Contents

ARTICLES

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1057</td>
<td>Differences in the Inhibition of Human Immunodeficiency Virus Type 1 Reverse Transcriptase DNA Polymerase Activity by Analogs of Nevirapine and (2',5'-\text{bis-}o-(\text{tert-Butyldimethylsilyl})-3'\text{-spiro-5''-(4''-amino-1'', 2''-oxathiole-2'',2''-dioxide})) (TSAO)</td>
<td>Dominique Arion, Ronald S. Fletcher, Gadi Borkow, María-José Camarasa, Jan Balzarini, Gary I. Dmitrienko, and Michael A. Parniak</td>
</tr>
<tr>
<td>1065</td>
<td>Induction of Cytochrome P450 2E1 Expression in Rat and Gerbil Astrocytes by Inflammatory Factors and Ischemic Injury</td>
<td>Niclas Tindberg, Helen A. Baldwin, Alan J. Cross, and Magnus Ingelman-Sundberg</td>
</tr>
<tr>
<td>1073</td>
<td>Changes of D1 and D2 Dopamine Receptor mRNA in the Brains of Monkeys Lesioned with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine: Correction with Chronic Administration of L-3,4-Dihydroxyphenylalanine</td>
<td>Marc Morissette, Martin Goulet, Frédéric Calon, Pierre Falardou, Pierre J. Blanchet, Paul J. Bédard, and Thérèse Di Paolo</td>
</tr>
<tr>
<td>1080</td>
<td>Isolation and Characterization of a Cisplatin-Resistant Strain of Schizosaccharomyces pombe</td>
<td>Paola Perego, Gretchen Jimenez, and Stephen B. Howell</td>
</tr>
<tr>
<td>1087</td>
<td>Peroxisome Proliferator-Activated Receptor-(\gamma) Activation by Thiazolidinediones Induces Adipogenesis in Bone Marrow Stromal Cells</td>
<td>Jeffrey M. Gimble, Claudius E. Robinson, Xiying Wu, Katherine A. Kelly, Brenda R. Rodriguez, Steven A. Kliwer, Jurgen M. Lehmann, and David C. Morris</td>
</tr>
<tr>
<td>1095</td>
<td>Mechanisms of Cell Killing by Drugs that Trap Covalent Complexes between DNA Topoisomerases and DNA</td>
<td>John L. Nitiss and James C. Wang</td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1103</td>
<td>Differential Regulation of Corticotropin-Releasing Factor, Receptor</td>
<td>Philip A. Iredale, Rosemarie Terwilliger, Katherine L. Widnell, Eric J.</td>
</tr>
<tr>
<td></td>
<td>Expression by Stress and Agonist Treatments in Brain and Cultured Cells</td>
<td>Nestler, Ronald S. Duman</td>
</tr>
<tr>
<td>1111</td>
<td>CYP2J Subfamily P450s in the Lung: Expression, Localization, and</td>
<td>Darryl C. Zeldin, Julie Foley, Jixiang Ma, James E. Boyle, Jorge M. S.</td>
</tr>
<tr>
<td></td>
<td>Potential Functional Significance</td>
<td>Pascaul, Cindy R. Moomaw, Kenneth B. Tomer, Charles Steenbergen, and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shu Wu</td>
</tr>
<tr>
<td>1118</td>
<td>Identification of Critical Extracellular Loop Residues Involved in</td>
<td>Ming-Ming Zhao, John Hwa, and Dianne M. Perez</td>
</tr>
<tr>
<td></td>
<td>α1-Adrenergic Receptor Subtype-Selective Antagonist Binding</td>
<td></td>
</tr>
<tr>
<td>1127</td>
<td>Characteristics of Clodronate-Induced Apoptosis in Osteoclasts and</td>
<td>Katri S. Selander, Jukka Mönkkönen, Eeva-Kaisa Karhukorpi, Pirkko</td>
</tr>
<tr>
<td></td>
<td>Macrophages</td>
<td>Härkönen, Ritva Hannuniemi, and H. Kalervo Väänänen</td>
</tr>
<tr>
<td>1139</td>
<td>Involvement of Mitogen-Activated Protein Kinase and Translocation of</td>
<td>H. Kan, Y. Ruan, and K. U. Malik</td>
</tr>
<tr>
<td></td>
<td>Cytosolic Phospholipase A2 to the Nuclear Envelope in Acetylcholine-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Induced Prostacyclin Synthesis in Rabbit Coronary Endothelial Cells</td>
<td></td>
</tr>
<tr>
<td>1148</td>
<td>Feminization of Hepatic Cytochrome P450s by Nominal Levels of</td>
<td>Nisar A. Pampori and Bernard H. Shapiro</td>
</tr>
<tr>
<td></td>
<td>Growth Hormone in the Feminine Plasma Profile</td>
<td></td>
</tr>
<tr>
<td>1157</td>
<td>Rat 17β-Hydroxysteroid Dehydrogenase Type IV Is a Novel Peroxisome</td>
<td>J. Christopher Corton, Carlos Bocos, Evelyn S. Moreno, Angel Merritt,</td>
</tr>
<tr>
<td></td>
<td>Proliferator-Inducible Gene</td>
<td>Daniel S. Marsman, Peter J. Sausen, Russell C. Cattley, and Jan-Åke</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gustafsson</td>
</tr>
<tr>
<td></td>
<td>Block Certain Voltage-Gated K Channels</td>
<td>Gustafson, Taco R. Werkman, Michael A. Rogawski, Todd C. Tenenholz,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>David J. Weber, and Mordecai P. Blaustein</td>
</tr>
<tr>
<td>1178</td>
<td>Delayed Cytotoxicity and Cleavage of Mitochondrial DNA in Ciprofloxacin-Treated Mammalian Cells</td>
<td>Jeffrey W. Lawrence, Daniel C. Claire, Volkmar Weissig, and Thomas C. Rowe</td>
</tr>
<tr>
<td>1189</td>
<td>The Neurokinin-1 Receptor Antagonist LY306,740 Blocks Nociception-</td>
<td>Kenneth E. McCarson and James E. Krause</td>
</tr>
<tr>
<td></td>
<td>Induced Increases in Dorsal Horn Neurokinin-1 Receptor Gene Expression</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS (cont'd)

1200 Novel Antagonists of the Inhibitory Glycine Receptor Derived from Quinolinic Acid Compounds
Volker Schmieden, Sylvie Jezequel, and Heinrich Betz

1207 Antiretrovirus Specificity and Intracellular Metabolism of 2',3'-Didehydro-2',3'-dideoxythymidine (Stavudine) and Its 5'-Monophosphate Triester Prodrug So324

1214 Agonist-Induced Functional Desensitization of the μ-Opioid Receptor Is Mediated by Loss of Membrane Receptors Rather than Uncoupling from G Protein
Youngshil Pak, Angeliki Kouvelas, Mark A. Scheideler, Jesper Rasmussen, Brian F. O'dowd, and Susan R. George

1223 Enantiomers of myo-Inositol-1,3,4-trisphosphate and myo-Inositol-1,4,6-trisphosphate: Stereospecific Recognition by Cerebellar and Platelet myo-Inositol-1,4,5-trisphosphate Receptors

1231 Evidence for Distinction of the Differentiation-Inducing Activities and Cytostatic Properties of 9-(2-Phosphonyl-methoxyethyl)adenine and a Variety of Differentiation-Inducing Agents in Human Erythroleukemia K562 Cells
S. Hatse, E. De Clercq, and J. Balzarini

1243 Pharmacological Differentiation between Intracellular Calcium Pump Isoforms
Simone Engelender and Leopoldo De Meis

1253 Pharmacological Modulation of the Diazepam-Insensitive Recombinant γ-Aminobutyric AcidA Receptors α4β2γ2 and α6β2γ2
Frédéric Knoflach, Dietmar Benke, Yue Wang, Louis Scheurer, Hartmut Lüddens, Beverly J. Hamilton, Donald B. Carter, Hanns Mohler, and Jack A. Benson

1262 Cyclic AMP-Independent Inhibition of Cardiac Calcium Current by Forskolin
Tatsuya Asai, Siegried Pelzer, and Terence F. Mcdonald

1273 Membrane-Delimited G Protein-Mediated Coupling between V1a Vasopressin Receptor and Dihydropyridine Binding Sites in Rat Glomerulosa Cells
Eric Grazzini, Thierry Durroux, Marcel-Daniel Payet, Lyne Bilodeau, Nicole Gallo-Payet, and Gilles Guillon

1284 Direct Inhibition of 5-Hydroxytryptamine3 Receptors by Antagonists of L-type Ca2+ Channels
Andrew C. Hargreaves, Martin J. Gunthorpe, Colin W. Taylor, and Sarah C. R. Lummis

1295 Regulation of D2 Dopamine Receptors by Amiloride and Amiloride Analogs
S. R. J. Hoare and P. G. Strange

1309 Dopamine Induces Apoptotic Cell Death of a Catecholaminergic Cell Line Derived from the Central Nervous System
Joseph M. Masserano, Li Gong, Henrietta Kulaga, Ivory Baker, and Richard Jed Wyatt

1316 5-Hydroxytryptamine4 Receptors Reduce Afterhyperpolarization in Hippocampus by Inhibiting Calcium-Induced Calcium Release
Gonzalo E. Torres, Cynthia L. Arfken, and Rodrigo Andrade

Continued
Identification of Competitive Antagonists of the P2Y1 Receptor

José L. Boyer,
Teresa Romero-Avila,
Joel B. Schachter, and
T. Kendall Harden

Subunit Composition Is a Major Determinant in High Affinity Binding of a Ca²⁺ Channel Blocker

Haeyoung Suh-Kim,
Xiangyang Wei, and
Lutz Birnbaumer

Mutagenesis of Residues Adjacent to Transmembrane Prolines Alters D₁ Dopamine Receptor Binding and Signal Transduction

William Cho, Larry P. Taylor, and
Huda Akil

Bombesin-Like Peptide Receptor Subtypes Promote Mitogenesis, Which Requires Persistent Receptor Signaling

Richard I. Feldman,
Marty Bartholdi, and James M. Wu

Discovery of High Affinity Bombesin Receptor Subtype 3 Agonists

James M. Wu, Danute E. Nitecki,
Sara Biancalana, and
Richard I. Feldman

Pharmacology of the Human γ-Aminobutyric Acid₄ Receptor α₄ Subunit Expressed in Xenopus laevis Oocytes

E. R. Whittimore, W. Yang,
J. A. Drewe, and R. M. Wa

Coupling Efficiencies of Human α₁-Adrenergic Receptor Subtypes: Titration of Receptor Density and Responsiveness with Inducible and Repressible Expression Vectors

Tracey L. Theroux,
Timothy A. Esbenshade,
Richard D. Peavy, and
Kenneth P. Minneman

Distinct Effects of Mutations in Transmembrane Segment IV56 on Block of L-Type Calcium Channels by Structurally Similar Phenylalkylamines

Barry D. Johnson,
Gregory H. Hockerman,
Todd Scheuer, and
William A. Catterall

Dose-Response Relations for Unnatural Amino Acids at the Agonist Binding Site of the Nicotinic Acetylcholine Receptor: Tests with Novel Side Chains and with Several Agonists

Patrick C. Kearney,
Mark W. Nowak, Wenge Zhong,
Scott K. Silverman,
Henry A. Lester, and
Dennis A. Dougherty

A Single Residue, Lys108, of the δ-Opioid Receptor Prevents the μ-Opioid-Selective Ligand [D-Ala²,N-MePhe⁴,Gly-ol⁵]Enkephalin from Binding to the δ-Opioid Receptor

Masabumi Minami,
Takayuki Nakagawa,
Takahiro Seki, Tatsuhiro Onogi,
Yasuhide Aoki, Yoshikazu Katao,
Seishi Katsumata, and
Masamichi Satoh

Visit Molecular Pharmacology on the World-Wide Web at:
http://www.wwilkins.com/molec_pharm/

About the cover: Targeting of δ-opioid receptor to surface membranes. COS-1 cells were transfected with a mouse δ-opioid receptor mutant (D128A), for which the conserved aspartate in the third membrane domain is replaced by alanine. Cells were double-labeled with fluorescein-conjugated concanavalin A to label the plasma membrane (green) and with an anti-δ-opioid receptor antibody followed by rhodamine-conjugated streptavidin (red). Yellow shows the region of colocalization. This mutant exhibited reduced expression and subtle changes in its ability to bind certain agonist ligands. From Befort, K., L. Tabbara, S. Bausch, C. Chavkin, C. Evans, and B. Kieffer. The conserved aspartate residue in the third putative transmembrane domain of the δ-opioid receptor is not the anionic counterpart for cationic opiate binding but is a constituent of the receptor binding site. Mol. Pharmacol. 49: 216-223 (1996).