MOLECULAR PHARMACOLOGY

Contents

ACCELERATED COMMUNICATIONS

443 Piperonyl Butoxide and Acenaphthylene Induce Cytochrome P450 1A2 and 1B1 mRNA in Aromatic Hydrocarbon-Responsive Receptor Knock-Out Mouse Liver
Doug-Young Ryu, Patricia E. Levi, Pedro Fernandez-Salguero, Frank J. Gonzalez, and Ernest Hodgson

447 Functional Selectivity of Orphanin FQ for Its Receptor Coexpressed with Potassium Channel Subunits in Xenopus laevis Oocytes
Hans Matthes, Elizabeth P. Seward, Brigitte Kieffer, and R. Alan North

ARTICLES

451 Structural Requirements of Sphingosylphosphocholine and Sphingosine-1-phosphate for Stimulation of Activator Protein-1 Activity
Alvin Berger, Robert Bittman, Richard R. Schmidt, and Sarah Spiegel

458 Pharmacological Properties of γ-Aminobutyric AcidA Receptors from Acutely Dissociated Rat Dentate Granule Cells
Jaideep Kapur and Robert L. Macdonald

467 A Fully Active Nonglycosylated V2 Vasopressin Receptor
Giulio Innamorati, Hamid Sadeghi, and Mariel Birnbaumer

474 Role of Heme in Cytochrome P450 Transcription and Function in Mice Treated with Lead Acetate
R. Jover, R. L. P. Lindberg, and U. A. Meyer

Continued
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>482</td>
<td>BIBW22 BS, Potent Multidrug Resistance-Reversing Agent, Binds Directly to P-Glycoprotein and Accumulates in Drug-Resistant Cells</td>
<td>Zhi Liu, Françoise Lheureux, Jean-François Pouliot, Armin Heckel, Uwe Bamberger, and Elias Georges</td>
</tr>
<tr>
<td>493</td>
<td>Constitutive Activation of a Phosphoinositidase C-Linked G protein in Murine Fibroblasts Decreases Agonist-Stimulated Ca²⁺ Mobilization</td>
<td>Leslie Anderson Lobaugh, Bartholomew Eisfelder, Keisha Gibson, Gary L. Johnson, and James W. Putney, Jr.</td>
</tr>
<tr>
<td>506</td>
<td>Calcineurin Mutants Render T Lymphocytes Resistant to Cyclosporin A</td>
<td>Dahai Zhu, Maria E. Cardenas, and Joseph Heitman</td>
</tr>
<tr>
<td>512</td>
<td>Hydrophilic Side Chains in the Third and Seventh Transmembrane Helical Domains of Human A2A Adenosine Receptors Are Required for Ligand Recognition</td>
<td>Qiaoling Jiang, A. Michiel Van Rhee, Jeongho Kim, Susan Yehle, Jürgen Wess, and Kenneth A. Jacobson</td>
</tr>
<tr>
<td>522</td>
<td>Angiotensin II Type 1 Receptor Signals through Raf-1 by a Protein Kinase C-Dependent, Ras-Independent Mechanism</td>
<td>Hidenori Arai and Jaime A. Escobedo</td>
</tr>
<tr>
<td>529</td>
<td>Studies on α₁β₂/Ligand Interactions Using a [³H]SK&F-107260 Binding Assay</td>
<td>Angela Wong, Shing Mei Hwang, Patrick Mcdevitt, Dean McNulty, Jeffrey M. Stadel, and Kyung Johanson</td>
</tr>
<tr>
<td>538</td>
<td>Trans-activation by the Human Aryl Hydrocarbon Receptor and Aryl Hydrocarbon Receptor Nuclear Translocator Proteins: Direct Interactions with Basal Transcription Factors</td>
<td>J. Craig Rowlands, Iain J. McEwan, and Jan-Åke Gustafsson</td>
</tr>
<tr>
<td>549</td>
<td>Cyclic AMP-Dependent Phosphodiesterase Isozyme-Specific Potentiation by Protein Kinase C in Hypertrophic Cardiomyopathic Hamster Hearts</td>
<td>Hongwei Yu, John J. Cai, and Hon-Chi Lee</td>
</tr>
<tr>
<td>556</td>
<td>Okadaic Acid Potentiates 3-Methylcholanthrene-Induced CYP2A8 Gene Expression in Primary Cultures of Syrian Hamster Hepatocytes: Possible Involvement of AP-1</td>
<td>Masahiro Tohkin, Kouichi Kurose, and Morio Fukuhara</td>
</tr>
<tr>
<td>565</td>
<td>Ontogenic and Hormonal Bases of Male-Dominant Rat Hepatic Sulphotransferases</td>
<td>Lan Liu and Curtis D. Klaassen</td>
</tr>
<tr>
<td>573</td>
<td>Cytochrome P450 2E1 Is a Cell Surface Autoantigen in Halothane Hepatitis</td>
<td>Erik Eliasson and J. Gerald Kenna</td>
</tr>
<tr>
<td>583</td>
<td>Morphine Down-regulates Melanocortin-4 Receptor Expression in Brain Regions that Mediate Opiate Addiction</td>
<td>John D. Alvaro, Jeffrey B. Tatro, J. Mark Quillan, Michael Fogliano, Michael Eisenhard, Michael R. Lerner, Eric J. Nestler, and Ronald S. Duman</td>
</tr>
</tbody>
</table>
CONTENTS (cont'd)

592 Quinone Thioether-Mediated DNA Damage, Growth Arrest, and gadd153 Expression in Renal Proximal Tubular Epithelial Cells

Jeongmi K. Jeong, James L. Stevens, Serrine S. Lau, and Terrence J. Monks

599 The Stimulatory Effect of Opioids on Mitogen-Activated Protein Kinase in Chinese Hamster Ovary Cells Transfected to Express μ-Opioid Receptors

Ling-Yuan Li and Kwen-Jen Chang

603 Biochemical and Pharmacological Activity of Novel 8-Fluoroanthracyclines: Influence of Stereochemistry and Conformation

Fabio Animati, Federico Arcamone, Mario Bigioni, Giovanni Capranico, Claudia Caserini, Michelandrea De Cesare, Paolo Lombardi, Graziella Pratesi, Carmela Salvatore, Rosanna Supino, and Franco Zunino

610 Induction of Apoptosis by Benzene Metabolites in HL60 and CD34+ Human Bone Marrow Progenitor Cells

Julie L. Moran, David Siegel, Xiao-Ming Sun, and David Ross

616 N-Palmitoyl-serine and N-Palmitoyl-tyrosine Phosphoric Acids Are Selective Competitive Antagonists of the Lysophosphatidic Acid Receptors

Károly Liliom, Robert Bittman, Bernadette Swords, and Gábor Tigyi

624 Direct Evidence for Functional Coupling of the Vasoactive Intestinal Peptide Receptor to G13 in Native Lung Membranes

Nicole L. Diehl, John C. Kermode, and S. Martin Shreeve

631 Use of Subunit-Specific Antisense Oligodeoxynucleotides to Define Developmental Changes in the Properties of N-Methyl-D-aspartate Receptors

Jie Zhong, Valentin K. Gribkoff, and Perry B. Molinoff

639 Interactions of Oxime Reactivators with Diethylphosphoryl Adducts of Human Acetylcholinesterase and Its Mutant Derivatives

Haim Grosfeld, Dov Barak, Arie Ordentlich, Baruch Velan, and Avigdor Shafferman

650 The μ-Opioid Receptor Antagonist d-Phe-Cys-Tyr-d-Trp-Orn-Thr-Pen-Thr-NH₂ (CTOP) [but not d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH₂ (CTAP)] Produces a Nonopioid Receptor-Mediated Increase in K⁺ Conductance of Rat Locus Ceruleus Neurons

Billy Chieng, Mark Connor, and Macdonald J. Christie

656 Detection of α-Hydroxyethyl Free Radical Adducts in the Pancreas after Chronic Exposure to Alcohol in the Rat

Yuji Imuro, Blair U. Bradford, Wenshi Gao, Maria Kadiiska, Ronald P. Mason, Branko Stefanovic, David A. Brenner, and Ronald G. Thurman

662 Agonist-Induced Modulation of Inverse Agonist Efficacy at the β₂-Adrenergic Receptor

Peter Chidiac, Sandrine Nouet, and Michel Bouvier

Continued
CONTENTS (cont’d)

670 Functional Characterization of Human γ-Aminobutyric AcidA Receptors Containing the α4 Subunit

K. A. Wafford, S. A. Thompson, D. Thomas, J. Sikela, A. S. Wilcox, and P. J. Whiting

679 125I-Tyr0-Sauvagine: A Novel High Affinity Radioligand for the Pharmacological and Biochemical Study of Human Corticotropin-Releasing Factor2α Receptors

Dimitri E. Grigoriadis, Xin-Jun Liu, Joan Vaughn, Scott F. Palmer, C. Diane True, Wylie W. Vale, Nicholas Ling, and Errol B. De Souza

687 Mercury Binding Site on Na/K-ATPase: A Cysteine in the First Transmembrane Segment

Xinyu Wang and Jean-Daniel Horisberger

692 Repetitive Endocytosis and Recycling of the β2-Adrenergic Receptor during Agonist-Induced Steady State Redistribution

Keith J. Morrison, Robert H. Moore, N. D. Victor Carsrud, Joann Trial, Ellen E. Millman, Michael Tuvim, Richard B. Clark, Roger Barber, Burton F. Dickey, and Brian J. Knoll

Visit Molecular Pharmacology on the World-Wide Web at:
http://www.wwilkins.com/molec_pharm/

About the cover: Targeting of δ-opioid receptor to surface membranes. COS-1 cells were transfected with a mouse δ-opioid receptor mutant (D128A), for which the conserved aspartate in the third membrane domain is replaced by alanine. Cells were double-labeled with fluorescein-conjugated concanavalin A to label the plasma membrane (green) and with an anti-δ-opioid receptor antibody followed by rhodamine-conjugated streptavidin (red). Yellow shows the region of colocalization. This mutant exhibited reduced expression and subtle changes in its ability to bind certain agonist ligands. From Befort, K., L. Tabbara, S. Bausch, C. Chavkin, C. Evans, and B. Kieffer. The conserved aspartate residue in the third putative transmembrane domain of the δ-opioid receptor is not the anionic counterpart for cationic opiate binding but is a constituent of the receptor binding site. Mol. Pharmacol. 49: 216–223 (1996).