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ABSTRACT  

Continuous regeneration of the 11-cis-retinal visual chromophore from all-trans-retinal is critical 

for vision. Insufficiency of 11-cis-retinal arising from the dysfunction of key proteins involved in its 

regeneration can impair retinal health, ultimately leading to loss of human sight. Delayed recovery 

of visual sensitivity and night blindness caused by inadequate regeneration of the visual pigment 

rhodopsin, are typical early signs of this condition. Excessive concentrations of unliganded, 

constitutively active opsin and increased levels of all-trans-retinal, and its byproducts in 

photoreceptors also accelerate retinal degeneration following light exposure. Exogenous 9-cis-

retinal iso-chromophore can reduce the toxicity of ligand-free opsin but fails to prevent the buildup 

of retinoid photoproducts when their clearance is defective in human retinopathies such as 

Stargardt disease or age-related macular degeneration. Here we evaluated the effect of a locked 

chromophore analogue, 11-cis-6-membered ring-retinal against bright light-induced retinal 

degeneration in Abca4−/−Rdh8−/− mice. Using in vivo imaging techniques, optical coherence 

tomography, scanning laser ophthalmoscopy, and two-photon microscopy, along with in vitro 

histological analysis of retinal morphology, we found that treatment with 11-cis-6-membered ring-

retinal prior to light stimulation prevented rod and cone photoreceptor degradation and preserved 

functional acuity in these mice. Moreover, additive accumulation of 11-cis-6-membered ring-

retinal measured in the eyes of these mice by quantitative liquid chromatography-mass 

spectrometry indicated stable binding of this retinoid to opsin. Together, these results suggest 

that eliminating excess of unliganded opsin can prevent light-induced retinal degeneration in 

Abca4−/−Rdh8−/− mice.  
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INTRODUCTION  

Visual perception starts when a photon stimulates an isomerization of the 11-cis-retinal 

chromophore of rhodopsin in the retina to its all-trans configuration. This change leads to 

conformational rearrangements of the protein’s helical bundles, allowing binding of the 

heterotrimeric G protein transducin and the initiation of signal transduction (Jastrzebska B, 2013, 

Park PS et al., 2008). Eventually, the transiently formed complex between rhodopsin and G 

protein dissociates and all-trans-retinal leaves the binding pocket resulting in formation of free 

opsin and free all-trans-retinal. To sustain vertebrate vision and preserve retinal health, 

continuous regeneration of visual pigment is essential (Palczewski K, 2006, Rando RR, 1996). 

The supply of 11-cis-retinal results either from the dietary ingredients like β-carotene or through 

the regeneration of released all-trans-retinal back to its 11-cis form (Kiser PD et al., 2012, Kiser 

PD et al., 2014, Maeda T et al., 2011, von Lintig J, 2012). The latter is achieved by the so-called 

visual (retinoid) cycle. The proper function of proteins involved in retinoid renewal is critical for 

continuous regeneration of 11-cis-retinal needed to form rhodopsin and other visual pigments. 

Excessive light-induced release of all-trans-retinal from the visual pigment can be detrimental to 

photoreceptors (Chen Y et al., 2012, Maeda A et al., 2008).  

Thus, clearance of all-trans-retinal and its toxic byproducts generated by photoreceptor 

cells is vital for retinal health (Travis GH et al., 2007). Functional impairment of the retinoid cycle 

resulting in insufficient regeneration of 11-cis-retinal and excess of unliganded, constitutively 

active opsin often results in progressive retinopathies and eventual loss of vision (Fan J et al., 

2005, Travis GH et al., 2007, Woodruff ML et al., 2003). Limitations of current medical 

interventions for retinal degenerative diseases emphasize the need to establish therapies that are 

more effective. Pharmacological supplementation with the iso-chromophore 9-cis-retinal that 

eliminates the constitutive activity of ligand-free opsin can dramatically improve visual function in 

mouse models of Leber congenital amaurosis (LCA) and Stargardt disease (Batten ML et al., 
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2004, Maeda T et al., 2009, Maeda T et al., 2009, Palczewski K, 2010). Despite this positive 

finding, lengthy treatment with 9-cis-retinal can enhance toxicity if pigment regeneration is delayed 

or clearance of photoproducts is defective (Fan J et al., 2005, Woodruff ML et al., 2003). Thus, 

treatment with an 11-cis-6-membered ring-retinal (11-cis-6mr-retinal) chromophore analogue 

could constitute a viable complementary and/or alternative approach. This retinal contains a ring 

between C10-C13 instead of the double bond between C11=C12, which prevents its isomerization 

from the 11-cis to all-trans configuration and locks this retinal analogue in the chromophore 

binding pocket (Bhattacharya S et al., 1992). Thus, therapy with 11-cis-6mr-retinal could bypass 

the excessive accumulation of all-trans-retinal in the retina released from the activated receptors 

under bright light conditions without abridging phototransduction because rod opsin bound to 11-

cis-6mr-retinal exhibits residual sensitivity to light in vivo and in vitro (Fan G et al., 2002, Gulati S 

et al., 2017, Kuksa V et al., 2002). Moreover, this retinal analogue does not bind to cone opsin 

efficiently, eliminating the risk of fast deactivation of cone pigment signaling (Alexander NS et al., 

2017).  

In this work, we investigated the effect of 11-cis-6mr-retinal on acute light-induced retinal 

degeneration in Abca4−/−Rdh8−/− mice, a model that resembles many features of human Stargardt 

disease (Chen Y et al., 2012, Fujinami K et al., 2015, Maeda A et al., 2009, Maeda A et al., 2008), 

in which exposure to bright light causes prominent photoreceptor cell death due to buildup of all-

trans-retinal released from photobleached rhodopsin with subsequent activation of oxidative 

stress (Chen Y et al., 2012).  
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MATERIALS AND METHODS 

Chemicals and reagents 

Dodecyl-β-D-maltopyranoside (DDM) (Affymetrix Inc., Maumee, OH) was used to 

solubilize opsin from mouse retinas. 4’6’-Diamidino-2-phenyl-indole (DAPI) and Alexa594-

conjugated goat anti-mouse secondary antibody were purchased from Life Technologies (Grand 

Island, NY) for nuclear staining and immunostaining, respectively. DMSO and 9-cis-retinal were 

obtained from Sigma-Aldrich Corp. (St. Louis, MO). D5-all-trans-retinal was purchased from 

Toronto Research Chemicals (Toronto, Canada). 11-cis-6mr-retinal was synthesized as 

described previously and obtained from Novartis (Cambridge, MA) (Alexander NS et al., 2017, 

Gulati S et al., 2017). Mouse monoclonal 1D4 anti-rhodopsin antibodies were purified from 

hybridoma cells also as described previously (Adamus G et al., 1988, Adamus G et al., 1991, 

Hodges RS et al., 1988).  

Animals: care and treatment 

Abca4−/−Rdh8−/−  mice (Maeda A et al., 2008) with a pigmented C57BL/6 or C57BL/6 and 

129SV mixed background were used for light-induced retinal degeneration assays and evaluation 

of treatment with 11-cis-6mr-retinal. Abca4−/−Rdh8−/− mice were genotyped to confirm that their 

lack of the Rd8 mutation. Only mice with the Leu variation at amino acid 450 of RPE65 were used 

(Kim SR et al., 2004). BALB/c mice (Jackson Laboratory, Bar Harbor, ME) at 4-6 weeks of age 

were also employed to test the effects of 11-cis-6mr-retinal on bright light-induced retinal damage. 

C57BL/6 mice (Jackson Laboratory, Bar Harbor, ME) were used to test the effect of 11-cis-6mr-

retinal on the retinoid cycle and the accumulation of retinoids in the eye. Both male and female 

mice were used in all experiments. 11-cis-6mr-retinal was dissolved in DMSO and administered 

to mice by i.p. injection at 4-20 mg/kg bw. All mice were housed in the Animal Resource Center 

at the School of Medicine, Case Western Reserve University (CWRU) and maintained in a 12 h 

light (≤10,000 lux)/12 h dark cycle. Manipulations in the dark were performed under dim red light. 
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All animal procedures and experimental protocols were approved by the Institutional Animal Care 

and Use Committee at CWRU and conformed to recommendations of both the American 

Veterinary Medical Association Panel on Euthanasia and the Association for Research in Vision 

and Ophthalmology. 

Bright light-induced retinal degeneration 

Retinal degeneration was initiated by exposing dark-adapted Abca4−/−Rdh8−/− or BALB/c 

mice to 10,000 or 12,000 lux white light, respectively delivered from a 150-W spiral lamp 

(Hampton Bay, Home Depot, Atlanta, GA) for 30 or 60 min, as previously described (Chen Y et 

al., 2013). Before light exposure, pupils of Abca4−/−Rdh8−/− mice were dilated with 1% tropicamide, 

but this was not needed for BALB/c mice. 11-cis-6mr-Retinal or DMSO was administered i.p. 30 

min before exposure to bright light. Effects of 11-cis-6mr-retinal were tested at 4, 8, 12 and 20 

mg/kg bw. Each injection volume was 70 µl. Retinal morphology and function were analyzed in 

vivo by spectral domain optical coherence tomography (SD-OCT) and electroretinography (ERG) 

seven days after bright light exposure. Mice then were euthanized, and their eyes were subjected 

to staining with Hematoxylin and Eosin (H&E), immunohistochemistry, and imaging. 

Spectral Domain-Optical Coherence Tomography (SD-OCT) 

To evaluate the effect of 11-cis-6mr-retinal treatment on Abca4−/−Rdh8−/− mice or BALB/c 

mice following bright light-induced retinal damage, we performed in vivo imaging of mouse retinas 

with ultrahigh-resolution SD-OCT (Bioptigen, Morrisville, NC) (Chen Y et al., 2013). Briefly, pupils 

of mice were first dilated with 1% tropicamide. Then, mice were anesthetized by i.p. injection of a 

cocktail containing ketamine (20 mg/ml) and xylazine (1.75 mg/ml) at a dose of 4 μl/g bw. The A 

scan/B scan ratio was set at 1200 lines. Four frames of OCT images scanned at 0o and 90o were 

acquired in the B-mode, averaged, and saved as PDF files. To evaluate changes in the retinas of 

mice exposed to bright light and assess the effect of 11-cis-6mr-retinal on retinal protection, the 

outer nuclear layer (ONL) thickness was measured 500 µm from the optic nerve head. Each 
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treatment group contained 10 mice and the experiment was repeated three times. Values of ONL 

thickness were plotted using means and standard deviations (SD). 

Scanning laser ophthalmoscopy (SLO) imaging  

SLO (Heidelberg Engineering, Franklin MA) was performed for in vivo whole fundus 

imaging of mouse retinas (Huber G et al., 2009). Mice were anesthetized, and their pupils were 

dilated with 1% tropicamide prior to imaging. SLO was acquired in the autofluorescence mode 

and the number of autofluorescent spots was counted and subjected to statistical analysis.  

Retinal histology  

The structural morphology of mouse retinas subjected to bright light and either pretreated 

with 11-cis-6mr-retinal or DMSO as a control were assessed in vitro using H&E staining of paraffin 

sections. Mice were euthanized, their eyes were removed and fixed in 4% paraformaldehyde and 

1% glutaraldehyde followed by paraffin sectioning. Sections (5 μm thick) were stained with H&E 

and imaged by light microscopy (Leica, Wetzlar, Germany).  

Immunohistochemistry 

Eyes collected from mice exposed to bright light were fixed in cryoembedding medium 

and processed for cryosectioning. Morphology of the retinas was assessed by immunostaining of 

12 µm thick cryosections with monoclonal 1D4 anti-rhodopsin primary antibody and Alexa Fluor 

594-conjugated goat anti mouse immunoglobulin G (IgG) used as a secondary antibody to detect 

rod photoreceptors. To detect cone photoreceptors biotinylated peanut agglutinin (PNA) and 

Alexa Fluor 488-conjugated streptavidin were employed. Nuclear staining was achieved with 

DAPI.  

Two-photon microscope (TPM) imaging 

Three days after light-induced retinal degeneration, Abca4−/−Rdh8−/− albino mice on a 

C57BL/6 and 129SV background treated either with DMSO or 11-cis-6mr-retinal 30 min prior to 
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light stimulation for 60 min were subjected to TPM imaging as described previously (Maeda A et 

al., 2014). Briefly, a Leica TCS SP5 upright confocal microscope equipped with a 1.0-NA water 

immersion objective and tunable laser Vision S (Coherent) delivering 75-fs laser pulses at an 80-

MHz pulse repetition frequency was used to image freshly enucleated intact mouse eyes. Before 

eye enucleation, mice were anesthetized by i.p. injection of a cocktail containing ketamine (6 

mg/ml) and xylazine (0.44 mg/ml) at a dose of 10 µg/g bw and then euthanized.  

Detection of reactive oxygen species (ROS) in vivo 

Detection and quantification of ROS generated in vivo in Abca4−/−Rdh8−/− mice after their 

exposure to bright light was performed as described previously (Chen Y et al., 2013). 

Dihydroethidium (DHE), a ROS probe, was administered to mice by i.p. injection at a dose of 20 

mg/kg bw delivered in 50 μl of DMSO vehicle 1 day after illumination with 10,000 lux white light. 

Thirty min before light exposure, these mice were also treated with 11-cis-6mr-retinal or vehicle. 

One hour after DHE administration, eyes were collected and fixed in cryoembedding medium. 

Cryosections (12 μm thick) were used for microscopic evaluation of ROS fluorescence in the 

retina. Quantification of ROS fluorescence was performed with ImageJ software (NIH).  

Electroretinography (ERG) analyses  

To evaluate the protective effect of 11-cis-6mr-retinal on retinal function, ERG recordings 

were obtained for Abca4−/−Rdh8−/− mice or BALB/c mice at 4-5 weeks of age 7 to 14 days after 

light-induced damage. These mice were divided into an unbleached group, a DMSO-treated 

control group and an 11-cis-6mr-retinal-treated group. Ten Abca4−/−Rdh8−/− and 5 BALB/c mice 

were used in each group. The mice were given a single dose of 11-cis-6mr-retinal at 20 mg/kg by 

i.p. injection 30 min prior to light exposure. Before ERG recording, dark-adapted mice were 

anesthetized with 20 mg/ml ketamine and 1.75 mg/ml xylazine in PBS at a dose of 0.1-0.13 ml 

per 25 g bw, and pupils were dilated with 1% tropicamide. Contact lens electrodes were placed 

on the eyes, and a reference electrode was positioned between two ears, while a ground electrode 
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was placed on the tail. Scotopic and photopic ERGs were recorded for both eyes of each mouse 

using a UTAS E-3000 universal testing and ERG system (LKC Technologies, Inc., Gaithersburg, 

MD). ERG data represent the means and SDs of both a-wave and b-wave amplitudes.  

To evaluate the effect of 11-cis-6mr-retinal on the retinoid cycle, WT C57BL/6J mice were 

placed in a dark room one day before ERG measurements. DMSO, 11-cis-6mr-retinal at a dose 

of 20 mg/kg bw or retinylamine (a potent inhibitor of the visual cycle (Golczak M et al., 2005)) at 

a dose of 4 mg/kg bw were administrated by ip injection 30 min before light exposure. Mice were 

treated with 1% tropicamide eye drops for pupil dilation, exposed to 2,000 lux of illumination for 5 

min and returned to the dark. Mice were anesthetized after bleaching for scotopic ERG recordings 

as described previously (Maeda A et al., 2005). Briefly, every 5 min a single-flash scotopic ERG 

at stimulating intensity of 1.6 cd·s·m–2 was recorded within 1 h after light exposure. A-wave and 

b-wave amplitudes of each ERG recording were measured, averaged from five animals, and 

plotted as a function of time using Sigma Plot software version 11.  

Purification of retinal pigment 

Eyes were collected from three Abca4−/−Rdh8−/− or WT C57BL/6J mice, which were either 

dark adapted or treated with 11-cis-6mr-retinal at a dose of 20 mg/kg bw 30 min prior to bright 

light exposure for 30 min followed by housing in the dark for 24 h. This treatment was repeated 3 

times. Additionally, eyes were collected from lecithin retinol aclyltransferase knockout (Lrat−/−) 

mice either untreated or treated with 11-cis-6mr-retinal at the same dose as Abca4−/−Rdh8−/−or 

WT C57BL/6J mice. Eyes were stored at -80 oC or used immediately. Eyes were homogenized 

gently with a glass-glass homogenizer in buffer composed of 50 mM bis-tris propane (BTP), pH 

7.5, 150 mM NaCl, 1 mM EDTA and protease inhibitor cocktail in the dark followed by a 15-min 

centrifugation at 16,000g in a benchtop Eppendorff centrifuge at 4 oC. Supernatants were 

discarded, and pellets were solubilized in 20 mM BTP, pH 7.5, 100 mM NaCl, 20 mM n-dodecyl-

β-D-maltoside (DDM) for 1 h at 4 oC. Solubilized membrane lysates were cleared by centrifugation 
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at 16,000g for 30 min, and the supernatants were incubated with 1D4-immunoaffinity resin (6 mg 

of 1D4 anti-rhodopsin antibody/ml resin) equilibrated with 20 mM BTP, pH 7.5, 100 mM NaCl, 2 

mM DDM for 1 h at 4 oC. After washing, rhodopsin and 11-cis-6mr-retinal-bound opsin were eluted 

by addition of 1D4 peptide (TETSQVAPA) to the above buffer and spectra were then measured 

with a UV-visible spectrophotometer. 

Detection and quantification of 11-cis-6mr-retinal in mouse eye  

To measure the amount of 11-cis-6mr-retinal in mouse eye following its systemic delivery, 

11-cis-6mr-retinal was administered to Abca4−/−Rdh8−/− mice in DMSO vehicle by i.p. injection at 

a dose of 20 mg/kg bw. Then mice were kept in the dark for 24 h and either euthanized to collect 

their eyes for analysis or the treatment was repeated twice.  

Eyes from one mouse under the same treatment were homogenized on ice in 1 ml of 

PBS:methanol (1:1, v/v) in the presence of 100 pmol of an internal standard (d5-all-trans-retinal). 

The homogenate was incubated with 50 mM hydroxylamine for 20 min at RT. Then 4 ml of hexane 

was added to the homogenized sample, and the mixture was vortexed for 15 s. The mixture was 

centrifuged at 3,220g for 5 min at 4 oC to separate the hexanes from the aqueous layer. From the 

top hexane layer, 3.5 ml was transferred to a glass vial. These samples were then dried in a 

Savant speedvac concentrator (Thermofisher, Waltham, Massachusetts, USA) and dissolved in 

300 µl of hexane. Ten µl of dissolved samples were injected into an Agilent Technology 1100 

HPLC system and retinoids were separated on an xBridge C18 column (3.5 μm, 2.1 x 100 mm; 

Waters, Milford, MA) by a linear gradient of acetonitrile in water (50% - 100%, 30 min, at at flow 

rate of 0.5 ml/min). All solvents contained 0.1% formic acid (v/v). MS-based detection and 

quantification of 11-cis-6mr-retinal was performed with an LTQ linear ion trap mass spectrometer 

(Thermo Scientific) equipped with an electrospray ionization (ESI) interface operated in the 

positive ionization mode. Parameters of ionization and detection were tuned with synthetic oximes 

of the locked retinal. 11-cis-6mr-Retinal oximes and d5-all-trans-retinal oximes were detected in 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on July 17, 2018 as DOI: 10.1124/mol.118.112581

 at A
SPE

T
 Journals on M

arch 20, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


Mol. Pharma # 112581 
 

13 

 

the selected reaction monitoring (SRM) mode using m/z 312.3 → 295.2 and 305.3 → 247.2 

transitions, respectively. Calibration curves were calculated based on the linear relationship 

between areas under SRM ion intensity peaks corresponding to the locked retinal oximes and the 

internal standard versus molar ratios of the compounds in a range of 20 to 500 pmol. The 

experiment was done in triplicate. 

Statistical analyses 

Values of ONL thickness derived from SD-OCT imaging, counts of enlarged photoreceptors from 

TPM imaging, and counts of AF spots from SLO imaging are expressed as means ± standard 

deviations. Five or ten mice per treatment group were used. For two-group comparisons, 

Student’s t-test was used. For multiple comparisons, the one-way ANOVA (using SigmaPlot 

11.0 software) with the post-hoc student’s t-test was employed. Differences were considered 

statistically significant a t  a  P  value of <0.05 (*P <0.05, **P<0.01, ***P <0.001). 

 

RESULTS 

11-cis-6mr-Retinal protects against bright light-induced retinal degeneration in 

Abca4−/−Rdh8−/− mice 

Abca4−/−Rdh8−/− mice lack both the ATP-binding cassette transporter 4 (ABCA4) and the 

all-trans-retinol dehydrogenase 8 (RDH8) enzyme and exhibit impaired clearance of all-trans-

retinal photoproducts (Molday RS, 2007). They also feature many phenotypic changes found in 

patients with human juvenile macular degeneration (Maeda A et al., 2012, Maeda A et al., 2008, 

Maeda A et al., 2014). These mice develop both, chronic retinal degeneration under ambient light 

resembling the human condition as well as intense light-induced acute retinal degeneration. Thus, 

they serve as a model of both rod and cone photoreceptor degeneration. In this study, we 

evaluated the protective effect of the locked chromophore analogue, 11-cis-6mr-retinal against 
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bright light-induced retinal degeneration. To determine the therapeutic dose of 11-cis-6mr-retinal, 

various concentrations of this retinal analogue (4, 8, 12 or 20 mg/kg body weight (bw)) or a DMSO 

vehicle were administered to 4-6-week-old Abca4−/−Rdh8−/− mice by i.p. injection 30 min before 

exposure to 10,000 lux bright light for 30 min. These mice then were kept in the dark for 7-14 days 

to allow clearing of dead cells before their evaluation as schematically depicted in Fig. 1A. 

Analysis of retinal morphology by in vivo OCT imaging revealed that morphological damage 

induced by bright light was largely prevented by pretreatment with 11-cis-6mr-retinal at 20 mg/kg 

and retinal structures closely resembled those of mice not exposed to bright light (Fig. 1B and C, 

and Table 1). Partial protection was noted with 11-cis-6mr-retinal at 12 mg/kg (Table 1). In 

contrast, control mice treated with DMSO vehicle exhibited disruption of photoreceptors 

manifested by severe changes in the thickness of the ONL (Fig. 1B and C). 

Increased autofluorescence (AF) in the photoreceptor outer segments and retinal pigment 

epithelium (RPE) associated with bright light illumination was previously observed (Maeda A et 

al., 2011, Maeda A et al., 2008). Thus, we quantified AF spots in the eyes of Abca4−/−Rdh8−/− mice 

pretreated with 11-cis-6mr-retinal or DMSO vehicle, followed by bright light exposure and 

compared these values to untreated and unilluminated mice. SLO imaging was performed to 

detect AF 7 days after treatment (Fig. 1A). The number of AF spots was greatly increased in 

DMSO-treated mice, while it was decidedly decreased in mice pretreated with 11-cis-6mr-retinal 

at 20 mg/kg 30 min before exposure to bright light (Fig. 1D and E). A partial decrease of AF spots 

was noted with 11-cis-6mr-retinal at 12 mg/kg (Table 1). Thus, the results obtained from retinal 

SLO imaging correlated with the retinal degeneration detected with OCT imaging. 

To confirm the results obtained from in vivo analyses, we performed a histological 

examination of plastic sections after H&E staining from areas like those used for OCT imaging 

(Fig. 1F). The diminished ONL in DMSO-treated Abca4−/−Rdh8−/− mice exposed to bright light as 

well as the protective effect of treatment with 11-cis-6mr-retinal agreed with the findings from OCT 

imaging. 
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Treatment with 11-cis-6mr-retinal preserves retinal morphology after exposure to bright 

light in Abca4−/−Rdh8−/− mice 

To assess light-induced damage to the retina in greater detail, we performed an 

immunohistochemical analysis of cryosections stained with an anti-rhodopsin antibody that 

labeled rod outer segments and peanut agglutinin (PNA) that labeled cone cells. DAPI staining 

was used to detect nuclei. As shown in Fig. 1G, Abca4−/−Rdh8−/− mice treated with DMSO vehicle 

showed severe changes in retinal morphology evidenced by a significantly decreased thickness 

of the ONL. Also, PNA staining was undetectable and only residual staining of rhodopsin 

remained. However, pretreatment with 11-cis-6mr-retinal before bright light exposure prevented 

light-induced damage and preserved the morphology of photoreceptors. Images of retinal 

morphology of 11-cis-6mr-retinal-treated mice closely resembled those images from mice 

unexposed to light as demonstrated by a similar thickness of the ONL and intense staining with 

anti-rhodopsin antibodies and PNA.  

Treatment with 11-cis-6mr-retinal reduces photoreceptor death 

One of the early manifestations of light-induced retinal degeneration is the swelling of the 

photoreceptor cells (Maeda A et al., 2014). We performed TPM imaging to assess and quantify 

changes in photoreceptor morphology in freshly enucleated mouse eyes 3 days after treatment 

with 11-cis-6mr-retinal and exposure to bright light. DMSO-treated Abca4−/−Rdh8−/− control mice 

showed a marked increase of enlarged photoreceptors, whereas pretreatment with 11-cis-6mr-

retinal prior to light illumination significantly diminished the number of such photoreceptors (Fig. 

2A, B and C). 

Treatment with 11-cis-6mr-retinal preserves retinal function 

ERG analysis of the visual response was used to assess retinal function. The results 

obtained were compared between three groups of mice: Abca4−/−Rdh8−/− mice either unexposed 

to light, DMSO-treated and exposed to bright light, or 11-cis-6mr-retinal-treated and exposed to 

bright light. Both scotopic a- and b-waves and photopic b-waves were nearly eradicated in 
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Abca4−/−Rdh8−/− mice treated with DMSO vehicle followed by 10,000 lux bright light illumination 

(Fig. 3A and B). Importantly, pretreatment with 11-cis-6mr-retinal prior to light exposure almost 

completely preserved visual acuity in these mice. Both scotopic a- and b-waves and photopic b-

waves of 11-cis-6mr-retinal-treated mice were very similar to those of mice unexposed to bright 

light. 

11-cis-6mr-retinal prevents light-induced retinal damage and preserves retinal function in 

WT mice 

To determine if 11-cis-6mr-retinal protects against light-induced retinopathy in WT mice, 

we used 6-8-week-old albino BALB/c mice susceptible to light-induced retinal degeneration 

(LaVail MM et al., 1987, LaVail MM et al., 1987). As evidenced by OCT images, pretreatment with 

11-cis-6mr-retinal 30 min prior to bright light exposure prevented retinal damage noted in DMSO-

treated control mice (Fig. 4A and B). Seven days after bright light illumination, DMSO-treated WT 

mice featured severe disorganization of retinal structures and thinning of the ONL, just like 

Abca4−/−Rdh8−/− mice. In agreement with OCT images, SLO imaging revealed a significant 

reduction in the number of AF spots associated with light-induced retinal pathology in those 

animals treated with 11-cis-6mr-retinal (Fig. 4C and D). Histological examination of retinas from 

WT mice further confirmed the protective effect of 11-cis-6mr-retinal (Fig. 4E). 

Immunohistochemical analysis of cryosections stained with an anti-rhodopsin antibody to label 

rods and PNA to label cones also confirmed morphological changes in the retina, as evidenced 

by a decreased thickness of the ONL in mice treated with DMSO prior to light exposure. Notably, 

pretreatment with 11-cis-6mr-retinal significantly preserved photoreceptor morphology. The ONL 

was much thicker than in DMSO-treated mice and closely resembled the ONL thickness in mice 

unexposed to light (Fig. 4F). As revealed by ERG responses, consistent with the morphological 

changes observed in these mice, visual function that diminished after the exposure to bright light 

was almost completely preserved after pretreatment with 11-cis-6mr-retinal (Fig. 4G). 

Treatment with 11-cis-6mr-retinal does not inhibit the retinoid cycle 
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To determine if 11-cis-6mr-retinal affects the retinoid cycle we measured the ERG 

response recovery in WT C57BL/6J mice within 1 h after illumination with white light at 2,000 lux 

for 5 min. Prior to illumination, these mice were either treated with DMSO vehicle, 11-cis-6mr-

retinal or retinylamine; the last agent is a potent inhibitor of the visual cycle (Golczak M et al., 

2005). Immediately after exposure to light, scotopic ERG responses were recorded every 5 min 

for a total of 1 h. As shown in Fig. 5, recovery of both a-wave (Fig. 5A) and b-wave (Fig. 5B) 

amplitudes after illumination in mice treated either with DMSO or 11-cis-6mr-retinal was evident, 

but not in mice treated with retinylamine. Thus, 11-cis-6mr-retinal did not inhibit the conversion of 

all-trans-retinal to its 11-cis configuration. 

Treatment with 11-cis-6mr-retinal inhibits reactive oxygen species (ROS) generation in 

Abca4−/−Rdh8−/− mice after bright light exposure 

Oxidative stress that causes overproduction of ROS is considered the major mechanism 

of photoreceptor cell death induced by acute light exposure in model animals (Donovan M et al., 

2001, Organisciak DT et al., 1992). Excessive production of ROS in Abca4−/−Rdh8−/− mice from 

bright light illumination has been documented (Chen Y et al., 2013). Maintaining low levels of 

ROS therefore is extremely important for the viability of photoreceptor cells. Here, we tested if 

treatment with 11-cis-6mr-retinal could reduce the generation of ROS in Abca4−/−Rdh8−/− mice 

exposed to bright light. Dark-adapted mice were injected with the fluorescent probe 

dihydroethidium (DHE), used to detect superoxide radicals, one day after exposure to 10,000 lux 

light for 30 min. ROS signals detected in the ONL were then compared between three groups of 

mice: those unexposed to light, DMSO-treated controls, and mice pretreated with 11-cis-6mr-

retinal. The highest production of ROS was detected in vehicle-treated mice, whereas the ROS 

signal in the ONL was substantially decreased in mice treated with 11-cis-6mr-retinal to a level 

similar to that observed in dark-adapted mice (Fig. 6A and B). Together these data indicate that 

ROS generation contributing to light-induced retinopathy in Abca4−/−Rdh8−/− mice is mitigated by 

treatment with 11-cis-6mr-retinal, thereby protecting photoreceptor cells. 
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Accumulation of 11-cis-6mr-retinal in the eye 

The constitutive activity of ligand-free opsin accelerates the degeneration of 

photoreceptors (Fan J et al., 2005, Woodruff ML et al., 2003). Coupling of a locked retinal 

analogue, 11-cis-6mr-retinal, to unliganded opsin would not only mitigate unwanted opsin activity, 

but it also would prevent its release from the binding pocket upon illumination and thus could 

contribute to the protective mechanism against light-induced retinal pathology. The 11-cis-6mr-

retinal analogue binds to rod opsin resulting in formation of a pigment with a different absorption 

maximum (Gulati S et al., 2017). This property was used to determine whether the formation of 

11-cis-6mr-retinal-bound pigment could be detected in the mix of rhodopsin and 11-cis-6mr-

retinal-bound opsin after their purification from mouse eyes. Abca4−/−Rdh8−/− and WT mice were 

used. A difference in absorption maxima between samples purified from non-treated mice and 

mice treated with 11-cis-6mr-retinal was difficult to detect in normal dark spectra, likely due to the 

high amount of rhodopsin overlapping with 11-cis-6mr-retinal-bound opsin. However, a small shift 

of the absorption peak towards longer wavelengths with a maximum at ~505 nm was noted in the 

difference spectra, when spectra obtained after illumination were subtracted from the dark spectra 

(Fig. 7A and B). Thus, these results indicate that 11-cis-6mr-retinal-bound opsin was formed in 

vivo in the eyes of mice treated with 11-cis-6mr-retinal before illumination. As an additional control 

for binding of 11-cis-6mr-retinal to rod opsin we used Lrat−/− mice in which regeneration of 

rhodopsin is impaired and opsin accumulates in rod outer segments (Batten ML et al., 2004). After 

being kept in the dark, these mice were injected with a single dose of 11-cis-6mr-retinal for three 

consecutive days. UV-visible spectra of the protein purified from the eyes of these mice revealed 

that opsin regeneration with 11-cis-6mr-retinal had occurred and the pigment had an absorption 

peak maximum at 508 nm (Fig. 7C), further supporting the hypothesis that silencing the 

constitutive activity of opsin could serve as a protective mechanism against light-induced retinal 

damage in mouse eyes. 
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To further confirm and to quantify the accumulation of 11-cis-6mr-retinal in the mouse eye, 

liquid chromatography-mass spectrometry (LC-MS)-based analyses were performed. Retinoids 

were extracted from eyes of Abca4−/−Rdh8−/− mice treated with either a single i.p. injection or three 

consecutive injections of 11-cis-6mr-retinal. An internal standard (d5-all-trans-retinal) was added 

to the eye homogenate prior to retinoid extraction to enable MS-based quantification of 11-cis-

6mr-retinal retained in the eye. The results obtained from LS-MS analyses confirmed 

accumulation of 11-cis-6mr-retinal in the eyes of Abca4−/−Rdh8−/− mice (Fig. 8A, B and C). 

Quantification revealed the presence of the locked retinal analogue in the eyes of these mice after 

a single administration with a concentration in the low picomolar range (~6 pmoles) and its 

additive accumulation after three injections (~12 pmoles) (Fig. 8C). Twenty-four hours post 

administration most drugs would likely be eliminated unless they remained bound to a targeted 

molecule. Thus, detection of 11-cis-6mr-retinal one day after its administration and additive 

accumulation four days later after multiple administrations indicates that the retinoid analogue 

penetrates and persists in the eye by stably binding to opsin. 

 

 

DISCUSSION  

Excessive light can be detrimental to retinal health (Chen Y et al., 2012, Maeda A et al., 

2008, Organisciak DT et al., 1998). Overstimulation of rhodopsin with bright light triggers 

photoreceptor cell damage and ultimately blindness (German OL et al., 2015, Grimm C et al., 

2000, Rozanowska M & Sarna T, 2005). Interestingly, rhodopsin knockout mice are completely 

protected from such light-induced retinal damage suggesting that rhodopsin is required for 

phototoxicity to occur (Grimm C et al., 2000, Hao W et al., 2002, Jacobson SG & McInnes RR, 

2002). The elevated concentrations of all-trans-retinal and its byproducts, which accumulate in 

photoreceptors following stimulation by bright light, are a leading cause of retinopathy. These 
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materials are especially harmful when they over-accumulate and pigment regeneration is 

defective (Chen Y et al., 2012). Stargardt disease, an inherited juvenile form of age-related 

macular degeneration, typifies these situations (Weng J et al., 1999). Patients with Stargardt 

disease experience progressive rod-cone dystrophy associated with an over-accumulation of 

lipofuscin and drusen, thickening of Bruch’s membrane, and choroidal neovascularization (Maeda 

A et al., 2012, Maeda A et al., 2008, Maeda A et al., 2014). A mutation in the ABCA4 transporter 

found in these patients interferes with the transport of released all-trans-retinal from the inner 

space of the rod outer segment discs to the cytoplasm, resulting in buildup of this retinoid and its 

metabolite, the bis-retinoid N-retinylidene-N-retinylethanolamine (A2E) (Conley SM et al., 2012, 

Molday RS, 2007, Wu Y et al., 2009). Further, the insufficient conversion of all-trans-retinal back 

to its 11-cis form in such a condition also results in delayed regeneration of visual pigment. In 

fact, loss of rod and cone sensitivity appears in these patients before anatomical changes to the 

retina are detectable (Jackson GR et al., 2014, Salvatore S et al., 2014). 

Decreasing levels of all-trans-retinal either with inhibitors of the retinoid cycle such as 

retinylamine (Golczak M et al., 2005, Golczak M et al., 2005) and the retinylamine-derived potent 

inhibitor, emixustat (Kubota R et al., 2014, Zhang J et al., 2015) or FDA-approved drugs 

containing amines that sequester accumulated free aldehyde (Maeda A et al., 2011) can 

significantly improve overall retinal health in Abca4−/−Rdh8−/− mice, corroborating that all-trans-

retinal is the toxic photo-metabolite.  

High levels of rhodopsin (~5 mM) are expressed in rod photoreceptor cells (Palczewski K, 

2006). Thus, in patients with Stargardt disease illumination of only 10% of the visual pigment 

would result in the prolonged exposure of toxic concentrations of free all-trans-retinal of ~500 µM. 

Reversible conjugation of this highly cytotoxic retinoid with amino group-containing compounds 

has a protective effect against retinal damage (Maeda A et al., 2011). However, high doses of 

such compounds are necessary to achieve a therapeutic outcome. 
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Inhibition of the visual cycle with specific inhibitors of enzymes involved in the regeneration 

of 11-cis-retinal decreases accumulation of all-trans-retinal and it byproducts by slowing the 

regeneration of rhodopsin. However, prolonged inhibition of pigment regeneration could lead to 

an increase of chromophore-free opsin in photoreceptor cells that also accelerates retinal 

degeneration (Fan J et al., 2005, Woodruff ML et al., 2003). In fact, administration of 9-cis-retinal 

acetate to Abca4−/−Rdh8−/− mice prior to stimulation with bright light limited retinal damage in these 

mice indicating that in fact delayed regeneration of 11-cis-retinal can result in the accumulation of 

ligand-free opsin. However, pharmacological supplementation with 9-cis-retinal does not address 

accumulation of all-trans-retinal and its byproducts after light illumination when its regeneration to 

11-cis-retinal and clearance from photoreceptors is faulty (Maeda T et al., 2009, Palczewski K, 

2010). Therefore, we aimed to evaluate the effect of a locked chromophore analogue, 11-cis-6mr-

retinal, against bright light-induced retinal degeneration. The hypothesis was that 11-cis-6mr-

retinal administered to Abca4−/−Rdh8−/− mice before exposure to light would bind to opsin, 

silencing not only its toxic constitutive activity but also avoid excessive accumulation of all-trans-

retinal due to its locked conformation in the chromophore binding pocket. Abca4−/−Rdh8−/− mice, 

a model of bright light-induced rod and cone photoreceptor degeneration, were used to test this 

hypothesis. The results also were confirmed in BALB/c WT mice, which are susceptible to retinal 

damage with strong light (LaVail MM et al., 1987, LaVail MM et al., 1987). Both Abca4−/−Rdh8−/− 

and BALB/c WT mice developed severe retinal degeneration within 7 days after exposure to 

10,000 or 12,000 lux light, respectively. However, the retinopathy did not appear when mice were 

treated with 11-cis-6mr-retinal 30 min before light stimulation. As demonstrated by multiple 

imaging techniques, retinal structure and specifically the morphology of rod and cone 

photoreceptors of mice pretreated with 11-cis-6mr-retinal were comparable to that of mice kept in 

the dark, suggesting that avoiding the accumulation of unliganded opsin is critical to prevent or 

delay retinal degeneration in mice susceptible to light-induced damage. In fact, 11-cis-6mr-retinal 

was detected in the eyes of Abca4−/−Rdh8−/− mice 24 h after administration and its additive accrual 
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was found after multiple consecutive doses as quantified by LC-MS, indicating its stable binding 

to opsin. Although partial protection against light damage was observed earlier upon 

administration of 9-cis-retinal-acetate (Maeda T et al., 2009), almost full protection was achieved 

with 11-cis-6mr-retinal treatment in this study. Moreover, pretreatment with 11-cis-6mr-retinal 

before bright light insult prevented not only morphological damage of the retina but also preserved 

visual acuity in the treated mice. Furthermore, 11-cis-6mr-retinal did not impair the visual, retinoid 

cycle. As observed, the conversion of all-trans-retinal to 11-cis-retinal was not inhibited in mice 

administered with 11-cis-6mr-retinal. This is not a surprising result because as shown before 11-

cis-locked-retinals are poor substrates for the visual cycle enzymes, including 11-cis-retinal 

dehydrogenase (11-cis-RDH) and lecithin retinol acyltransferase (LRAT) (Kuksa V et al., 2002). 

Excessive concentrations of all-trans-retinal that induce oxidative stress through the 

activation of the phospholipase C (PLC) → inositol-3-phosphate (IP3) → Ca2+ pathway and 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase resulting in photoreceptor death 

can be prevented with antioxidants (Chen Y et al., 2012, Chen Y et al., 2016, Chen Y et al., 2013). 

Such oxidative stress could also be reduced by cis-retinoids administered systematically at low 

levels in a mouse model of diabetic retinopathy (Berkowitz BA et al., 2015). Significantly, 

production of ROS in the photoreceptors of Abca4−/−Rdh8−/− mice was completely inhibited by 

pretreatment with 11-cis-6mr-retinal, indicating its antioxidant properties at concentrations used 

in this study. Moreover, as evaluated by ERG recordings, photoreceptor function in vivo was fully 

preserved by 11-cis-6mr-retinal given to mice before light stimulation. This result demonstrated 

that 11-cis-6mr-retinal has few if any adverse effects on phototransduction in this rodent model. 

However long-term follow up studies would need to be performed to determine the toxicity profile 

for this compound. 

In summary, this study demonstrates that 11-cis-6mr-retinal is a promising drug candidate 

against the development of light-induced retinopathy in Abca4−/−Rdh8−/− and WT mice. 

Abca4−/−Rdh8−/− rodents are used as a model of human Stargardt disease, associated with 
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delayed clearance of all-trans-retinal photoproducts and delayed pigment regeneration. 

Therefore, results presented here add to our understanding of the mechanisms underlying a 

debilitating blinding condition and may offer therapeutic opportunities in the future either alone or 

in combination with other treatments. 
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FIGURE LEGENDS 

Figure 1. Protective effect of 11-cis-6mr-retinal against bright light-induced retinal 

degeneration in Abca4−/−Rdh8−/− mice. A, Scheme of mouse treatment. 11-cis-6mr-retinal or 

DMSO vehicle were administered to 4-6-week-old Abca4−/−Rdh8−/− or WT BALB/c mice by i.p. 

injection 30 min before exposure to bright light (10,000 lux) for 30 min for Abca4−/−Rdh8−/− mice 

and 12,000 lux for 60 min for WT BALB/c mice. Then, mice were kept in the dark for 7-14 days 

prior to their examination. The morphology of the retina was assessed by OCT and SLO in vivo 

imaging as well as by H&E staining and immunohistochemistry. Retinal function was assessed 

by ERG. TPM imaging was used to determine abnormalities in photoreceptor cells on the fourth 

day after treatment. B, Representative OCT images obtained 7 days after treatment of mice with 

11-cis-6mr-retinal (20 mg/kg bw) 30 min before exposure to white light at 10,000 lux for 30 min. 

After light illumination, mice were kept in the dark until morphological examination. ONL, outer 

nuclear layer; INL, inner nuclear layer. Asterisk indicates severely disrupted photoreceptor 

structures in DMSO-treated control mice. C, Quantification of the ONL thickness obtained in 10 

mice per treatment group. Error bars indicate SDs. Changes in the ONL thickness observed after 

treatment with 11-cis-6mr-retinal compared to DMSO-treated group were statistically significant 

(P<0.001); no significant difference in the ONL thickness was observed between animals 

unexposed to light and those treated with 11-cis-6mr-retinal (P=NS). Statistical significance was 

calculated with the one-way ANOVA and post-hoc students t-test, unpaired two-tailed. D, 

Representative SLO images show autofluorescent (AF) spots in the retina of a mouse exposed 

to light after pretreatment with DMSO (center). Mice unexposed to bright light (left) or exposed to 

bright light after pretreatment with 11-cis-6mr-retinal (right) exhibited much fewer spots. E, 

Quantification of AF spots performed in 10 mice per treatment group. Error bars indicate SDs. 

Changes in the number of AF spots after treatment with 11-cis-6mr-retinal compared to the 

DMSO-treated group were statistically significant (P<0.001). No significant difference was 
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observed between animals unexposed to light and those exposed to light after treatment with 11-

cis-6mr-retinal (P=NS). Statistical significance was calculated with one-way ANOVA and post-hoc 

the students t-test, unpaired two-tailed. F, Examination of retinal morphology after staining with 

H&E in paraffin sections prepared from eyes collected from Abca4−/−Rdh8−/− mice either 

unexposed to light or exposed to bright light after the indicated treatments. Asterisk indicates 

severely disrupted photoreceptor structures in DMSO-treated control mice. G, Examination of 

retinal morphology by IHC in cryosections prepared from the eyes collected from Abca4−/−Rdh8−/− 

mice either unexposed to light or exposed to bright light after the indicated treatments. Sections 

were stained with an anti-rhodopsin C-terminus specific antibody (red) which indicates the 

structural organization of rod photoreceptors, PNA staining (green) which indicates the health of 

cone photoreceptors, and DAPI staining of nuclei (blue). Asterisk indicates severely disrupted 

photoreceptor structures in DMSO-treated control mice. Scale bar, 50 µm. 

 

Figure 2. Treatment with 11-cis-6mr-retinal protects photoreceptor cells from light induced 

degeneration. Abca4−/−Rdh8−/− albino mice on a C57B6/J and 129SV background were treated 

with 11-cis-6mr-retinal (20 mg/kg bw) or DMSO vehicle 30 min before bright light exposure for 60 

min and then kept in the dark. On day 3 after the light exposure, TPM imaging was performed in 

intact mouse eyes immediately after enucleation to quantify enlarged photoreceptors and assess 

the effect of 11-cis-6mr-retinal. A, 3-D views of the photoreceptor-RPE interface. Enlarged 

photoreceptors are visible as fluorescent pillars with a diameter over 2 µm (the diameter of 

unaffected photoreceptors was ~ 1.2 µm). The center of the RPE layer was set at z = 0 µm, and 

the section through the photoreceptor cell layer is shown 10 µm below. B, Representative, large 

field images of the retina and RPE are shown. The RPE is visible at the edges of the images as 

the curvature of the intact eye ball brings it in focus. C, Quantification of the enlarged 

photoreceptors. The number of enlarged photoreceptors caused by illumination with bright light 
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was significantly decreased (P=0.02) in mice treated with 11-cis-6mr-retinal prior to light 

exposure. Error bars represent SDs. Statistical significance was calculated with the students t-

test, unpaired two-tailed. 

 

Figure 3. Effect of 11-cis-6mr-retinal pretreatment on visual function in Abca4−/−Rdh8−/− 

mice exposed to bright light. A, Single flash ERG responses to increasing light intensity 

obtained under dark conditions in mice either unexposed to light or exposed to bright light after 

treatment with either DMSO or 11-cis-6mr-retinal at a dose of 20 mg/kg bw. B, ERG responses 

compared between treatment groups revealed significant protective effects in 11-cis-6mr-retinal-

treated mice before acute light illumination as compared to DMSO-treated mice in both scotopic 

a- and b-waves and in photopic b-waves (C). ERG measurements were carried out in 10 mice 

per group. 

 

Figure 4. 11-cis-6mr-retinal prevents bright light-induced retinal degeneration in WT mice. 

BALB/c mice were i.p. injected with 11-cis-6mr-retinal (20 mg/kg bw) 30 min before exposure to 

white light at 12,000 lux for 1 h and then kept in the dark for 7 days before examination of retinal 

morphology and function. A, Representative OCT images show substantial protection of the ONL 

in mice pretreated with 11-cis-6mr-retinal as compared to DMSO-treated control mice. Asterisk 

indicates severely disrupted photoreceptor structures in DMSO-treated control mice. Scale bar, 

50 µm. B, Quantification of the ONL thickness in mice unexposed to light or in mice treated either 

with DMSO vehicle or 11-cis-6mr-retinal prior to bright light exposure in 5 mice per each treatment 

group. Error bars indicate SDs. Statistical significance was calculated with one-way ANOVA and 

post-hoc students t-test, unpaired two-tailed. C, Representative SLO images show AF spots in 

the retina of mice unexposed to light or exposed to bright light after pretreatment either with DMSO 

vehicle or 11-cis-6mr-retinal. Scale bar, 50 µm. D, Quantification of AF spots in 5 mice per 
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treatment group. Error bars indicate SDs. Changes in the number of AF spots after treatment with 

11-cis-6mr-retinal compared to DMSO-treated group were statistically significant (P<0.001). No 

significant difference was observed between mice unexposed to light and those treated with 11-

cis-6mr-retinal (P=NS). Statistical significance was calculated with one-way ANOVA and post-hoc 

students t-test, unpaired two-tailed. E, Examination of gross retinal morphology after H&E staining 

of paraffin sections from eyes collected from WT mice either unexposed to light or exposed to 

bright light after indicated treatments. Asterisk indicates severely disrupted photoreceptor 

structures in DMSO-treated control mice. Scale bar, 50 µm. F, Examination of retinal morphology 

by IHC in cryosections prepared from eyes of BALB/c mice either unexposed to light or exposed 

to bright light after indicated treatments. Sections were stained with an anti-rhodopsin C-terminus 

specific antibody (red) that indicates the structural organization of rod photoreceptors, PNA 

staining (green) denotes the health of cone photoreceptors and DAPI staining (blue) reveals the 

nuclei. Asterisk indicates severely disrupted photoreceptor structures in DMSO-treated control 

mice. Scale bar, 50 µm. G, Visual function determined by ERG responses. ERG recordings 

revealed significant protective effects in 11-cis-6mr-retinal-treated mice before acute light 

illumination as compared to DMSO-treated mice in both scotopic a- and b-waves and in photopic 

b-waves. ERG measurements were carried out in 5 mice per group.  

 

Figure 5. Effect of 11-cis-6mr-retinal on the retinoid cycle. WT C57BL/6J mice were i.p. 

injected with either DMSO vehicle, 11-cis-6mr-retinal  at a dose of 20 mg/kg bw) or retinylamine 

(a potent inhibitor of the visual cycle (Golczak M et al., 2005)) at a dose of 4 mg/kg bw, 30 min 

prior to illumination with white light at 2,000 lux for 5 min. Scotopic ERG responses were recorded 

immediately after exposure to light and every 5 min thereafter for a total of 60 min. Increasing 

amplitudes of both a-waves (A) and b-waves (B) after light illumination in mice treated either with 

DMSO or 11-cis-6mr-retinal were noted but were much slower in mice treated with retinylamine. 

Five mice per group were used for these ERG measurements. Error bars represent SDs. 
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Figure 6. Effect of 11-cis-6mr-retinal on photoreceptor generation of ROS in 

Abca4−/−Rdh8−/− mice exposed to bright light. A, Dark-adapted Abca4−/−Rdh8−/− mice were 

injected i.p. with the ROS probe DHE 1 day after illumination with 10,000 lux white light for 30 

min. These mice were treated with either DMSO or 11-cis-6mr-retinal (20 mg/kg bw) 30 min before 

light exposure. Mice unexposed to bright light also were treated with the DHE probe. Eyes were 

harvested 1 h later, fixed and processed for cryosectioning. The ROS signal detected on sections 

from different experimental groups, was obtained with a fluorescence microscope. DAPI staining 

was used to visualize nuclei and the retinal layers. Scale bar, 50 µm. B, Quantification of 

fluorescence intensity in arbitrary units obtained from various regions of the photoreceptor cell 

layers (mean ± S.D.). Changes in fluorescence intensity observed in the photoreceptor layers 

after treatment with 11-cis-6mr-retinal compared to the DMSO-treated group were statistically 

significant (P<0.001). No significant difference was observed between mice unexposed to light 

and those treated with 11-cis-6mr-retinal (P=NS). Statistical significance was calculated with the 

one-way ANOVA and post-hoc students t-test, unpaired two-tailed. 

 

Figure 7. Detection of 11-cis-6mr-retinal-bound pigment in mouse eyes. 11-cis-6mr-retinal 

(20 mg/kg bw) was administered to Abca4−/−Rdh8−/− or WT mice 30 min before their exposure to 

bright light for 30 min. After illumination, mice were kept in the dark. This procedure was repeated 

3 times. On the fourth day (24 h after third treatment), eyes were harvested, and pigment was 

purified by 1D4 anti-rhodopsin immunoaffinity chromatography. Additionally, Lrat−/− mice were 

injected i.p. with 11-cis-6mr-retinal for three consecutive days and 24 h after the last injection 

eyes were collected and used for pigment purification. UV-visible spectra of the rhodopsin or 

rhodopsin/11-cis-6mr-retinal-bound opsin mixture purified from Abca4−/−Rdh8−/− mice (A), WT 

mice (B) or Lrat−/− mice (C), that were either untreated (black spectrum) or treated with 11-cis-

6mr-retinal (green spectrum); left panel. Difference spectra were obtained by subtracting the UV-
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visible spectrum of the light-illuminated sample from the spectrum recorded in the dark; right 

panel. 

 

Figure 8. Detection and quantification of 11-cis-6mr-retinal (20 mg/kg bw) in mouse eyes. 

A, Elution profiles for 11-cis-6mr-retinal oximes (solid line) and d5-all-trans-retinal oximes (dashed 

line). Chromatograms represent ion intensities for m/z = 312.3 [M+H]+ and m/z = 305.3 [M+H]+, 

respectively. The MS spectrum averaged between 12 and 13 min of elution indicates ions 

corresponding to the oximes of endogenous retinal (a) (m/z = 300.3 [M+H]+), d5-all-trans-retinal 

(b), and 11-cis-6mr-retinal (c). Fragmentation patterns for 11-cis-6mr-retinal oximes and d5-all-

trans-retinal oximes are shown in panels B and C, respectively. Characteristic fragmentation 

profiles for these compounds were used to design the selected reaction monitoring-based 

detection and quantification method. D, Dose-dependent accumulation of 11-cis-6mr-retinal 

retinal in mouse eyes of Abca4−/−Rdh8−/−. The observed accumulation of 11-cis-6mr-retinal in 

mouse eyes was statistical significant (P<0.05). Statistical significance was calculated with the 

students t-test, unpaired two-tailed. 
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Table 1. Dose-dependent effect of 11-cis-6mr retinal on retinal health in Abca4−/−Rdh8−/−mice.  

Treatment OCT 

ONL thickness 

(µm) 

Statistical 

significance 

(p) 

SLO 

AF, spot counts 

Statistical 

significance 

(p) 

No light 

 

58±3 NA 4±2 NA 

DMSO 

 

4±2 NA 1200±100 NA 

11-cis-6mr-retinal 

(4 mg/kg bw) 

5±3 NS 1100±200 NS 

11-cis-6mr-retinal 

(8 mg/kg bw) 

15±10 <0.05 1000±200 <0.05 

11-cis-6mr-retinal 

(12 mg/kg bw) 

27±18 <0.001 400±100 <0.001 

11-cis-6mr-retinal 

(20 mg/kg bw) 

58±3 <0.001 4±3 <0.001 

 

The thickness of the ONL and the number of AF spot were evaluated in OCT or SLO images 

respectively obtained from Abca4−/−Rdh8−/− mouse eyes under different treatment. Mice were either 

kept in the dark, treated with DMSO or with different doses (4 mg/kg, 8 mg/kg, 12 mg/kg or 20 mg/kg) 

of 11-cis-6mr-retinal 30 min prior to bright light illumination. Morphological changes induced by bright 

light were largely prevented by pretreatment with 11-cis-6mr-retinal at 20 mg/kg; the ONL thickness 

and AF spots count closely resembled those of mice not exposed to bright light. Partial protection was 

achieved with 11-cis-6mr-retinal at 12 mg/kg. NA, not applicable. NS, not statistically significant. 

Statistical significance was calculated with the students t-test, unpaired two-tailed for two group 

comparison and one-way ANOVA test (SigmaPlot 11.0 software) for multiple group comparison. 
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