Contents

ACCELERATED COMMUNICATIONS

1 Characterization of 1H-[1,2,4]Oxadiazolo[4,3-α]quinoxalin-1-one as a Heme-Site Inhibitor of Nitric Oxide-Sensitive Guanylyl Cyclase

Astrid Schrammel, Sönke Behrends, Kurt Schmidt, Doris Koebling, and Bernd Mayer

6 (2S,1’S,2’S,3’R)-2-(2’-Carboxy-3’-phenyl-cyclopropyl)glycine, a Potent and Selective Antagonist of Type 2 Metabotropic Glutamate Receptors

Christian Thomsen, Valeria Bruno, Ferdinando Nicoletti, Maura Marinozzi, and Roberto Pellicciari

10 Trans-species Gene Transfer for Analysis of Glucocorticoid-Inducible Transcriptional Activation of Transiently Expressed Human CYP3A4 and Rabbit CYP3A6 in Primary Cultures of Adult Rat and Rabbit Hepatocytes

Joyce L. Barwick, Linda C. Quattrochi, A. S. Mills, Carol Potenza, Robert H. Tukey, and Philip S. Guzelian

ARTICLES

17 Effect of Phorbol Myristate Acetate on α1-Adrenergic Action in Cells Expressing Recombinant α1-Adrenoceptor Subtypes

José Vázquez-Prado and J. Adolfo García-Sáinz

23 α6 and γ2 Subunit Antisense Oligodeoxynucleotides Alter γ-Aminobutyric Acid Receptor Pharmacology in Cerebellar Granule Neurons

Wei Jian Zhu, Jian Feng Wang, Stefano Vicini, and Dennis R. Grayson

Continued
CONTENTS (cont’d)

34 Contribution of a Helix 5 Locus to Selectivity of
Hallucinogenic and Nonhallucinogenic Ligands for
the Human 5-Hydroxytryptamine_2A and 5-
Hydroxytryptamine_2C Receptors: Direct and
Indirect Effects on Ligand Affinity Mediated by
the Same Locus

Niva Almula, Barbara J. Ebersole,
Juan A. Ballesteros,
Harel Weinstein, and
Stuart C. Sealfon

43 μ-Opioid Receptors Inhibit Dopamine-Stimulated
Activity of type V Adenylyl Cyclase but Enhance
Dopamine-Stimulated Activity of type VII
Adenylyl Cyclase

Masami Yoshimura, Hiroshi Ikeda,
and Boris Tabakoff

52 Bimodal Distribution of Renal Cytochrome P450
3A Activity in Humans

Barbara D. Haehner,
J. Christopher Gorski,
Mark Vandenbranden,
Steven A. Wrighton,
Srinivas K. Janardan,
Paul B. Watkins, and
Stephen D. Hall

60 Pituitary Adenylate Cyclase Activating
Polypeptide Prevents Apoptosis in Cultured
Cerebellar Granule Neurons

Sebastiano Cavallaro,
Agata Copani, Velia D'Agata,
Simone Musco, Salvatore Petralia,
Carmelo Ventura, Franca Stivala,
Salvatore Travali, and
Pier Luigi Canonico

67 Peroxisome Proliferator-Activated Receptor α
Required for Gene Induction by
Dehydroepiandrosterone-3β-sulfate

Jeffrey M. Peters,
Yuan-Chun Zhou, Prabha A. Ram,
Susanna S. T. Lee,
Frank J. Gonzalez, and
David J. Waxman

75 Ligands of the Antiestrogen-Binding Site Are Able
to Inhibit Virion Production of Human
Immunodeficiency Virus 1-Infected Lymphocytes

F. Mesange, F. Delarue, J. Puel,
F. Bayard, and J.-C. Faye

80 κ-Opioid Receptor Activation of a Dendrotoxin-
Sensitive Potassium Channel Mediates
Presynaptic Inhibition of Mossy Fiber
Neurotransmitter Release

Michele L. Simmons and
Charles Chavkin

86 KINFIT II: A Nonlinear Least-Squares Program
for Analysis of Kinetic Binding Data

G. Enrico Rovati, Richard Shrager,
Simonetta Nicosia, and
Peter J. Munson

96 Genetic Evidence for Involvement of Multiple
Effector Systems in α2A-Adrenergic Receptor
Inhibition of Stimulus-Secretion Coupling

Parul P. Lakhiani,
David M. Lovinger, and
Lee E. Limbird

104 Effects of Long-Term Treatment with the
Allosteric Enhancer, PD81,723, on Chinese
Hamster Ovary Cells Expressing Recombinant
Human A1 Adenosine Receptors

Samita Bhattacharya and
Joel Linden
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
<td>Properties of Recombinant γ-Aminobutyric Acid Receptor Isoforms Containing the α5 Subunit Subtype</td>
<td>Edward C. Burgard, Elizabeth I. Tietz, Torben R. Neelands, and Robert L. Macdonald</td>
</tr>
<tr>
<td>140</td>
<td>Alanine Scanning Mutagenesis of Conserved Arginine/Lysine-Arginine/Lysine-X-X-Arginine/Lysine G Protein-Activating Motifs on m1 Muscarinic Acetylcholine Receptors</td>
<td>Norman H. Lee, Neil S. M. Geoghagen, Emily Cheng, Robin T. Cline, and Claire M. Fraser</td>
</tr>
<tr>
<td>149</td>
<td>Glutathione-Associated Enzymes in the Human Cell Lines of the National Cancer Institute Drug Screening Program</td>
<td>Kenneth D. Tew, Anne Monks, Linda Barone, Diane Rosser, Greg Akerman, Julie A. Montali, Jeffrey B. Wheatley, and Donald E. Schmidt, Jr.</td>
</tr>
<tr>
<td>160</td>
<td>2',3'-Didehydro-3'-deoxythymidine: Regulation of its Metabolic Activation by Modulators of Thymidine-5'-triphosphate Biosynthesis</td>
<td>Gurpreet S. Ahluwalia, Wen-Yi Gao, Hiroaki Mitsuya, and David G. Johns</td>
</tr>
<tr>
<td>166</td>
<td>Characterization and Regulation of the Human ML₁A Melatonin Receptor Stably Expressed in Chinese Hamster Ovary Cells</td>
<td>Paula A. Witt-Enderby and Margarita L. Dubocovich</td>
</tr>
<tr>
<td>185</td>
<td>Enhancement of Recombinant α₁β₁γ₂L γ-Aminobutyric Acid Receptor Whole-Cell Currents by Protein Kinase C Is Mediated through Phosphorylation of both β₁ and γ₂L Subunits</td>
<td>Yu-Fung Lin, Timothy P. Angelotti, Ellen M. Dudek, Michael D. Browning, and Robert L. Macdonald</td>
</tr>
</tbody>
</table>
About the cover: Targeting of delta opioid receptor to surface membranes. COS-1 cells were transfected with a mouse δ-opioid receptor mutant (D128A), for which the conserved aspartate in the third membrane domain is replaced by alanine. Cells were double-labeled with fluorescein-conjugated concanavalin A to label the plasma membrane (green) and with an anti-δ-opioid receptor antibody followed by rhodamine-conjugated streptavidin (red). Yellow shows the region of colocalization. This mutant exhibited reduced expression and subtle changes in its ability to bind certain agonist ligands. From Befort, K., L. Tabbara, S. Bausch, C. Chavkin, C. Evans, and B. Kieffer. The conserved aspartate residue in the third putative transmembrane domain of the δ-opioid receptor is not the anionic counterpart for cationic opiate binding but is a constituent of the receptor binding site. Mol. Pharmacol. 49: 216–223 (1996).