 

10 RES, MIT, CAB 0 0 µM 100 400 nM 0 0 nM 58 44, 72 0.5081 

11 RES, PIP, CAB 0 0 µM 0 0 µM 100 40 nM 54 43, 65 0.4811 

12 RES, PIP, MIT 0 0 µM 0 0 µM 100 400 nM 58 44, 73 0.9852 

T
his article has not been copyedited and form

atted. T
he final version m

ay differ from
 this version.

M
olecular Pharm

acology Fast Forw
ard. Published on June 8, 2018 as D

O
I: 10.1124/m

ol.117.111450
 at ASPET Journals on March 20, 2024 molpharm.aspetjournals.org Downloaded from 

http://molpharm.aspetjournals.org/


 
MOL #111450 

33 

 

 

Table 3 – Optimum Combinations for Minimizing Cell Population in the G1 phase, and Maximizing Cell Populations in the S, 

G2/M, and Sub G1 Phases, Produced by Cell Cycle Analysis - *Values less than or equal to 0.10 indicate that the model does not fit 

the data. 

 

 

 
 

 

   

   

  Cabazitaxel Mitoxantrone Flavopiridol 
% Change in 
Population 

95% 
Confidence 

Interval 

Lack of Fit 
Prob > F 

1 G1 phase 100% , 80nM 0% , 0nM 0% , 0nM (86) (78), (95) 0.0087* 

2 S phase 32% , 26nM 68% ,  543nM 0% , 0nM 238 208, 268 0.1722 

3 G2/M phase 100% , 80nM 0% , 0nM 0% , 0nM 537 469, 606 0.5320 

4 Sub G1 phase 0%  , 0nM 48% ,  387nM 52% ,  165nM 499 312, 687 0.7216 
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0.25 X Ic50 0.5 X Ic50 1 X Ic50 2 X Ic50 4 X Ic50

Cab, Flav 1.94 0.79 0.67 1.00 2.74

Cab, Mit 4.53 2.85 1.61 1.08 1.33

Cab, Pip 16.70 2.04 4.08 0.82 1.85

Cab, Res 4.05 2.68 1.61 2.71 1.86

Doc, Flav 0.79 0.63 0.55 0.93 2.16

Doc, Pip 1.44 1.15 1.20 0.93 2.05

Doc, Cab 1.06 0.73 1.32 1.62 3.39

Flav, Res 3.39 1.30 0.71 1.33 1.94

Mit, Flav 1.46 1.05 0.60 1.24 2.15

Mit, Pip 2.73 3.81 3.01 1.12 2.36

Mit, Res 1.23 2.01 1.88 2.25 2.14

Pip, Flav 70299.50 2.01 0.94 1.30 2.71

Pip, Res 1.81 1.49 1.18 0.99 2.41
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