ACCELERATED COMMUNICATIONS

443 Piperonyl Butoxide and Acenaphthylene Induce Cytochrome P450 1A2 and 1B1 mRNA in Aromatic Hydrocarbon-Responsive Receptor Knock-Out Mouse Liver Doug-Young Ryu, Patricia E. Levi, Pedro Fernandez-Salguero, Frank J. Gonzalez, and Ernest Hodgson

447 Functional Selectivity of Orphanin FQ for Its Receptor Coexpressed with Potassium Channel Subunits in Xenopus laevis Oocytes Hans Matthes, Elizabeth P. Seward, Brigitte Kieffer, and R. Alan North

ARTICLES

451 Structural Requirements of Sphingosylphosphocholine and Sphingosine-1-phosphate for Stimulation of Activator Protein-1 Activity Alvin Berger, Robert Bittman, Richard R. Schmidt, and Sarah Spiegel

458 Pharmacological Properties of γ-Aminobutyric Acid, Receptors from Acutely Dissociated Rat Dentate Granule Cells Jaideep Kapur and Robert L. Macdonald

467 A Fully Active Nonglycosylated V2 Vasopressin Receptor Giulio Innamorati, Hamid Sadeghi, and Mariel Birnbaumer

474 Role of Heme in Cytochrome P450 Transcription and Function in Mice Treated with Lead Acetate R. Jover, R. L. P. Lindberg, and U. A. Meyer

Continued
CONTENTS (cont'd)

482 BIBW22 BS, Potent Multidrug Resistance-Reversing Agent, Binds Directly to P-Glycoprotein and Accumulates in Drug-Resistant Cells
Zhi Liu, Françoise Lheureux, Jean-François Pouliot, Armin Heckel, Uwe Bamberger, and Elias Georges

493 Constitutive Activation of a Phosphoinositidase C-Linked G protein in Murine Fibroblasts Decreases Agonist-Stimulated Ca\(^{2+}\) Mobilization
Leslie Anderson Lobaugh, Bartholomew Eisfelder, Keisha Gibson, Gary L. Johnson, and James W. Putney, Jr.

501 D-Penicillamine Causes Free Radical-Dependent Inactivation of Activator Protein-1 DNA Binding

506 Calcineurin Mutants Render T Lymphocytes Resistant to Cyclosporin A
Dahai Zhu, Maria E. Cardenas, and Joseph Heitman

512 Hydrophilic Side Chains in the Third and Seventh Transmembrane Helical Domains of Human A2A Adenosine Receptors Are Required for Ligand Recognition
Qiaoling Jiang, A. Michiel Van Rhee, Jeongho Kim, Susan Yehle, Jürgen Wess, and Kenneth A. Jacobson

522 Angiotensin II Type 1 Receptor Signals through Raf-1 by a Protein Kinase C-Dependent, Ras-Independent Mechanism
Hidenori Arai and Jaime A. Escobedo

529 Studies on \(\alpha_{\beta}\)/Ligand Interactions Using a \([^{3}\text{H}]SK&F-107260\) Binding Assay
Angela Wong, Shing Mei Hwang, Patrick Mcdevitt, Dean McNulty, Jeffrey M. Stadel, and Kyung Johanson

538 Trans-activation by the Human Aryl Hydrocarbon Receptor and Aryl Hydrocarbon Receptor Nuclear Translocator Proteins: Direct Interactions with Basal Transcription Factors
J. Craig Rowlands, Iain J. McEwan, and Jan-Åke Gustafsson

549 Cyclic AMP-Dependent Phosphodiesterase Isozyme-Specific Potentiation by Protein Kinase C in Hypertrophic Cardiomyopathic Hamster Hearts
Hongwei Yu, John J. Cai, and Hon-Chi Lee

556 Okadaic Acid Potentiates 3-Methylcholanthrene-Induced CYP2A8 Gene Expression in Primary Cultures of Syrian Hamster Hepatocytes: Possible Involvement of AP-1
Masahiro Tohkin, Kouichi Kurose, and Morio Fukuhara

565 Ontogenic and Hormonal Bases of Male-Dominant Rat Hepatic Sulfo transferases
Lan Liu and Curtis D. Klaassen

573 Cytochrome P450 2E1 Is a Cell Surface Autoantigen in Halothane Hepatitis
Erik Eliasson and J. Gerald Kenna

583 Morphine Down-regulates Melanocortin-4 Receptor Expression in Brain Regions that Mediate Opiate Addiction

Continued
CONTENTS (cont'd)

592 Quinone Thioether-Mediated DNA Damage, Growth Arrest, and gadd153 Expression in Renal Proximal Tubular Epithelial Cells

599 The Stimulatory Effect of Opioids on Mitogen-Activated Protein Kinase in Chinese Hamster Ovary Cells Transfected to Express μ-Opioid Receptors

603 Biochemical and Pharmacological Activity of Novel 8-Fluoroanthracyclines: Influence of Stereochemistry and Conformation

609 Induction of Apoptosis by Benzene Metabolites in HL60 and CD34+ Human Bone Marrow Progenitor Cells

616 N-Palmitoyl-serine and N-Palmitoyl-tyrosine Phosphoric Acids Are Selective Competitive Antagonists of the Lysophosphatidic Acid Receptors

624 Direct Evidence for Functional Coupling of the Vasoactive Intestinal Peptide Receptor to G_{13} in Native Lung Membranes

631 Use of Subunit-Specific Antisense Oligodeoxynucleotides to Define Developmental Changes in the Properties of N-Methyl-D-aspartate Receptors

639 Interactions of Oxime Reactivators with Diethylphosphoryl Adducts of Human Acetylcholinesterase and Its Mutant Derivatives

650 The μ-Opioid Receptor Antagonist d-Phe-Cys-Tyr-d-Trp-Orn-Thr-Pen-Thr-NH₂ (CTOP) [but not d-Phe-Cys-Tyr-n-Trp-Arg-Thr-Pen-Thr-NH₂ (CTAP)] Produces a Nonopioid Receptor-Mediated Increase in K⁺ Conductance of Rat Locus Ceruleus Neurons

656 Detection of α-Hydroxyethyl Free Radical Adducts in the Pancreas after Chronic Exposure to Alcohol in the Rat

662 Agonist-Induced Modulation of Inverse Agonist Efficacy at the β₂-Adrenergic Receptor

Continued
CONTENTS (cont'd)

670 Functional Characterization of Human γ-Aminobutyric AcidA Receptors Containing the α4 Subunit K. A. Wafford, S. A. Thompson, D. Thomas, J. Sikela, A. S. Wilcox, and P. J. Whiting

687 Mercury Binding Site on Na1K-ATPase: A Cysteine in the First Transmembrane Segment Xinyu Wang and Jean-Daniel Horisberger

692 Repetitive Endocytosis and Recycling of the β2-Adrenergic Receptor during Agonist-Induced Steady State Redistribution Keith J. Morrison, Robert H. Moore, N. D. Victor Carsrud, Joann Trial, Ellen E. Millman, Michael Tuvim, Richard B. Clark, Roger Barber, Burton F. Dickey, and Brian J. Knoll

Visit Molecular Pharmacology on the World-Wide Web at:
http://www.wwilkins.com/molec_pharm/

About the cover: Targeting of δ-opioid receptor to surface membranes. COS-1 cells were transfected with a mouse δ-opioid receptor mutant (D128A), for which the conserved aspartate in the third membrane domain is replaced by alanine. Cells were double-labeled with fluorescein-conjugated concanavalin A to label the plasma membrane (green) and with an anti-δ-opioid receptor antibody followed by rhodamine-conjugated streptavidin (red). Yellow shows the region of colocalization. This mutant exhibited reduced expression and subtle changes in its ability to bind certain agonist ligands. From Befort, K., L. Tabbara, S. Bausch, C. Chavkin, C. Evans, and B. Kieffer. The conserved aspartate residue in the third putative transmembrane domain of the δ-opioid receptor is not the anionic counterpart for cationic opiate binding but is a constituent of the receptor binding site. Mol. Pharmacol. 49: 216–223 (1996).