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Abstract 

Chemokine receptors belong to the class A of G-protein coupled receptors (GPCRs) and are 

implicated in a wide variety of physiological functions, mostly related to the homeostasis of 

the immune system. Chemokine receptors are also involved in multiple pathological 

processes, including immune and autoimmune diseases, as well as cancer. Hence, several 

members of this GPCR subfamily are considered to be very relevant therapeutic targets. 

Since drug discovery efforts can be significantly reinforced by the availability of crystal 

structures, substantial efforts in the area of chemokine receptor structural biology could 

dramatically increase the outcome of drug discovery campaigns. This short review 

summarizes the available data on chemokine receptor crystal structures, discusses the 

numerous applications from chemokine receptor structures that can enhance the daily work of 

molecular pharmacologists, as well as the challenges and pitfalls to consider when relying on 

crystal structures for further research applications.  
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Significance statement 

This short review summarizes the available data on chemokine receptor crystal structures, 

discusses the numerous applications from chemokine receptor structures that can enhance the 

daily work of molecular pharmacologists, as well as the challenges and pitfalls to consider 

when relying on crystal structures for further research applications.  
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Introduction   

G protein-coupled receptors (GPCRs) are one of the biggest families of transmembrane 

proteins in the human genome (Lander et al., 2001). Their relevance is reflected by the large 

proportion of marketed drugs targeting GPCRs (Hauser et al., 2018; Hopkins and Groom, 

2002) and the dramatic increase in the number of GPCR structures deposited in the Protein 

Data Bank in the last decade (Hauser et al., 2018; Katritch et al., 2013).  To illustrate, 337 

GPCR-ligand complexes have been solved to date, including 63 unique receptor proteins 

according to data from the GPCR database (GPCRdb) (Pandy-Szekeres et al., 2018). These 

GPCR structures have been obtained binding a wide variety of ligands and show a range of 

conformational GPCR states. This wave of structural knowledge is stimulating virtual 

screening (VS) and structure-based drug design (SBDD) approaches, as well as the 

elucidation of the molecular mechanisms of receptor activation and functional selectivity 

(Erlandson et al., 2018; Venkatakrishnan et al., 2016).  

 

Chemokine receptors are a subfamily of class A GPCRs with a number of key physiological 

roles. These roles include a variety of developmental functions, the homeostasis of the 

immune system by controlling the homing of hematopoietic stem cells, and regulating the 

activation, differentiation, migration, and survival of leukocytes (Koenen et al., 2019; 

Scholten et al., 2012). Chemokine receptors are therefore key in inflammatory processes and 

are also involved in a number of immune and autoimmune diseases, including psoriasis, 

atherosclerosis, and allergies, amongst others (Murdoch and Finn, 2000), and are also 

considered to be important in cancer (Neves et al., 2019). Some chemokine receptors are also 

used by the human immunodeficiency virus (HIV) to enter into target cells (Scarlatti et al., 

1997). Consequently, several chemokine receptors are very interesting drug targets (Kufareva 

et al., 2017). So far, three chemokine receptor-based therapeutics have been approved by the 
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Food and Drug Administration (FDA) to date: plerixafor (Mozobil®) targeting C-X-C 

chemokine receptor 4 (CXCR4), indicated for stem cell mobilization in non-Hodgkin 

lymphoma and multiple myeloma (Sancho et al., 2016); maraviroc (Celsentri®) targeting C-C 

chemokine receptor 5 (CCR5), indicated for HIV-1 infection (Meanwell and Kadow, 2007); 

and the monoclonal antibody  mogamulizumab (Poteligeo®) targeting C-C chemokine 

receptor 4 (CCR4), indicated for cutaneous T cell lymphoma (Ishii et al., 2010).  

As mentioned, structural knowledge on the family of GPCRs has substantially increased over 

the past years, and both NMR and x-ray crystallography approaches have been successfully 

applied for solving chemokine receptor structures as well (Apel et al., 2019; Burg et al., 

2015; Miles et al., 2018; Oswald et al., 2016; Park et al., 2012; Peng et al., 2018; Qin et al., 

2015; Tan et al., 2013; Wu et al., 2010; Zheng et al., 2017; Zheng et al., 2016). This review 

will only focus on x-ray structures; for a recent overview of the application of NMR to GPCR 

structure elucidation the reader is referred to Shimda et al. (2019). To date, crystal structures 

of 5 different chemokine receptor complexes are available (Figure 1): CXCR4 binding the 

small molecule isotiourea-1t or IT1t (Wu et al., 2010), the peptide-like ligand CVX15 (Wu et 

al., 2010), and the chemokine-like viral macrophage inflammatory protein 2 or vMIP-II (Qin 

et al., 2015); CCR5 binding the small molecule FDA-approved drug maraviroc (Tan et al., 

2013), the C-C motif chemokine ligand 5 (CCL5) truncation 5P7 (Zheng et al., 2017), and the 

small molecule antagonist compounds 21 and 34 (Peng et al., 2018); US28, a viral 

chemokine-like receptor, binding the human chemokine agonist C-X3-C chemokine ligand 1 

(CX3CL1) (Burg et al., 2015), an engineered version of CX3CL1 with randomized N-

terminus residues, namely CX3CL1.35 (Miles et al., 2018),  and an intracellular nanobody 7, 

that keeps the receptor in an active-like state (Burg et al., 2015; Miles et al., 2018); C-C 

chemokine receptor 2 (CCR2), binding small molecule ligands in two different binding sites, 

BMS-681 and CCR2-RA-[R] (Zheng et al., 2016), as well as the small molecule antagonist 
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MK-0812 (Apel et al., 2019); and C-C chemokine receptor 9 (CCR9) binding the intracellular 

small molecule vercirnon (Oswald et al., 2016). Additionally, a CCR5 electron-microscopy 

structure has been solved bound to the HIV envelope glycoprotein gp160 and the CD4 

(cluster of differentiation 4) receptor (Shaik et al., 2019).  

The potential of using SBDD methods is reflected by the large amount of ligands found for 

various chemokine receptors (Arimont et al., 2017; Das et al., 2015; Davies et al., 2009; 

Kellenberger et al., 2007; Liu et al., 2008; Mishra et al., 2016; Mysinger et al., 2012; Perez-

Nueno et al., 2009; Schmidt et al., 2015; Vitale et al., 2013; Wang et al., 2014; Yoshikawa et 

al., 2013). Moreover, SBDD methods prove to be more effective when a crystal structure is 

available over the use of de novo techniques or homology models (Arimont et al., 2017; 

Mysinger et al., 2012). This illustrates one of the numerous advantages of relying on 

structural knowledge over the protein sequence only, and the necessity for new structures of 

other chemokine receptors. However, chemokine receptors, as any other GPCR and 

transmembrane proteins, are inherently challenging to crystallize (Kobilka, 2013; Piscitelli et 

al., 2015). The first prerequisite for experimentally solving a protein structure is obtaining 

large amounts of stable, purified, homogeneous protein (Piscitelli et al., 2015). Protein 

purification has proven challenging with highly dynamic GPCRs (Milic and Veprintsev, 

2015). The multiple advances on the use of protein engineering, including mutagenesis, 

truncations, and chimeric constructs, as well as the use of stabilizing interaction partners, 

such as antibodies and nanobodies (Bobkov et al., 2019, submitted), have helped to overcome 

the challenges of GPCR instability (Ayoub et al., 2017; Manglik et al., 2017). To illustrate, 

CXCR4 and CCR2 have been crystallized fused to the T4 lysozyme (T4L) (Qin et al., 2015; 

Wu et al., 2010; Zheng et al., 2016), CCR5 and CCR2 fused to rubredoxin (Apel et al., 2019; 

Peng et al., 2018; Tan et al., 2013), CCR9 with seven thermostabilizing mutations (Oswald et 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on July 2, 2019 as DOI: 10.1124/mol.119.117168

 at A
SPE

T
 Journals on A

pril 19, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL # 117168  
 

 9 

al., 2016), and US28 binding the intracellular nanobody 7 (Burg et al., 2015; Miles et al., 

2018). 

In this review, we will summarize the available data on chemokine receptor structures, 

discuss the numerous applications of chemokine receptor structures for drug discovery, as 

well as the challenges and pitfalls that one can encounter when relying on crystal structures 

for research applications.  

Chemokine receptor structures  

To date, 5 of 28 chemokine receptor family members have been crystallized (Figure 1). 

Despite the low representation of co-crystallized chemokine GPCRs, the structures available 

offer rather representative information for this GPCR subfamily: co-crystallized ligands of 

different chemical nature, binding in different binding sites, and receptors in different 

conformational states have been crystallized. Additionally, a complex of CCR5-CD4-gp160 

of HIV-1 has very recently been solved by cryo-electron microscopy (Shaik et al., 2019). 

Chemokine-bound crystal structures include the CXCR4-vMIP-II (Qin et al., 2015), US28-

CX3CL1 (Burg et al., 2015; Miles et al., 2018), and CCR5-5P7-CCL5 (Zheng et al., 2017) 

and support the two-steps/two-sides mechanism of chemokine binding (Kufareva et al., 

2014). The sequences of the co-crystallized chemokines can be found in Figure 2.  According 

to the  two-steps/two-sides model, the globular core of the chemokine binds first to the 

extracellular surface of the receptor (Chemokine Recognition Site 1, or CRS1), which allows 

for a subsequent interaction between the N-terminus of the chemokine and the orthosteric 

binding site within the 7TM domain (Chemokine Recognition Site 2, or CRS2) (Scholten et 

al., 2012). This model has been recently expanded in accordance to the most recent crystal 

structure of a chemokine-bound receptor, the CCR5-5P7-CCL5 complex (Zheng et al., 2017), 

and to extensive experimental evaluation of the contributions of amino acid residues in both 

C-C chemokine receptor 1 (CCR1) and its ligands to affinity and receptor activation (Sanchez 
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et al., 2019). The CCR5-5P7-CCL5 complex shows a third site, that authors annotate as 

Chemokine Recognition Site 1.5, where the conserved receptor motif P19-C20 is packed 

against the chemokine disulphide bond (Zheng et al., 2017). This third site would act as a 

pivot point between CRS1 and CRS2, allowing a specific arrangement of interactions in 

between receptor and ligand (Zheng et al., 2017). Experimental evaluation of CCR1 and its 

ligands has shown that CRS1 and CRS2 contribute to ligand binding but that full receptor 

activation cannot be explained solely by high affinity ligand binding. This observation has 

led to the proposal of a third step for the model, now called three-step model, where a 

conformational change of the receptor-ligand complex that would results in receptor 

activation (Sanchez et al., 2019).  

Despite the overall conserved geometry and stoichiometry of chemokine binding, the specific 

interactions that occur in CRS2 are chemokine-receptor specific, as illustrated by the reported 

chemokine-bound x-ray structures (Burg et al., 2015; Miles et al., 2018; Qin et al., 2015; 

Zheng et al., 2017). Despite the knowledge on the conserved mechanism of binding and the 

specific pattern of interactions between the chemokine and its receptors, the redundancy and 

functional selectivity of the chemokine system is still poorly understood. Multiple 

chemokines are able to bind the same GPCR, whereas some GPCRs are able to bind multiple 

chemokines (Scholten et al., 2012). Chemokine receptors are also able to bind small molecule 

and peptide ligands (Figure 2). The CVX15-bound CXCR4 structure shows the ability of 

peptide mimetics to mimic the binding of the large chemokines, interacting with multiple 

chemokine binding residues or hotspots (Arimont et al., 2017; Wu et al., 2010) (Figure 3A). 

Small molecules occupy a space in the binding site that can (partially) overlap with the 

chemokine binding site, as has been reported for IT1t (Wu et al., 2010), maraviroc (Tan et al., 

2013), compounds 21 and 34 (Peng et al., 2018), BMS-681 (Zheng et al., 2016), and MK-

0812 (Apel et al., 2019) (Figure 1, Figure 2, Figure 3A). The (partial) overlap explains the 
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different levels of chemokine displacement that is observed in experiments using different 

small molecule (potentially allosteric) modulators (Adlere et al., 2019). Moreover, the 

orthosteric binding site is divided into a minor subpocket and a major subpocket (Figure 3A). 

Ligands can bind to either pocket exclusively (IT1t, minor pocket, CVX15, major pocket, 

Figure 1 in CXCR4, green and magenta, respectively) (Wu et al., 2010) or simultaneously 

(maraviroc and compounds 21 and 34, Figure 1 in CCR5, green ) (Tan et al., 2013). BMS-

681and MK-0812 have been crystallized protruding from the TM domain towards the 

membrane interface (Apel et al., 2019; Zheng et al., 2016). Intriguingly, the CCR2 and CCR9 

crystal structures  show that small molecule modulators CCR2-RA-[R] (Zheng et al., 2016) 

and vercirnon (Oswald et al., 2016) are also able to bind at the intracellular side of 

chemokine receptors, showing the targetability of an intracellular pocket (Figure 1, Figure 2, 

Figure 3C).  

Most chemokine receptor crystal structures are co-crystallized with antagonists and resemble 

an inactive conformational state. However, the human cytomegalovirus-encoded viral 

receptor US28 is bound to a human chemokine CX3CL1 and a stabilizing nanobody Nb7, 

and resembles an active state (Burg et al., 2015; Miles et al., 2018). Yet, the rearrangements  

do not completely resemble the fully active conformation observed in the G-protein-bound b2 

adrenergic receptor (Rasmussen et al., 2011) (Figure 1, Figure 3D).  

 Applications of chemokine receptor crystal structures for molecular pharmacologists 

The information that can be extracted from crystal structures goes far beyond the ligand 

interaction or protein structural analysis and is often neglected. In this section we review 

multiple aspects of chemokine receptor crystal structures that can be useful for molecular 

pharmacologists. We will focus on the distinct aspects of chemokine receptor structures that 

can guide the understanding of the mechanistic details of GPCR function. Moreover, we will 
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provide insights on how these structures can be used for the design of tools and experiments 

to explore different pharmacological aspects of chemokine receptors. 

Structural determinants of ligand binding 

Understanding the mechanism of binding of small molecule ligands and chemokine mimics is 

key to rationally modulate their pharmacology (Arimont et al., 2017). Crystal structures are 

key to reveal interactions of ligand-receptor complexes (Figure 4, yellow), which can 

subsequently be used to: i) generate ligand analogues with improved interactions with key 

residues;  ii) drive SBDD efforts, or iii) to design site-directed mutagenesis experiments and 

elucidate the interactions that contribute most to the free energy of binding. Medicinal 

chemistry efforts are often focused on modifying ligands to generate structure-activity-

relationships, exploring the different chemical features of the ligand that enhance the desired 

activity parameters (e.g. affinity, potency, selectivity, kinetics). However, this exercise 

requires significant synthetic efforts, as identifying these key features implies designing 

modifications in all possible chemical substituents of the ligands. These efforts are 

exponentially bigger as the ligand complexity increases, and chemokine receptor ligands are 

often rather complex: from big and flexible small molecules, to peptides and chemokines. 

The challenges of such a ligand-based approach can often be overcome by combining it with 

structure-based methods. Analysis of key interactions in crystal structures offers a rational for 

designing ligand modifications. To illustrate, a recent study focused on the IT1t-bound 

CXCR4 crystal structure as a baseline to identify new fragment hits, and analysed the crystal 

structure to rationally design a fragment growing strategy (Adlere et al., 2019). In this study, 

the identification of a highly hydrophobic hotspot in the binding site of the co-crystallised 

ligand was used to generate analogues with increased lipophilicity to target the hotspot. 

Furthermore, experimentally-validated ligand binding modes provided by crystal structures 

can be used for the rational design of ligand modifications. Such modifications  include the 
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attachment of radioactive or fluorescent probes (Iliopoulos-Tsoutsouvas et al., 2018), which 

are key tools for a wide variety of molecular pharmacology experiments, from affinity 

determination (ligand displacement), kinetics profiling, to in vitro and in vivo imaging. To 

illustrate, the IT1t-bound CXCR4 crystal structure was successfully used to design 

fluorescent probes based on the chemical structure of IT1t and analogues (Dekkers et al., 

manuscript in preparation). 

SBDD requires detailed knowledge on the ligand-receptor interactions. Molecular docking 

predicts the conformation and interactions of the ligand in the binding site based on their 

shape and physicochemical properties. However, despite the rather successful application of 

ligand docking in SBDD for some GPCRs, relatively small conformational differences in 

protein binding sites (Coudrat et al., 2017a) and the availability of experimentally validated 

structural information, including site-directed mutagenesis (SDM) or ligand quantitative 

structure-activity relationships (QSAR), can be critical for the success of virtual screening 

(Yoshikawa et al., 2013). The use of GPCR crystal structures has long proven to enhance hit 

identification and lead optimization (Coudrat et al., 2017a; Coudrat et al., 2017b; Kooistra et 

al., 2014; Kooistra et al., 2015; Kuhne et al., 2016; Lee et al., 2018). In the case of chemokine 

receptors, multiple crystal structure-based virtual screening campaigns have led to the 

discovery of new chemokine receptor ligands (Arimont et al., 2017). Hence, the use of crystal 

structures is key for the discovery of new tool compounds and potential drug candidates 

targeting chemokine receptors. A major contribution from chemokine receptor crystal 

structures to the field of SBDD in GPCRs was the revelation of a novel druggable pocket in 

the intracellular side of the receptor (Oswald et al., 2016; Zheng et al., 2016), exposed to the 

cytosol, which partially overlaps with the binding sites for both G-proteins (Rasmussen et al., 

2011) and β-arrestins (Kang et al., 2015; Zhou et al., 2017). This allosteric binding site was 

explored before in chemokine receptors (de Kruijf et al., 2011; Zweemer et al., 2014), but the 
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ligand-bound crystal structures now clearly reveal a conserved pharmacophore that opens 

new doors to SBDD for chemokine receptors (Figure 3C).   

Crystal structures can also be used to guide SDM experiments of a receptor to identify the 

key residues that drive the ligand pharmacology of interest. To illustrate, multiple models of 

peptide ligand binding (e.g. T140 (Trent et al., 2003) and FC131 (Vabeno et al., 2006)) were 

proposed before the release of the CVX15-bound CXCR4 structure. However, the release of 

the crystal structure revealed a different binding mode from the previously suggested. New 

peptide-bound CXCR4 models have been proposed after the release of the crystal structure 

that consider the observed interaction pattern in the x-ray structure, and it has been used to 

guide SDM experiments and validate the proposed new models (Thiele et al., 2014). The 

structural insights gained from this experimental validation allowed rational design strategies 

towards the discovery of new CXCR4 ligands (Di Maro et al., 2017; Vabeno et al., 2015), 

and even to translate this information to other chemokine receptor ligands (Oishi et al., 2015). 

Structural determinants of protein function 

All GPCRs share a common seven-transmembrane (TM) domain topology, despite the low 

sequence identity between class A subfamilies (~20-25%) (Katritch et al., 2013) and the 

different classes A-F (<20%) (Fredriksson et al., 2003). Furthermore, GPCRs possess highly-

conserved sequence motifs that have been shown to contribute to their structural integrity and 

folding, including a highly conserved disulphide bridge between TM3 and the extracellular 

loop (ECL) 2 or ECL2, which upon mutation induces protein misfolding (Rader et al., 2004). 

This disulphide bridge is also present in chemokine receptors, as well as an additional 

disulphide bridge between the N-terminus and ECL3 uniquely conserved amongst chemokine 

receptors (Szpakowska et al., 2014) (Figure 3B). Disruption of this covalent interaction 

through mutagenesis destabilizes the tertiary structure of CXCR4, and as a consequence also 

potentially decreases ligand-binding affinity (Zhou and Tai, 2000). The crystal structures of 
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chemokine receptors show the impact of the N-terminus-ECL3 disulphide bridge on the 

protein conformation and, specifically, on the orthosteric ligand binding site between the 

7TM domains (Figure 3B): TM7 is two alpha-helical turns longer than in other GPCRs, and 

the N-terminus is repositioned towards TM7 (Arimont et al., 2017). The effects of these 

structural motifs must therefore be considered when designing chemokine or peptide ligands, 

small molecule fluorescent probes, and even protein constructs such as N-terminal probes. 

Another characteristic structural motif in chemokine receptors with a big impact regarding 

ligand binding and mutant design is the so-called S/T2.56xP2.58 motif in TM2. Mutation of 

residue Thr2.56 in CCR5 has a significant impact on binding affinity and functional response 

of CCR5 to CCL5 (Govaerts et al., 2001). The available crystal structures of chemokine 

receptors show that this motif induces a unique helical kink in TM2 that places the residues 

2.60 and 2.63 toward the ligand-binding site instead of toward the membrane interface as in 

other GPCRs (Arimont et al., 2017). Consequently, it is necessary to introduce two gaps in 

sequence alignments of chemokine receptors in order to translate this structural effect into the 

sequence space (Gonzalez et al., 2012).  

Moreover, GPCRs share a conserved mechanism of signal transmission and activation 

(Venkatakrishnan et al., 2013), even though they bind a wide variety of ligands of different 

chemical natures. Identification of this conserved mechanism has been possible through the 

study of the multiple crystal structures released not only in the inactive state, but also in the 

active and even intermediate states (Venkatakrishnan et al., 2016). This mechanism seems to 

extend to chemokine receptors as well, as proven by the conserved active-like conformation 

in the CX3CL1-bound US28 structures (Burg et al., 2015; Miles et al., 2018). The most 

notorious structural changes associated to the active state include a significant outward shift 

of the intracellular half of TM6, accompanied by an inward movement of the bottom of TM7, 

and a subtler lateral displacement of the bottom of TM5 (Figure 3D).  
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GPCRs are intrinsically allosteric by nature, as signal transduction involves changes 

occurring at spatially distinct protein sites (Thal et al., 2018). Many sequence motifs 

conserved throughout class A GPCRs are long known to be key for GPCR signalling (Figure 

4, cyan, Figure 5), including e.g. the DRY motif (Rovati et al., 2007), the NPxxY motif 

(Audet and Bouvier, 2012), the sodium binding site (Katritch et al., 2014), the PIF motif or 

transmission switch (Venkatakrishnan et al., 2013), and the CWxP motif (Kobilka and Deupi, 

2007). A study reporting on point mutations at all residues of CXCR4, proved that at least 

one of the key residues in each of the aforementioned structural motifs, upon mutation, 

significantly decreased CXCR4-mediated signalling (Wescott et al., 2016). However, only 

the analysis and comparison of inactive and active crystal structures has elucidated the 

molecular mechanism that triggers the aforementioned effects on signalling (Venkatakrishnan 

et al., 2016). With crystal structures at hand, the environment of these conserved motifs has 

been identified, supporting the rational design of specific mutant points to disrupt or enhance 

their structural or pharmacological effect. By these means, the role of the motifs has been 

thoroughly studied in CXCR4, where mutation in a residue on any of these motifs, with the 

exception of the sodium pocket, significantly impairs G-protein signalling without 

significantly affecting CXCL12 binding (Wescott et al., 2016) (Figure 4).  

 

Rational evaluation of chemokine receptor orthologue variants and polymorphisms 

The basis of most molecular pharmacology projects ultimately includes the evaluation of the 

effect of drugs or other chemical entities on a human protein target, often expressed in 

human-derived cell lines. Yet, for proper translating of the pharmacological effects of a drug 

candidate from in vitro to in vivo settings, knowledge on the effect of drug candidates on a 

number of animal orthologues is crucial, as protein sequence divergence between species can 

be substantial (Figure 4 – orange). Despite the high similarity between orthologues of 
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chemokine receptors (90-100% within mammals (data retrieved from GPCRdb, (Pandy-

Szekeres et al., 2018))), there are receptor regions with lower conservation, especially in the 

loops. To illustrate, the mouse CXCR4 sequence presents a 5 amino acid insertion in ECL2, 

proven to be key for the binding of multiple ligands (Arimont et al., 2017). Crystal structures 

are useful to map sequence differences and to predict, based on their location, if the 

orthologue variant may affect the ligand binding and signalling. By means of in silico 

methods, crystal structures can be used to predict the effect of such orthologue variants, for 

example by a combination of homology modelling (if needed) and molecular docking.  

Differences exist not only in between species, but within the human population (Figure 4, 

blue). Natural genetic variations can cause differences in the individual response to drugs, 

including therapeutic efficacy and safety. To illustrate, 8 of the 9 residues in the binding site 

of maraviroc in CCR5 are polymorphic, which suggests that HIV patients that carry one of 

these variants may show an altered response to the antiretroviral drug (Hauser et al., 2018). 

These naturally occurring genetic variations may therefore represent a challenge to the health 

care system, and may be taken into consideration in early stage drug development. This is 

key in the field of chemokine receptors as illustrated by the wide distribution of single 

nucleotide polymorphisms or SNPs that have been reported for these GPCRs, covering 

residues from the binding site, to key signalling structural motifs (Supplementary Table 1). 

To illustrate, GPCRdb reports ~2500 SNPs for chemokine receptors, from which ~43% 

corresponds to the C-C chemokine motif subfamily, 23,5% to the C-X-C chemokine motif 

subfamily, and ~17,7% to the Atypical Chemokine Receptor (ACKR) subfamily. Within 

these subfamilies, the receptors with most reported SNPs are CCR5 (175), C-X-C chemokine 

receptor 1 (160), and atypical chemokine receptor 2 (165), respectively. The average amount 

of SNPs observed per each transmembrane domain within the entire chemokine receptor 

family is rather conserved, with an average of 2 SNPs reported per residue (maximum TM5 = 
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2.21 SNPs/residue, minimum TM3 = 1.6 SNPs/residue) (Hauser et al., 2018; Pandy-Szekeres 

et al., 2018).  Also, in this context, crystal structures can assist to map these genetic variations 

in order to predict potential pharmacological effects. Additionally, crystal structures can 

guide drug design to prevent a negative impact of these polymorphisms, for example, 

avoiding key ligand interactions with the polymorphic amino acid when possible. 

 

Analysis of oligomerization interfaces 

 

Many GPCRs, including chemokine receptors (Figure 4, green) (Stephens and Handel, 2013), 

are known to form functional oligomers in the cell membrane (Bulenger et al., 2005; Cottet et 

al., 2012),. Chemokine receptor oligomers cause negative cooperativity in the binding of their 

chemokine ligands and, in the case of some receptors, oligomerization can either enhance or 

inhibit receptor activation through allosteric communication (Armando et al., 2014; 

Percherancier et al., 2005; Stephens and Handel, 2013). The current methodologies that are 

able to probe dimerization, are mainly based on fluorescence and bioluminescence resonance 

energy transfer approaches (FRET and BRET) (Fumagalli et al., 2019; Goddard and Watts, 

2012; Heuninck et al., 2019; Percherancier et al., 2005), fluorescence fluctuation 

spectroscopy (Briddon et al., 2018; Isbilir et al., 2017), and spatial intensity distribution 

analysis (Pediani et al., 2018).  Such biophysical approaches are very sensitive to detect 

oligomers, but are not able to identify the oligomerization interface between protomers, 

which is key for the molecular understanding of the quaternary GPCR structures. Multiple 

chemokine receptors have been crystallised in an oligomeric state, including the IT1t-bound 

CXCR4 structures (Wu et al., 2010), the maraviroc-bound CCR5 structure (Tan et al., 2013), 

the compound 21-bound CCR5 structure (Peng et al., 2018), and the vercirnon-bound CCR9 

structure (Oswald et al., 2016). Although the biological relevance of GPCR oligomers cannot 
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be deduced from crystal structures and the oligomeric states could originate from 

crystallographic artefacts, they provide a relevant basis for the design of validation 

experiments. The most commonly observed dimerization interface derived from GPCR 

crystal structures is the one involving TM5-TM6, also observed in the IT1t-bound CXCR4 

structures (Ferre et al., 2014). This interface was suggested by use of synthetic peptides 

mimicking the sequence of the transmembrane domains (Baneres and Parello, 2003; Hebert 

et al., 1996) and providing evidence that GPCR dimers may be biologically relevant. Another 

common method to probe oligomerization interfaces is the use of site-directed mutagenesis 

experiments to disrupt the interactions needed for the formation of the complex. In this case, 

the use of crystal structures to guide the experimental design has been key. Formation of 

oligomers requires interactions between the membrane-oriented faces of transmembrane 

domains, which, by nature, are highly hydrophobic (Deber and Li, 1995; Li and Deber, 

1994). The hydrophobic nature of the oligomeric interfaces suggests that the stabilization of 

the complexes may require significant hydrophobic packing. Consequently, the impact of a 

single mutation along the interface may not be enough to disrupt oligomer formation, but 

multiple mutations may be required. Alternatively, identification of the few key polar 

contacts (if present) only found in the top or bottom of the helices is key (Ferre et al., 2014). 

Crystal structures have provided a relevant guide towards the rational design of such 

mutations in strategic positions. This strategy has proven effective to map the CCR5 dimeric 

interface, where disulphide cross-linking experiments based on the dimeric interfaces 

observed in the CXCR4 and  µ opioid receptor crystal structures (Jin et al., 2018). 

Another technique that relies on the knowledge of interaction interfaces is disulphide 

crosslinking or disulphide trapping. Disulphide trapping is an experimental approach in 

which, the introduction of two cysteine residues in different protein partners at strategical 

positions of the interface, generates (irreversible) covalently bound protein complexes 
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(Kufareva et al., 2016). Consequently, disulphide trapping allows protein complexes to be 

stabilised in specific conformations preventing spontaneous dissociation, hence facilitating 

structural studies. To illustrate, crystallising chemokine receptors in complex with 

endogenous chemokines has often proven very challenging potentially due to lower affinity 

of chemokines for detergent-solubilized receptors yielding lower stability complexes, and/or  

the high selectivity of chemokines for specific conformational states of their receptors in 

order to bind with high affinity (e.g. active state) (Kufareva et al., 2016; Rasmussen et al., 

2011). Such high affinity conformational states (e.g. an active state) are so far quite 

challenging to achieve under crystallisation conditions and have so far only succeeded for 

US28 with the aid of a stabilizing nanobody (Burg et al., 2015; Miles et al., 2018). Despite 

these challenges, the use of disulphide trapping has yielded the crystallisation of CXCR4 in 

complex with the viral chemokine v-MIP-II (Qin et al., 2015). Disulphide crosslinking also 

facilitates the evaluation of the proximity between residues, providing insights into complex 

interactions when combined with molecular modelling. Using these methods, the interaction 

geometry of ACKR3 and its endogenous ligand C-X-C chemokine ligand 12 or CXCL12 has 

been mapped, and proven to be consistent with the hypothesis of two sites of chemokine 

binding (Gustavsson et al., 2017). 

 

Challenges and pitfalls 

Despite the great value of GPCR crystal structures, there are some challenges and pitfalls to 

be considered when interpreting them.  X-ray structures as visualized are molecular models 

built to fit an electron density map as good as possible. This fit is done by means of advanced 

computational methods, but sometimes assumptions (e.g. about missing data) are necessary 

(Piscitelli et al., 2015). One of the most used quality metrics is resolution, measured in 

angstroms, which reports the highest angle reflections recorded in the x-ray diffraction 
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pattern. Resolution is a measure of the data quality that is used to build the models, and not a 

measure of the model quality itself (Piscitelli et al., 2015). The lower the value for the 

resolution, the better the quality of the data is. The resolution of GPCR crystal structures 

ranges from 1.7 up to 7.7Å, with an average of 2.89Å at the day of writing. Structures with a 

resolution lower than 2Å are considered of very high quality, and at this resolution it is 

possible to accurately position water molecules and ions in the protein structures. The 

resolution of the solved chemokine receptor crystal structures ranges from 2.2Å in the 5P7-

CCL5-bound CCR5 structure, to 3.8Å in one of the US28 structures (PDB ID 4XT3), with an 

average of 3.03Å. Despite the comparable average resolution values, no high-quality 

structures have been reported for any chemokine receptor so far and experimental finetuning 

is needed to improve the quality of chemokine receptor structures. A summary of the current 

chemokine receptor structure quality metrics can be found in Supplementary Table 2. 

Next to differences in the overall resolution of protein structures, the quality of the electron 

density of a GPCR structure can significantly vary between the transmembrane domains, the 

solvent-exposed loops, and ligand binding sites. The N- and C-terminal, and sometimes the 

intra- and extracellular loops, are often truncated or shortened for optimized protein 

crystallization and/or are not solved due to their flexibility. So often only a few residues of 

such protein regions can be modelled (Piscitelli et al., 2015). In the case of chemokine 

receptors, the N-terminus is key for binding chemokines, but only 1 (CCR2, PDB ID: 6GPX) 

to 10 (US28, PDB ID: 4XT1) residues can be modelled in the solved crystal structures 

(Figure 6, dark blue). For e.g. CCR2 (PDB ID: 5T1A) and CCR9, no residues of the N-

terminus have been solved, limiting the value of the structure for e.g. designing probes or 

engineering ligands that interact with the N-terminus (e.g. chemokines, antibodies, 

nanobodies) (Figure 6, cyan).  
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Other receptor areas that are often not solved are the intra- and extracellular loops (Figure 6, 

green). When considering ECLs, ECL2 is usually the longest and most flexible loop in 

GPCRs, and therefore its resolution is often lower. However, the ECL2 can exhibit different 

secondary structural elements,  including alpha-helical or beta-sheet elements (Woolley and 

Conner, 2017).  In chemokine receptors, the ECL2 loop has an organised secondary structure 

of two antiparallel b-sheets (Arimont et al., 2017) and is solved in all structures, except 

CCR9.  In the CCR9 x-ray only ECL3 is resolved, and a residual signal is observed for ECL2 

C18745.50, involved in the highly conserved disulphide bridge with TM3 (Arimont et al., 

2017). In the US28 structures, ECL1 is not fully solved (PDB IDs 4XT1 and 4XT3), and in 

one CCR2 structure (PDB ID: 6GPS), ECL3 is not fully solved. Regarding intracellular loops 

(ICLs), all structures fused to stabilising proteins, including T4 lysozyme and rubredoxin, 

lack ICL3, as the fusions were engineered in ICL3. Furthermore, the CVX15-bound and 

vMIP-II-bound CXCR4 structures also lack ICL1, whereas a CCR2 structure misses ICL2 

(PDB ID: 6GPX). 

A challenging aspect when analysing electron density maps is the interpretation of ligand 

densities (Figure 6, orange). As mentioned, the average resolution of the solved GPCR 

structures is around 3Å, which allows the visualization of electron density basic contours of 

amino acid side chains and ligands (Piscitelli et al., 2015). To illustrate, the symmetric 

thiourea group of IT1t is solved in the crystal structure in a tautomeric state in which the 

nitrogen N4 forms a salt bridge with Asp972.63 (Wu et al., 2010). However, the electron 

density does not exclude the existence of a very similar conformation with the thiourea group 

flipped, in which the nitrogen N3 forms the salt bridge with Asp972.63. These ambiguities in 

the interpretation of ligand electron density should be considered when designing new 

ligands, side-directed mutagenesis experiments, or attachment points for fluorescent probes 

or bivalent ligands.   
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The role of water molecules in GPCRs is of great interest as waters play a critical role in the 

binding of drugs and the function of many proteins (Ball, 2008; Chaplin, 2006; Mason et al., 

2012) (Figure 6, yellow). Information extracted from crystal structures is key to identify the 

biological functions of conserved structural waters and to exploit them in drug discovery. For 

example, modulating the presence of waters in a binding site by means of ligand scaffold 

modifications has proven successful to modulate ligand affinity (Mason et al., 2013) or 

predict ligand kinetics (Bortolato et al., 2013). On a structural level, water molecules are 

postulated to contribute to the functional plasticity needed for the GPCR conformational 

changes related with signal transmission and activation (Angel et al., 2009a; Angel et al., 

2009b). Importantly, structures with resolutions >2.5 Å do not provide clear electron density 

maps for waters and hence these can often not be modelled. This explains the scarce amount 

of water molecules in chemokine receptor crystal structures.  Additionally, in order to 

consider a water molecule as conserved and structurally relevant, it has to be visible in a 

number of crystal structures, and crystallised chemokine receptor-ligand complexes are so far 

mostly unique. The receptor-ligand complexes crystallised multiple times include CXCR4-

IT1t, but only the PDB ID: 3ODU structure contains water molecules, and US28-CX3CL1, 

for which only the PDB ID: 4XT1 contains water molecules. Therefore, at this stage no 

conclusions on relevant water-mediated interactions can be drawn based only on chemokine 

receptor crystal structures and the role of water molecules in chemokine receptor function 

will have to be further explored experimentally.  

Ions, and specifically monovalent cations, are long known to be key for GPCR structure and 

function (Childers et al., 1979; Vickery et al., 2018). The most representative example is the 

Na+ ion, which in the inactive GPCR state binds in a pocket surrounding the most conserved 

aspartic acid in TM2 (Asp2.50), in the centre of the TM domain (Liu et al., 2012). This sodium 

ion is coordinated directly by interactions with Asp2.50 and Ser3.39, and indirectly through a 
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water network by Trp6.48, Asn7.49, Asn7.45, and Ser7.46. These coordinating residues are highly 

conserved throughout the class A of GPCRs, and numerous high-resolution crystal structures 

of different class A GPCRs evidence the presence of a sodium ion in this conserved site. 

Therefore, sodium binding in this pocket is assumed to be a conserved feature shared by the 

majority of class A GPCRs (Katritch et al., 2014; Vickery et al., 2018). Multiple studies 

reveal that mutation of the residues in the sodium binding pocket modulates agonist binding, 

signalling, and biased signalling (Fenalti et al., 2014; Liu et al., 2012; Massink et al., 2015). 

It has been proposed that, driven by electrochemical gradients, the sodium ion can traverse 

the receptor to the cytosol, coupled to the protonation of Asp2.50, and that this is a key step in 

GPCR activation (Vickery et al., 2018; White et al., 2018). No chemokine receptor crystal 

structure has been solved with a sodium ion in the sodium binding pocket, which may be 

explained by the lack of high-resolution structures. However, it is important to consider that 

the sodium binding site is not fully conserved in chemokine receptors according to the 

GPCRdb sequence alignments (Pandy-Szekeres et al., 2018): Asp2.50, Trp6.48, and Asn7.49 are 

highly conserved, but residue 3.39 is a glycine in 48% of chemokine receptors, residue 7.45 

is a histidine in 74%, and residue 7.46 is a cysteine in 74%.  Therefore, the role of the sodium 

ion in chemokine receptors has to be addressed experimentally and a study with mutagenesis 

of these residues in CXCR4 has failed to severely affect agonist mediated calcium flux 

(Wescott et al., 2016).   

Often other co-crystallised ions, and especially cations, are solved in GPCR structures, 

including chemokine receptor structures. To illustrate, clear electron density of a metal ion is 

observed in the CCR2 structure (PDB ID 5T1A), which was identified as zinc through X-ray 

fluorescence scans. This zinc is positioned between the bottom of TM3, ICL3, and the T4L. 

However, the biological relevance of such ions has to be further studied, as divalent cations 

such as zinc or magnesium are common components of the buffers used for crystallisation 
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and can induce to artefacts in the crystal environment (Piscitelli et al., 2015; Salom et al., 

2013).  

 

 

Concluding remarks 

Members of the family of chemokine receptors are important therapeutic targets due to their 

involvement in numerous inflammatory and immune diseases, as well as in cancer. Despite 

the lack of crystal structure for the majority of chemokine receptors (only 5 out of 28 GPCRs 

of this subfamily have been crystallised to date), the available structures highlight several 

relevant characteristics of chemokine receptors and their structure: the ability to bind ligands 

of different chemical natures in different druggable binding sites, and the ability of the 

GPCRs to adopt multiple conformational states. Analysis of the crystal structures of 

chemokine receptors provide detailed understanding of chemokine receptor ligand binding 

and insights in the molecular mechanisms that drive receptor function.  Moreover, it allows 

the rational design of tools and experiments for a wide variety of applications. These 

applications may include the design of site directed mutagenesis experiments for the 

identification of key determinants of receptor pharmacology, receptor oligomerization 

interfaces, or the functional effect of conserved structural motifs, orthologue variants and 

polymorphisms. However, despite the great impact of GPCR x-ray structures, there are some 

pitfalls to be considered as well. The quality of the electron density maps used to model 

receptor structures is a key determinant to confidently interpret them and to understand e.g. 

highly dynamic regions like loops, ambiguous ligand moieties and side chain rotamers, as 

well as conserved water molecules and structurally relevant ions. Awareness of the strengths 

and pitfalls of crystal structure analysis is crucial in order to fully exploit the value of GPCR 

x-ray structures by medicinal and computational chemists and molecular pharmacologists.  
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Prospectively, acquisition of new chemokine receptor crystal structures would boost the field 

of chemokine receptor drug discovery. Chemokine receptor structures that have not been 

solved yet would be of great added value to drive drug discovery campaigns, but especially 

interesting would be the resolution of the structure of an atypical chemokine receptor, which 

could shed some light on the still puzzling biased signalling of these chemokine receptors. 

New ligand-bound complexes, including different modulator types such as small molecules, 

peptides, or biologicals, would deepen the understanding of the different binding patterns and 

mechanism of action of the different ligand types, potentially enhancing the design of new 

ligands and tools. Furthermore, future small molecule agonist-bound structures may allow for 

the identification of activation-driving interactions that could be targeted in order to achieve a 

pharmacological effect of interest. Similarly, solving a G-protein-bound complex or an b-

arrestin-bound chemokine receptor complex would enhance the analysis of the geometry and 

interaction patterns of a fully active receptor. The field of cryo-EM has made a great progress 

on the resolution of big protein complexes including multiple GPCR:G-protein complexes. In 

the field of chemokine receptors, the cryo-EM structure of CCR5 bound to gp160 has 

provided very valuable insights on the binding mechanism of HIV (Shaik et al., 2019). 

However, a G-protein-bound chemokine receptor structure is still missing. Understanding the 

mechanism of binding of G-proteins or b-arrestins to chemokine receptors would provide 

valuable information that could potentially drive the exploration of new mechanisms of 

modulation of these intracellular partners, including for example the design of modulators 

targeting the intracellular side of the receptors. 
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Figure legends 

Figure 1 – Overview of chemokines and chemokine receptor structures. All co-

crystallized chemokine receptors are shown in gray cartoons and depicted according to their 

phylogenetic relationship within the chemokine receptors subfamily. The crystallized 

receptors include CCR5 (PDB IDs: 4MBS, 5UIW, 6AKX, 6AKY), CCR2 (PDB IDs: 5T1A, 

6GPS, 6GPX), CCR9 (PDB ID: 5LWE), US28 (PDB IDs: 4XT1, 4XT3, 5WB1, 5WB2), and 

CXCR4 (PDB IDs: 3ODU, 3OE0, 3OE6, 3OE8, 3OE9, 4RWS). Ligands are colored based 

on chemical nature: small molecules (green), peptides (magenta), chemokines (cyan), 

nanobody (purple). Examples of soluble chemokine structures are shown in the central panel 

including: CCL5 co-crystallized in complex with a heparin-derived disaccharide (PDB ID: 

5DNF) (Liang et al., 2016), CXCL12 dimer co-crystallized with a small molecule modulator 

(PDB ID: 4UAI) (Smith et al., 2014), and a C-X-C chemokine ligand 11 NMR model (PDB 

ID: 1RJT) (Booth et al., 2004). For a more complete overview of standalone chemokine 

structures the reader is referred to (Kufareva et al., 2017) and (Ziarek et al., 2017).  The 

phylogenetic tree is based on the structure-based alignment in GPCRdb (Pandy-Szekeres et 

al., 2018) and calculated in JalView (Waterhouse et al., 2009) (average distance using % 

identity).  

 

Figure 2 – Overview of co-crystallized chemokine receptor ligands, including small 

molecules, peptide, and chemokines.  

 

Figure 3 – Details of unique features observed in chemokine receptor structures. A) 

CVX15 (magenta) and IT1t-bound (green) CXCR4 representation (in grey cartoon). CVX15 

binds exclusively to the so-called major pocket between TMs 3-7, able to mimic to a greater 

extent the binding of a chemokine, while IT1t binds exclusively to the so-called minor pocket 
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between TMs 1-3 and 7. B) Comparison of the positioning of TM1 in chemokine receptors 

(CXCR4, pale yellow cartoon) and other class A GPCRs (exemplified by ADBR2, in grey 

cartoon). A disulfide bridge between the chemokine receptors N-terminus and the top of TM7 

(2 helix turns longer than in ADBR2) positions TM1 towards TM7 and the binding site. 

C)The intracellular binding site of chemokine receptors (represented by CCR2, in grey 

cartoon) illustrates a conserved pharmacophore between intracellular ligand binders, where a 

key double backbone hydrogen bond occurs between residues 8.49, 8.50, and the ligands. D) 

Common structural rearrangements upon receptor activation in GPCRs. An outward 

movement of TM6 and an inward movement of TM7 allow for the accommodation of the 

stabilizing nanobody (purple spheres). 

 

Figure 4 – Overview of potential applications of chemokine receptor crystal structures. 

Chemokine receptor crystal structures may allow the pharmacologist to: map orthologue 

variants that might potentially affect the pharmacological profile of ligands (orange), 

visualize and interpret clinically relevant single nucleotide polymorphisms (dark blue), 

understand the key features of ligand binding (yellow), critically analyze the potential 

dimerization interfaces of receptors (green), and understand the molecular mechanisms of 

receptor function based on key structural motifs (cyan). 

 

Figure 5 - Key sequence motifs conserved throughout class A GPCRs known to be key 

for GPCR signalling, including the DRY motif (Rovati et al., 2007) (blue), the NPxxY motif 

(Audet and Bouvier, 2012) (orange), the PIF motif or transmission switch (Venkatakrishnan 

et al., 2013) (green), the CWXP motif (Kobilka and Deupi, 2007) (red), and the sodium 

binding site (Katritch et al., 2014) (purple, sodium ion is shown as a reference, but it has not 

been crystallised in any available chemokine receptor crystal structure). Residues mutated in 
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CXCR4 that significantly reduce its signalling are highlighted in red boxes (Wescott et al., 

2016).  

Figure 6 –Electron density challenges and pitfalls for crystal structures of chemokine 

receptors. ED maps of: chemokine binding (cyan), receptors N-terminus (dark blue), co-

crystallized ligands (orange), intracellular loops (green), and water molecules and ions 

(yellow).  

 

Figure 1 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on July 2, 2019 as DOI: 10.1124/mol.119.117168

 at A
SPE

T
 Journals on A

pril 19, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL # 117168  
 

 41 

 

Figure 2 

 

 Figure 3 
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Figure 4 
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Supplementary Table 1 – Chemokine receptor genetic variants from GPCRdb 

(http://www.gpcrdb.org/) (Hauser et al., 2018; Pandy-Szekeres et al., 2018). Missense and 

loss of function mutations are reported for each chemokine receptor. The position, original 

amino acid, amino acid change, allele counts and frequencies, number of homozygotes, two 

predictions of the functional impact of the genetic variation (SIFT and PolyPhen), and a 

functional annotation of the position when available.  

 

See excel file Supp_table_1 

  

http://www.gpcrdb.org/


Supplementary Table 2 – List of all available chemokine receptor structures, including x-

ray, cryo-EM and NMR structures. For each structure, the following information regarding 

the quality metrics of the structure is reported: the receptor, species, PDB identifier (PDB 

ID), method of resolution, resolution, R-value free, R-value work, clash score, Ramachandran 

outliers, side-chain outliers, and RSRZ outliers. Also general information from GPCRdb 

(http://www.gpcrdb.org/) (Pandy-Szekeres et al., 2018) is reported including: the 

conformational state (inactive, active, intermediate), the delta distance, the fusion protein, the 

endogenous ligands of the receptor, the endogenous ligand type, the co-crystallised ligand, 

the co-crystallised ligand function, the co-crystallised ligand type, the crystallisation method, 

the presence of the conserved sodium site, the senior author of the publication, the reference 

of the publication, and the release date of the PDB.  

 

See excel file Supp_table_2 

  

http://www.gpcrdb.org/


 

References 

 

Hauser AS, Chavali S, Masuho I, Jahn LJ, Martemyanov KA, Gloriam DE and Babu MM 

(2018) Pharmacogenomics of GPCR Drug Targets. Cell 172(1-2): 41-54 e19. 

Pandy-Szekeres G, Munk C, Tsonkov TM, Mordalski S, Harpsoe K, Hauser AS, Bojarski AJ 

and Gloriam DE (2018) GPCRdb in 2018: adding GPCR structure models and 

ligands. Nucleic Acids Res 46(D1): D440-D446. 

 


