Contents

ACCELERATED COMMUNICATIONS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>701</td>
<td>Activation of N-Methyl-D-Aspartate Receptors by Glycine: Role of an Aspartate Residue in the M3-M4 Loop of the NR1 Subunit</td>
<td>Keith Williams, James Chao, Keiko Kashiwagi, Takashi Masuko, and Kazuei Igarashi</td>
</tr>
</tbody>
</table>

ARTICLES

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>716</td>
<td>Agonist Binding and Protein Kinase C Activation Stimulate Phosphorylation of the Gastrin-Releasing Peptide Receptor at Distinct Sites</td>
<td>Barbara Y. Williams, Yining Wang, and Agnes Schonbrunn</td>
</tr>
<tr>
<td>728</td>
<td>Expression of Human NAD(P)H:Quinone Oxidoreductase (DT-Diaphorase) in Chinese Hamster Ovary Cells: Effect on the Toxicity of Antitumor Quinones</td>
<td>Daniel L. Gustafson, Howard D. Beall, Emiko M. Bolton, David Ross, and Charles A. Waldren</td>
</tr>
<tr>
<td>736</td>
<td>Structural Determinants of Substrates for the Prostaglandin Transporter PGT</td>
<td>Shigekazu Itoh, Run Lu, Yi Bao, Jason D. Morrow, L. Jackson Roberts, and Victor L. Schuster</td>
</tr>
</tbody>
</table>

Continued
CONTENTS (cont'd)

743 Enhanced Angiotensin Receptor Type 1 mRNA Degradation and Induction of Polyribosomal mRNA Binding Proteins by Angiotensin II in Vascular Smooth Muscle Cells

752 5-Hydroxytryptamine-moduline, a New Endogenous Cerebral Peptide, Controls the Serotonergic Activity via Its Specific Interaction with 5-Hydroxytryptamine1B/1D Receptors

763 Blockade of DNA Synthesis Induced by Platelet-Derived Growth Factor by Tranilast, an Inhibitor of Calcium Entry, in Vascular Smooth Muscle Cells

770 Ligand-Binding Characteristics and Related Structural Features of the Expressed Goldfish Kainate Receptors: Identification of a Conserved Disulfide Bond and Three Residues Important for Ligand Binding

781 Baculovirus-Mediated Expression and Characterization of Rat CYP2A3 and Human CYP2A6: Role in Metabolic Activation of Nasal Toxicants

789 Covalent Modification of Transmembrane Span III of the A1 Adenosine Receptor with an Antagonist Photoaffinity Probe

799 Identification, Molecular Cloning, and Distribution of a Short Variant of the 5-Hydroxytryptamine2C Receptor Produced by Alternative Splicing

808 Inhibition of Expression of the Multidrug Resistance-Associated P-Glycoprotein by Phosphorothioate and 5′ Cholesterol-Conjugated Phosphorothioate Antisense Oligonucleotides

820 Vasopressin V2 Receptor Mutants That Cause X-Linked Nephrogenic Diabetes Insipidus: Analysis of Expression, Processing, and Function

829 Pharmacological Characterization of the Rat A2a Adenosine Receptor Functionally Coupled to the Yeast Pheromone Response Pathway

838 Aza-bioisosteres of 9,10-anthracenedione: A Modulation of DNA Sequence Specificity

Continued
CONTENTS (cont’d)

846 Dicaffeoylquinic Acid Inhibitors of Human Immunodeficiency Virus Integrase: Inhibition of the Core Catalytic Domain of Human Immunodeficiency Virus Integrase

856 Glucocorticoid Receptor-Independent Transcriptional Induction of Cytochrome P450 3A1 by Metyrapone and its Potentiation by Glucocorticoid

Matthew C. Wright, Xiu-Jun Wang, Michel Pimenta, Vera Ribeiro, Alan J. Paine, and Maria Celeste Lechner

864 Inhibition by Toxin B of Inositol Phosphate Formation Induced by G Protein-Coupled and Tyrosine Kinase Receptors in N1E-115 Neuroblastoma Cells: Involvement of Rho Proteins

Chunyi Zhang, Martina Schmidt, Christoph von Eichel-Streiber, and Karl H. Jakobs

870 Opioid μ, δ, and κ Receptor-Induced Activation of Phospholipase C-β3 and Inhibition of Adenyl Cyclase Is Mediated by G₁₂ and G₆ in Smooth Muscle

Karnam S. Murthy and Gabriel M. Makhlouf

878 Acemannan, a β-(1,4)-Acetylated Mannan, Induces Nitric Oxide Production in Macrophage Cell Line RAW 264.7

Lalitha Ramamoorthy, Maurice C. Kemp, and Ian R. Tizard

885 Carboxyl-Terminal Mutations of G₁₆o and G₁₆s That Alter the Fidelity of Receptor Activation

Bruce R. Conklin, Paul Herzmark, Seiko Ishida, Tatyana A. Voyno-Yasenetskaya, Yan Sun, Zvi Farfel, and Henry R. Bourne

891 Mapping the Functional Domains of Human Recombinant Phosphodiesterase 4A: Structural Requirements for Catalytic Activity and Rolipram Binding

Susanne Jacobitz, Megan M. McLaughlin, George P. Livi, Miriam Burman, and Theodore J. Torphy

900 DNA-Damaging Agents Induce Both p53-Dependent and p53-Independent Apoptosis in Immature Thymocytes

Marion MacFarlane, Neil A. Jones, Caroline Dive, and Gerald M. Cohen

912 Functional Coupling of Rat Group II Metabotropic Glutamate Receptors to an ω-Conotoxin GVIA-Sensitive Calcium Channel in Human Embryonic Kidney 293 Cells

Brian A. McCool, Jean-Phillipe Pin, Paul F. Brust, Michael M. Harpold, and David M. Lovinger

923 Coupling of Metabotropic Glutamate Receptors 2 and 4 to G₁₅o, G₁₆o, and Chimeric G₁₆q₄ Proteins: Characterization of New Antagonists

Jesús Gomeza, Sophie Mary, Isabelle Brabet, Marie-Laure Parmentier, Sophie Restituito, Joël Bockaert, and Jean-Philippe Pin

931 Endogenous Subunits Can Cause Ambiguities in the Pharmacology of Exogenous γ-Aminobutyric Acidₐ Receptors Expressed in Human Embryonic Kidney 293 Cells

Shinya Ueno, Chuck Zorumski, John Bracamontes, and Joe Henry Steinbach

Continued
CONTENTS (cont’d)

939 Block of High-Threshold Calcium Channels by the Synthetic Polyamines sFTX-3.3 and FTX-3.3
Timothy M. Norris, Eduardo Moya, Ian S. Blagbrough, and Michael E. Adams

947 Voltage-Dependent Inhibition of Ca\(^{2+}\) Channels in GH\(_3\) Cells by Cloned \(\mu\) - and \(\delta\)-Opioid Receptors
Elemer T. Piros, Paul L. Prather, Ping Y. Law, Chris J. Evans, and Tim G. Hales

957 Identification of a Single Amino Acid, Phenylalanine 586, That Is Responsible for High Affinity Interactions of Tricyclic Antidepressants with the Human Serotonin Transporter
Eric L. Barker and Randy D. Blakely

966 Sensitization of Endogenous and Recombinant Adenylate Cyclase by Activation of D\(_2\) Dopamine Receptors
Val J. Watts and Kim A. Neve

977 Radioligand-Dependent Discrepancy in Agonist Affinities Enhanced by Mutations in the \(\kappa\)-Opioid Receptor
Siv A. Hjorth, Kenneth Thirstrup, and Thue W. Schwartz

985 Identification of the Critical Domains of the \(\delta\)-Opioid Receptor Involved in G Protein Coupling
Manolis Merkouris, Ioannis Dragatsis, George Megaritis, George Konidakis, Christine Zioudrou, Graeme Milligan, and Zafiroula Georgoussi

994 The Antioxidant Function of the Physiological Content of Vitamin C
Peter A. Glascott, Jr., Mariya Tayganskaya, Ellen Gilfor, Mark A. Zern, and John L. Farber

1000 Mechanism of Extracellular ATP-Induced Proliferation of Vascular Smooth Muscle Cells
Sheu-Meei Yu, Sheue-Fang Chen, Ying-Tung Lau, Chuen-Mao Yang, and Jin-Chung Chen

1010 Ethanol Inhibition of Nicotinic Acetylcholine Type \(\alpha\)\(7\) Receptors Involves the Amino-Terminal Domain of the Receptor
Dahong Yu, Li Zhang, Jean-Luc Eiselé, Daniel Bertrand, Jean-Pierre Changeux, and Forrest F. Weight

1017 5-Hydroxytryptamine\(_{2C}\) Receptor Activation Inhibits 5-Hydroxytryptamine\(_{1B}\)-like Receptor Function via Arachidonic Acid Metabolism
Kelly A. Berg, Saul Maayani, and William P. Clarke

1024 Design and In Vitro Pharmacology of a Selective \(\gamma\)-Aminobutyric Acid\(_C\) Receptor Antagonist

1031 Two G\(_4\)-Coupled Prostaglandin E Receptor Subtypes, EP2 and EP4, Differ in Desensitization and Sensitivity to the Metabolic Inactivation of the Agonist
Nobuhiro Nishigaki, Manabu Negishi, and Atsushi Ichikawa

1038 m3 Muscarinic Receptor-Induced and G\(_3\)-Mediated Heterologous Potentiation of Phospholipase C Stimulation: Role of Phosphoinositide Synthesis
Martina Schmidt, Christoph Nehls, Ulrich Rümenapp, and Karl H. Jakobs

Continued
Visit Molecular Pharmacology on the World-Wide Web at:
http://www.willkins.com/molec_pharm/

About the cover: Targeting of δ-opioid receptor to surface membranes. COS-1 cells were transfected with a mouse δ-opioid receptor mutant (D128A), for which the conserved aspartate in the third membrane domain is replaced by alanine. Cells were double-labeled with fluorescein-conjugated concanavalin A to label the plasma membrane (green) and with an anti-δ-opioid receptor antibody followed by rhodamine-conjugated streptavidin (red). Yellow shows the region of colocalization. This mutant exhibited reduced expression and subtle changes in its ability to bind certain agonist ligands. From Befort, K., L. Tabbara, S. Bausch, C. Chavkin, C. Evans, and B. Kieffer. The conserved aspartate residue in the third putative transmembrane domain of the δ-opioid receptor is not the anionic counterpart for cationic opiate binding but is a constituent of the receptor binding site. Mol. Pharmacol. 49: 216–223 (1996).