Gene Knockout of the α6 Subunit of the γ-Aminobutyric Acid Type A Receptor: Lack of Effect on Responses to Ethanol, Pentobarbital, and General Anesthetics

GREGG E. HOMANICS, CAROLYN FERGUSON, JOSEPH J. QUINLAN, JODI DAGGETT, KIMBERLY SNYDER, CARL LAGENAURO, ZHI-PING MI, XIAO-HUI WANG, DENNIS R. GRAYSON, and LEONARD L. FIRESTONE

Departments of Anesthesiology/Critical Care Medicine (G.E.H., C.F., J.J.Q., J.D., K.S., L.L.F.) and Neurobiology (C.L., Z.-P.M.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, and Neurosciences Research Center, Allegheny-Singer Research Institute, and Departments of Psychiatry and Neurobiology and Anatomy, Allegheny University of the Health Sciences, Pittsburgh, Pennsylvania 15212 (X.-H.W., D.R.G.)

Received October 18, 1996; Accepted January 10, 1997

SUMMARY

The α6 subunit of the γ-aminobutyric acid type A receptor (GABAα-R) has been implicated in mediating the intoxicating effects of ethanol and the motor ataxic effects of general anesthetics. To test this hypothesis, we used gene targeting in embryonic stem cells to create mice lacking a functional α6 gene. Homozygous mice are viable and fertile and have grossly normal cerebellar cytoarchitecture. Northern blot and reverse transcriptase-polymerase chain reaction analyses demonstrated that the targeting event disrupted production of functional α6 mRNA. Autoradiography of histological sections of adult brains demonstrated that diazepam-insensitive binding of [3H]Ro15–4513 to the cerebellar granule cell layer of wild-type mice was completely absent in homozygous mice. Cerebellar GABAα-R density was unchanged in the mutant mice; however, the apparent affinity for muscimol was markedly reduced. Sleep time response to injection of ethanol after pretreatment with vehicle or Ro15–4513 did not differ between genotypes. Sleep time response to injection of pentobarbital and loss of righting reflex and response to tail clamp stimulus in mice anesthetized with volatile anesthetics also did not differ between genotypes. Thus, the α6 subunit of the GABAα-R is not required for normal development, viability, and fertility and does not seem to be a critical or unique component of the neuronal pathway mediating the hypnotic effect of ethanol and its antagonist by Ro15–4513 in mice. Similarly, the α6 subunit does not seem to be involved in the behavioral responses to general anesthetics or pentobarbital.

The molecular mechanisms that mediate the effects of ethanol and volatile general anesthetics have remained enigmatic despite evidence that some of the effects of these distinct classes of drugs affect the brain through overlapping pathways. These drugs may primarily target specific proteins rather than interacting nonspecifically with cellular lipids (1). Several lines of evidence implicate the GABAα-R complex (a ligand-gated chloride channel that contains binding sites for numerous drugs, including the clinically useful anxiolytic benzodiazepines) in mediation of at least some of the effects of these drugs (for reviews, see Refs. 2 and 3). For example, animals selected for behavioral hypersensitivity to ethanol show cross-sensitivity not only to anesthetics but also to drugs such as picrotoxin, which are known to interrupt the GABA pathway by blocking the GABAα-R (4). In addition, GABAα-R-specific drugs, such as picrotoxin and biccuculline, are also able to modify some ethanol-induced behaviors, such as motor impairment and withdrawal severity (5).

GABA is the major inhibitory neurotransmitter in the mammalian central nervous system. Activation of GABAα-Rs results in an inward flow of chloride ions and consequently in neuronal hyperpolarization. These receptors are pentameric complexes of several different subunit polypeptides (α1–6, β1–3, γ1–3, δ). Several subunit mRNAs, including the α6 (6), exist in multiple splice variants. The functional significance of this plethora of subunits and splice variants and the role of

ABBREVIATIONS: GABA, γ-aminobutyric acid; GABAα-R, γ-aminobutyric acid type A receptor; ES, embryonic stem; PGKNeo, neomycin phosphotransferase; DI, diazepam insensitive; LORR, loss of righting reflex; bp, base-pair(s); kb, kilobase(s); G3PDH, glyceraldehyde-3-phosphate dehydrogenase; RT, reverse transcriptase or transcription; PCR, polymerase chain reaction.
each in mediating the effects of ethanol and volatile anesthetics are currently unknown.

Various data suggest that the α6 subunit is involved in mediating at least some of the behavioral effects of ethanol and general anesthetics. The alcohol antagonist Ro15–4513 (7) binds with high affinity to many GABAA-R isoforms; however, its binding to α6-containing receptors is atypical in that it is insensitive to displacement by diazepam and other agonists (8, 9). The alcohol-nontolerant rat line is hypersensitive to motor impairment by ethanol and benzodiazepines (4), and a point mutation in the α6 subunit gene cosegregates with the alcohol-sensitive phenotype (10). These mutant rats lack high affinity, DI Ro15–4513 binding to cerebellar α6-containing GABA_A-Rs (10) and are significantly more sensitive to the ataxic effects of volatile anesthetics (11) and pentobarbital (4) than are control rats. In addition, the volatile anesthetic halothane acts as a partial agonist at some GABA_A-Rs that contain the α6 subunit (12). Finally, chronic treatment of rodents with ethanol selectively increases (13–15) or decreases (16) expression of the α6 subunit in cerebellum.

Consistent with the ligand-binding data, α6-containing receptors are functionally insensitive to potentiation by diazepam, which is in contrast to receptors containing the α1 subunit (8, 17). Furthermore, when α6 is expressed in both stably transfected cells and Xenopus laevis oocytes, the classic benzodiazepine antagonists Ro15–1788 and Ro15–4513 both act as agonists (18). Barbiturates, which are known to modulate the GABA_A-R, differentially affect α6-containing receptors, such that 100 μM pentobarbital elicits a large direct permeability response in the absence of agonist (GABA) that is not noted when α1 is present instead (18, 19).

Among the GABA_A-R gene family, the temporospatial pattern of α6 gene expression is the most highly restricted. In rodents, α6 mRNA is first detectable at ~1 week of postnatal life, and maximum expression is reached at ~3 weeks and maintained throughout adulthood (20–22). Anatomically, α6 expression is limited to postmitragranular layers of the cerebellum and cochlear nuclei (18, 20–22). Interestingly, this tissue-specific pattern of expression has been conserved throughout evolution from fish to human (23). The functional importance of α6-containing GABA_A-Rs is also suggested by the fact that ~40–60% of cerebellar GABA_A-Rs contain this subunit (9, 24).

To assess the physiological role of the α6 subunit of the GABA_A-R, we used gene targeting in mouse ES cells to create mice with a disrupted α6 subunit gene. These mutant mice lacking functional α6 protein, and thus cerebellar DI GABA_A-Rs, were used to investigate the role of this subunit in development, pharmacology of GABA_A-Rs, and whole-animal responses to ethanol, pentobarbital, and the volatile anesthetics halothane and enflurane.

Materials and Methods

Generation of mutant mice. A targeting vector containing Strain 129-derived mouse genomic DNA was constructed as illustrated in Fig. 1A. The selectable marker PGKNeo was blunt-end ligated into the Ncol site in exon 8. This construct contains two copies of the negative selection marker herpes simplex virus thymidine kinase from pMC1TK (25), flanking 2.8 kb of 5' homology and 3.7 kb of 3' homology.

Approximately 2–4 × 10⁷ R1 (26) ES cells/ml were electroporated in a 0.5-cm cuvette in the presence of 5 nM linearized targeting vector at 250 V, 50 μF, 500-V capacitance, and 350-Ω resistance using an Electro Cell Manipulator 600 electroporation unit (BTX, San Diego, CA). Beginning at 24 hr after electroporation, ES cells were subjected to positive/negative selection (25) with geneticin (G418, 250 μg/ml; Life Technologies, Gaithersburg, MD) and ganciclovir (2 μM; gift of Syntex, Palo Alto, CA). Individual doubly resistant clones were expanded, an aliquot was frozen, and an aliquot was used to prepare genomic DNA. At all times, ES cells were maintained on feeder layers of mitotically inactivated mouse embryonic fibroblasts in medium that contained leukemia inhibitory factor (500 units/ml, ESGRO; Life Technologies).

ES cell clones were screened for targeting by genomic Southern hybridization analysis after digestion of DNA with BglII. Blots were hybridized with a genomic fragment that is external to the targeting construct (Fig. 1A, PROBE D). Correctly targeted ES cells clones were injected into C57BL/6J blastocysts to produce chimeric mice. Male chimeras were mated with C57BL/6J female mice. Heterozygous offspring were intercrossed to produce wild-type, heterozygous, and homozygous mice. All mice were genotyped as described above for ES cells. The mice used for these studies were derived from the α6^{+/−} line, and the genetic background of all mice was Strain 129 X C57BL/6J F₂ or F₃. These mice have been given the strain
designated of $\text{Gabra6}^{\text{tm1Gels}}$ and can be obtained from the Induced Mutant Resource (Jackson Laboratories, Bar Harbor, ME).

Northern blot analysis. Polyadenylated RNA was isolated from cerebella of adult mice using the Microfast Track Kit (InVitrogen, San Diego, CA). Approximately 2.5 μg of polyadenylated RNA was electrophoresed, blotted to Hybond-N (Amersham, Arlington Heights, IL), and hybridized as previously described (27). The 5’ a6 probe is an RT-PCR product corresponding to nucleotides 250–963 of the a6 cDNA (28). The 3’ a6 probe is a genomic DNA restriction fragment that includes exon 9. Human β-actin (Clontech Laboratories, Palo Alto, CA) was used as a probe to assess the integrity of RNA and as a control for the amount of RNA loaded.

Pharmacological characterization. DI $[^{3}H]$(Ro15–4513 binding to sagittal sections of adult mouse brain was determined as previously described (10). DI $[^{3}H]$(Ro15–4513 binding to cerebellar homogenates was determined using a filtration assay similar to previous reports (29, 30). Membrane suspensions of ~100 μg of protein/ml of Krebs-Tris buffer were incubated to equilibrium with 25 nM $[^{3}H]$(Ro15–4513 with or without diazepam (final concentration, 200 μM). Nonspecific binding was determined in the presence of flumazenil (10 μM).

$[^{3}H]$(Ro15–4513 and $[^{3}H]$(muscimol binding to mouse cerebellar membranes were determined using an ultracentrifugation binding assay (31). Membrane suspensions containing ~250 μg of protein/ml of Tris buffer were incubated to equilibrium (20 min, room temperature) with concentrations of $[^{3}H]$(Ro15–4513 (30.4 Ci/mmol, New England Nuclear Research Products, Boston, MA) or $[^{3}H]$(muscimol (19.1 Ci/mmol, New England Nuclear) approaching saturation with and without unlabeled flumazenil (10 μM) and muscimol (0.1 μM). Nonspecific binding was calculated by linear regression of free versus nonspecific binding data. Specific binding was calculated by subtracting nonspecific binding from total binding. Specific binding data were then fit to a logistic function of the form: specific binding = [maximal binding]/[(free slope)/(Kb slope + free slope)] using iterative nonlinear least-squares routines, yielding parameters such as the apparent binding affinity (Kb), maximal binding sites, and slope of the binding curve and their standard deviations (32). These parameters were compared using the Z statistic, a method that makes the fewest assumptions about the distribution of the data (33). The ratio of the difference between groups to the variance of that difference was referred to a standard normal distribution.

RT-PCR. RNA from individual wild-type (n = 5) and homozygous (n = 7) cerebella were isolated to determine the relative patterns of expression of selected GABA$_A$-R subunit mRNAs. Total RNA was isolated from the dissected cerebella using Tri-Reagent (Sigma Chemical, St. Louis, MO) and aliquots (0.5 μg) were reverse-transcribed with Moloney murine leukemia virus RT (200 units) using random hexamers as described by the manufacturer. Parallel control reactions did not contain RT. The reaction (volume of 20 μl) included 1 mM deoxynucleotide triphosphate, 50 μM Tris-HCl, pH 8.3, 75 mM KCl, 3 mM MgCl$_2$, and RNASin (30 units). RT was carried out first at room temperature for 10 min and then at 37° for 60 min, heat-denatured at 98° for 5 min, and quick chilled on ice. Eighty microliters of a solution containing 0.5 mM primer pairs (Table 1), 50 mM Tris-HCl, pH 9.0, 2.0 mM MgCl$_2$, 15 mM KCl, and DNA polymerase (2.5 units) was added to the resultant cDNA for the PCR. For quantification, $[^{32}P]$dCTP (1–2 μCi/reaction) was added to the PCR mixture. The mixture was amplified for 28–32 cycles (depending on the abundance of each subunit), in which each amplification cycle consisted of a denaturation step (95°, 30 sec), an annealing step (60°, 45 sec), and an elongation step (72°, 45 sec). After completion of PCR cycles, the PCR products were incubated at 72° for final extension for 15 min. Aliquots of the PCR products (20 μl) were loaded onto 1.8% agarose gels stained with ethidium bromide.

For semiquantitative RT-PCR, the amount of $[^{32}P]$dCTP incorporated into each band was determined using a scintillation counter. Preliminary experiments were performed for each primer pair to ensure that the extent of $[^{32}P]$dCTP incorporated into each band was an exponential function of the number of amplification cycles and to determine the range of linearity of the amplification curves. For each sample, we also analyzed the mRNA content of G3PDH, which was used to correct for variations in the amounts of RNA from individual cerebella. The cDNA corresponding to G3PDH was amplified as described above and the amount of the incorporated $[^{32}P]$dCTP after different numbers of amplification cycles was assessed by scintillation counting. The counts obtained from the amplifications of each subunit-specific primer pair were normalized for each cerebellar sample based on the amount of amplification product obtained using the G3PDH primers.

The mRNA content corresponding to each GABA$_A$-R subunit from each cerebellum was examined at least three times. Data from homozygous or wild-type cerebellar RNA for each individual subunit were pooled, and mean counts incorporated were calculated and compared between the two groups using analysis of variance and Student’s t test.

Histology. Wild-type and homozygous mice were perfused with 4% paraformaldehyde, and brain sections were stained with toluidine blue or with antineurofilament (RT97). Neurofilament staining was detected with fluorescein isothiocyanate-conjugated secondary antibodies.

Sleep time assay. *In vivo* drug administration was by intraperitoneal injection. Ethanol was diluted in 0.9% saline (20% w/v) and administered at 0.02 ml/g of body weight. Ro15–4513 (Research Biochemicals, Natick, MA) was dissolved in a drop of Tween 80, diluted in saline (1.0 mg/ml), and sonicated. Ro15–4513 or vehicle

TABLE 1

<table>
<thead>
<tr>
<th>RT-PCR primers</th>
<th>Sequence (5’ to 3’)</th>
<th>Position</th>
<th>GenBank no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse a6 sense</td>
<td>TTCTAGCCCTCTCCAGTATGATTG</td>
<td>816–840</td>
<td>X51986</td>
</tr>
<tr>
<td>PGKNeo antisense</td>
<td>GCTACCCCGTGGATGGGATTGTTG</td>
<td>544–512</td>
<td>M18735</td>
</tr>
<tr>
<td>Mouse a6 sense</td>
<td>TTCTAGCCCTCTCCAGTATGATTG</td>
<td>816–840</td>
<td>X51986</td>
</tr>
<tr>
<td>Mouse a6 antisense</td>
<td>TACTCAACAGTACTGCCTATTTCC</td>
<td>1571–1548</td>
<td>X51986</td>
</tr>
<tr>
<td>Rat G3PDH sense</td>
<td>AGCTATACCCTAACTTAGCCAGG</td>
<td>1174–1197</td>
<td>L08490</td>
</tr>
<tr>
<td>Mouse a3 sense</td>
<td>GAGGAGCATTCTTCTAGTGCAGGGG</td>
<td>1478–1455</td>
<td>L08490</td>
</tr>
<tr>
<td>Mouse a3 antisense</td>
<td>CACATAGTGGGAAACCACCTATCC</td>
<td>1362–1385</td>
<td>M8656</td>
</tr>
<tr>
<td>Mouse a3 antisense</td>
<td>ATACAGTGCTCTGGAAACGTGTG</td>
<td>1691–1668</td>
<td>M8656</td>
</tr>
<tr>
<td>Rat β2 sense</td>
<td>AAGATGGCCTGGATGGCTCAACAAG</td>
<td>1130–1153</td>
<td>X15467</td>
</tr>
<tr>
<td>Rat β2 antisense</td>
<td>TTTGATGCAACATGCTGGCAGG</td>
<td>1350–1327</td>
<td>X15467</td>
</tr>
<tr>
<td>Rat γ2 sense</td>
<td>GAGAAGCGAAGAAACCCAGAGCAC</td>
<td>1121–1144</td>
<td>L08497</td>
</tr>
<tr>
<td>Mouse δ sense</td>
<td>AAGGCCGTACCTGTTGACAGC</td>
<td>1006–1029</td>
<td>S42882</td>
</tr>
<tr>
<td>Mouse δ antisense</td>
<td>CAGTTGATGTTGTTGACCTGTC</td>
<td>1431–1408</td>
<td>S42882</td>
</tr>
</tbody>
</table>
scattered on the chamber floor maintained the ambient CO2 ten-

souls in a sealed Plexiglas chamber maintained at 33–35°. Soda lime

were placed in individual wire-mesh cages mounted on a car-

ton pentobarbital-induced sleep time was analyzed by

(Stat-View; Abacus Concepts, Berkeley, CA). The effect of genotype

tested. ED50 values for fractional group response were calculated as

being equilibrated with the next anesthetic concentration and re-

motor activity (typically of the limbs), the concentration was consid-

ered at a given anesthetic con-

dition), and anesthetic concentrations were similar to procedures used

for the LORR assay. After equilibration at a given anesthetic con-

dition from the wild-type allele in the parental ES cell line

were tested. Rectal temperature was measured after each assay to

ensure normothermia.

was added to 0.01 ml/g of body weight 15

min before injection with ethanol. Pentobarbital was dissolved in

saline (3.1 mg/ml) and injected at 0.01 ml/g of body weight. Sleep

time (i.e., duration of the LORR) in response to ethanol (with and

without pretreatment with Ro15–4513), and pentobarbital was as-

sayed as previously described (34). Mice that were 57–88 and 84–119

days old were used for the ethanol and pentobarbital assays, respec-

tively. All assays were performed by an investigator who was un-

aware of the individual genotypes of the mice being tested. For the

ethanol sleep time assay, the effects of genotype and pretreatment

were analyzed by analysis of variance and Scheffé’s post hoc analysis

(Stat-View; Abacus Concepts, Berkeley, CA). The effect of genotype

on pentobarbital-induced sleep time was analyzed by t test.

LORR. For each LORR determination, six to eight unrestrained

mice were placed in individual wire-mesh cages mounted on a car-

ousel in a sealed Plexiglas chamber maintained at 33–35°. Soda lime

scattered on the chamber floor maintained the ambient CO2 ten-

sion at <0.05 atmosphere. Controlled amounts of each volatile

agent [halothane (clinical grade, Ayerst, New York, NY); enflurane

(Anaquest, Madison, WI)] diluted with oxygen were delivered from a

copper kettle or a specific vaporizer and monitored on-line either by

mass spectroscopy (Ohmeda 6000) or with a piezoelectric analyzer

(Siemens 120). After equilibration for 15 min at each anesthetic

concentration, mice were assessed for LORR by an observer who was

unaware of the genotype being tested, while the carousel was rotated

five complete turns at 4 rpm. Scoring was quantal: mice that pas-

sively rolled over twice were scored as positive for the LORR. The

chamber was then evacuated, and the mice were allowed to recover

in air for 10 min before the next determination. This process was

repeated until all general anesthetic concentrations (usually five)

were tested. Rectal temperature was measured after each assay to

ensure normothermia.

Dose-response data for each cohort of mice were fit to sigmoid

curves using the iterative nonlinear least-squares method described

by Waud (32). The ED50 values and estimates of the standard errors

were derived from these curves. Slope is defined as the steepness of

the anesthetic concentration-response curve and is a parameter gen-

erated by the nonlinear least-squares fitting routine. After unblind-

ing, data from groups (wild-type and homozygous) were pooled and

refit to sigmoid functions. Statistical comparisons between groups

were performed as described above using the Z statistic (33).

Tail-clamp/withdrawal assay. Briefly, equilibration of mice

with anesthetic agents in a heated, enclosed chamber and the mon-

itoring of chamber temperature, Fio2 (inspired oxygen concentra-

tion), and anesthetic concentrations were similar to procedures used

for the LORR assay. After equilibration at a given anesthetic con-

centration, a tail-clamp stimulus was applied. If the mouse exhibited

motor activity (typically of the limbs), the concentration was consid-

ered to be one that permitted a positive response. The mice were

allowed to recover in an oxygen-rich atmosphere for ~20 min before

being equilibrated with the next anesthetic concentration and re-

tested. ED50 values for fractional group response were calculated as

for the LORR assay.

Results

Creation and molecular characterization of mutant mice. Of 64 ES cell clones analyzed for gene targeting, 17

displayed predicted restriction fragment length polymor-

phisms indicative of correct gene targeting at the α6 locus. As indicated in Fig. 1, A and B, probe D (which is external to the

targeting construct) hybridized only to the 9.1-kb BgII fragment from the wild-type allele in the parental ES cell line

(R1). In correctly targeted clones (e.g., α6#58), this probe also

hybridized to a 6.6-kb fragment from the targeted allele. Targeting was further confirmed with several other restric-

tion digests and by hybridization with a PGKNeo probe and

with a probe from the 5′ arm of the targeting construct (data not shown). Two correctly targeted clones (α6#55, and α6#58)

were transferred through the mouse germ line. Intercrossing of heterozygous F1 mice (within each clone) produced wild-

type, heterozygous, and homozygous mice (see Fig. 1B) at the expected frequencies. All mice were morphologically and

behaviorally indistinguishable, and no overt signs of ataxia or motor incoordination were apparent.

To determine the effects of gene targeting on expression of the α6 subunit gene, we conducted Northern blot analysis.

Hybridization of cerebellar polyadenylated RNA with an α6 specific probe that hybridizes 3′ of the PGKNeo insertion site

showed the absence of the ~2.70-kb α6 mRNA in homozygous mice (Fig. 1C). Rehybridization of the same blot with a probe

that is 5′ of the PGKNeo insertion site showed the presence of a low-abundance ~2.75-kb message in homozygous cere-

bella (Fig. 1C). The size of this message, which originated from the targeted α6 allele, indicated that it likely repre-

sented a chimeric message that originated from the α6 promoter and terminated at the polyadenylation site of PGK-

Neo.

To test this possibility, RT-PCR analysis was conducted using primers that were designed to specifically amplify a

chimeric transcript that originates in α6 and terminates in PGKNeo. As shown in Fig. 2A, this primer set specifically

produced a 431-bp product from homozygous cerebellar mRNA but failed to produce a product from wild-type mRNA.

To further characterize the result of the targeting event on α6 mRNA production, we conducted RT-PCR using primers

specific for α6 that flank the PGKNeo insertion site. As

Fig. 2. RT-PCR analysis of transcripts produced from the GABA_{α6}-R α6 subunit gene knockout mice.
shown in Fig. 2B, this primer set readily amplifies a 755-bp product from wild-type cerebellar mRNA but fails to produce a product from homozygous mRNA. This indicates that no wild-type message is produced in homozygous mice. We also used a primer pair specific for PGKNeo and α6 sequences that are downstream of the PGKNeo insertion site to screen for read-through chimeric mRNA that originates in the PGKNeo cassette and terminates in α6 sequences. In some homozygous cerebellar mRNA samples, this primer set produced a faint band on ethidium-stained gels (data not shown). The ability of G3PDH to amplify a product from all mRNAs (Fig. 2C) verified the integrity of all mRNA preparations.

Thus, the wild-type and the modified α6 genes produced distinctly different transcripts. In homozygous cerebella, no wild-type α6 transcripts are produced; only chimeric mRNAs between α6 and PGKNeo are detectable. Based on the predicted sequence of the low-abundance chimeric transcript that originates in α6 and terminates in PGKNeo, if it were translated, it would be expected to produce a truncated protein that contains amino acids 1–293 of α6 (28) fused to four amino acids from PGKNeo promoter sequences. Such a protein should be nonfunctional because it would lack the carboxyl-terminal 150 amino acids of α6 that include a portion of transmembrane 2 and all of transmembrane domains 3 and 4, as well as the putative intracellular loop. The other low-abundance chimeric transcript, which originates in PGKNeo and terminates in α6, would be expected to produce only protein from the PGKNeo coding sequence because of the presence of in-frame stop codons.

Pharmacological changes in mice lacking α6. Both wild-type and homozygous mouse brain possess a large quantity of binding sites for [3H]Ro15–4513 (Fig. 3A). In wild-type mouse brain, this binding is displaceable from all GABA A-Rs by diazepam except for the receptors that include the α6 subunit (Fig. 3B); this DI [3H]Ro15–4513 binding is limited almost exclusively to the cerebellar granule cell layer. In marked contrast to the DI [3H]Ro15–4513 binding observed in wild-type mouse brain, diazepam completely displaced all [3H]Ro15–4513 binding in homozygous brain. Heterozygous brain possessed DI [3H]Ro15–4513 binding that was intermediate between that of wild-type and homozygous brain. This autoradiographic analysis was confirmed with an in vitro binding assay that used cerebellar homogenates (Table 2A).

Specific binding of both the GABA ligand [3H]muscimol and the benzodiazepine ligand [3H]Ro15–4513 to mouse cerebellum was saturable. The slopes of the concentration-specific binding curves were statistically indistinguishable for both ligands in wild-type and homozygous animals (Table 2, B and C), allowing valid comparisons of their apparent affinities. Absence of the α6 subunit was associated with a marked decrease in the affinity of cerebellar GABA A-Rs for [3H]muscimol (Table 2B, wild-type values were similar to previously published values (35–37)). However, homozygous mice did not differ from wild-type in the maximal number of GABA binding sites (Table 2B). [3H]Ro15–4513 binding also showed a similar maximal receptor number in the wild-type and homozygous tissue (Table 2C); however, unlike that obtained with [3H]muscimol, the apparent affinity constant for [3H]Ro15–4513 did not differ between genotypes and was similar to previously published values (30, 38). Together, the [3H]Ro15–4513 and [3H]muscimol binding data suggest the possibility that another GABA A-R subunit or subunits substituted for the missing α6 subunit to maintain the normal number of GABA A-Rs. Furthermore, the substituted subunit or subunits must assemble to form a GABA A-R isoform that exhibits a lower affinity for [3H]muscimol and a comparable affinity for [3H]Ro15–4513.

Semiquantitative RT-PCR. To identify a GABA A R subunit that might be up-regulated and could account for the observed pharmacology, we examined the abundance of several subunit mRNAs by semiquantitative RT-PCR analysis. As shown in Fig. 4, the amounts of the α1, α3, β2, γ2, and δ mRNAs did not statistically differ between wild-type and homozygous cerebella.

Normal cerebellar histology in mice lacking α6. Tolu- idine blue staining in homozygous cerebellum (Fig. 5B) revealed a granule cell layer and a molecular layer that were similar in width and cell density to wild-type cerebellum (Fig.

![Fig. 3. Autoradiographic analysis of sagittal sections of adult wild-type (+/+), heterozygous (+/-), and homozygous (-/-) mouse brain. A, Total binding of [3H]Ro15–4513. B, DI binding of [3H]Ro15–4513. C, Thionin staining.](https://molpharm.aspetjournals.org/mph)
5A). Neurofilament staining was also indistinguishable between wild-type and homozygous cerebella (Fig. 5, C and D) and showed typical strong staining for basket cell neurons surrounding Purkinje cells and weaker staining in the molecular layer. Sections from homozygous and wild-type cerebella were also stained with antibodies directed against synaptophysin (Boehringer-Mannheim Biochemicals, Indianapolis, IN) and P84, an antigen associated with synaptic regions (39). Staining patterns of these synapse-associated antigens in both homozygous and wild-type sections appeared to be identical (data not shown). Thus, the general morphology and cytoarchitecture of the cerebellum of knockout mice seemed to be identical to those of wild-type control mice.

Normal behavioral responses. To investigate the importance of DI Ro15–4513 binding sites to whole-animal response to a variety of pharmacological agents, behavioral assays (sleep time, LORR, and tail-clamp/withdrawal) were used to compare wild-type mice with homozygous mice. Sleep time in response to ethanol did not differ between groups (Table 3). It has been suggested that the pathway by which Ro15–4513 antagonizes ethanol-induced sleep time involves DI sites (8, 40), although this has been debated (41). To directly test the involvement of DI sites, we compared the ability of Ro15–4513 to reduce ethanol-induced sleep time in wild-type and homozygous mice. As shown in Table 3, Ro15–4513 was equally effective in mice of each genotype. Thus, at this dose of Ro15–4513 (10 mg/kg), the reduction in sleep time in response to ethanol does not seem to be mediated by DI receptors.

Table 2

<table>
<thead>
<tr>
<th></th>
<th>Wild-type</th>
<th>Homozygous</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Diazepam-insensitive [3H]Ro15-4513 binding to cerebellum (fmol/mg of protein)*</td>
<td>796 ± 38b</td>
<td>674 ± 61b</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Specific binding in absence of diazepam</td>
<td>92 ± 11c</td>
<td>17 ± 8d</td>
</tr>
<tr>
<td></td>
<td>Specific binding in presence of 200 μM diazepam</td>
<td>4.2 ± 0.2</td>
<td>4.6 ± 0.6</td>
</tr>
<tr>
<td>B. [3H]Muscimol binding to cerebellum*</td>
<td>14.9 ± 2.0</td>
<td>66.3 ± 19.3</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>Apparent Kd (nM)</td>
<td>4.3 ± 0.2</td>
<td>4.6 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>Maximal binding (pmol/mg)</td>
<td>1.0 ± 0.1</td>
<td>1.2 ± 0.2</td>
</tr>
<tr>
<td>C. [3H]Ro15-4513 binding to cerebellum*</td>
<td>12.4 ± 2.5</td>
<td>13.6 ± 5.9</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>Apparent Kd (nM)</td>
<td>2.7 ± 0.2</td>
<td>2.4 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>Maximal binding (pmol/mg)</td>
<td>1.1 ± 0.2</td>
<td>0.9 ± 0.2</td>
</tr>
</tbody>
</table>

* Data are mean ± standard deviation of eight individual binding assays.
* p = 0.09, wild-type compared with homozygous.
* p < 0.001, wild-type compared with background nonspecific binding.
* p = 0.30, homozygous compared with background nonspecific binding.
* These data were pooled from four and five separate experiments for the wild-type and homozygous tissue, respectively. Two separate membrane preparations were used for each genotype. Each experiment consisted of 24 specific binding determinations.
* These data were pooled from six separate experiments using two separate membrane preparations for each genotype. Each experiment consisted of 24 specific binding determinations.

Fig. 4. Semiquantitative RT-PCR assay of cerebellar mRNAs for selected GABAA-R subunits. The amounts of α1, α3, β2, γ2, and δ subunit mRNAs are expressed as [32P]dCTP cpm incorporation into the PCR products. Data from wild-type (○) and homozygous (●) mice demonstrate no significant difference in abundance of these subunits between mice of different genotypes.

Fig. 5. Cerebellum of mice lacking the α6 subunit of the GABA_A-R exhibit normal cytoarchitecture. In cryostat sections of wild-type (A) and homozygous (B) cerebellum stained with toluidine blue, note the similar widths of granule cell layers and molecular layers in wild-type and homozygous cerebella. Bar, 50 μm. In cryostat sections of wild-type (C) and homozygous (D) brain stained for neurofilament, note the similar density of neurofilament-positive axons in the molecular layer and strongly stained basket cell neurons in both wild-type and homozygous cerebella. Bar, 200 μm. gr, granule cell layer; mol, molecular layer; ba, basket cell axons.
GABA\(_{\alpha}\)-Rs containing the \(\alpha6\) subunit are electrophysiologically distinct from receptors containing other \(\alpha\) subunits in their response to barbiturates, as measured in oocyte expression systems (19). Pentobarbital has a higher affinity in their response to barbiturates, as measured in oocyte brain and these receptors are physiologically important, one could predict that mice lacking the \(\alpha6\) subunit would be less sensitive to the sedative/hypnotic effects of pentobarbital. To test the physiological relevance of these in vitro observations directly on whole-animal responses, we measured sleep time in response to pentobarbital. As shown in Table 3, sleep time did not differ between the two genotypes. Thus, it appears that \(\alpha6\)-containing GABA\(_{\alpha}\)-Rs are not required to mediate the sedative/hypnotic effects of barbiturates in whole animals, at least as measured by this sleep time assay.

Similarly, for two halogenated volatile anesthetics from structurally distinct categories (i.e., halothane, an alkane, and enfurane, an ether), the EC\(_{50}\) values for LORR did not differ statistically between genotypes (Table 4; \(p > 0.10\) for halothane, \(p > 0.25\) for enfurane). In addition, no difference was found between genotypes in tail-clamp/withdrawal response to enfurane (\(p > 0.15\)).

Discussion

Gene targeting technology is a powerful technique for furthering understanding of the biological role of specific gene products in the nervous system. For example, mice that lack a functional GABA\(_{\alpha}\)-R \(\gamma2\) subunit gene were used to establish the role of that subunit for benzodiazepine agonist action (42). Similarly, the reduced response of mice lacking the \(\gamma\)

<table>
<thead>
<tr>
<th>Genotype (n)</th>
<th>Anesthetic</th>
<th>(ED_{50}) (% Atmosphere)</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>LORR assay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild-type (28)</td>
<td>Enflurane</td>
<td>1.09 \pm 0.06</td>
<td>10.53 \pm 1.75</td>
</tr>
<tr>
<td>Wild-type (28)</td>
<td>Halothane</td>
<td>0.69 \pm 0.04</td>
<td>8.48 \pm 1.59</td>
</tr>
<tr>
<td>Homozygous (20)</td>
<td>Enflurane</td>
<td>0.79 \pm 0.04</td>
<td>11.66 \pm 2.27</td>
</tr>
<tr>
<td>Tail-clamp/withdrawal response</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild-type (20)</td>
<td>Enflurane</td>
<td>1.58 \pm 0.07</td>
<td>13.55 \pm 2.68</td>
</tr>
<tr>
<td>Homozygous (20)</td>
<td>Enflurane</td>
<td>1.74 \pm 0.09</td>
<td>10.45 \pm 2.02</td>
</tr>
</tbody>
</table>

Values are mean \pm standard error.
levels of control may be operative if the inhibitory tone is insufficient to maintain neuronal homeostasis.

The molecular basis and the physiological significance of the reduced affinity for muscimol of the GABA$_A$-Rs in the a6 homozygous mutants have yet to be elucidated. We examined the level of expression of additional GABA$_A$-R subunit mRNAs (including the a1 subunit) in cerebella from wild-type and homozygous mouse cerebellum were detected using this approach. Although minor but physiologically important changes may not have been detected by this assay, the data indicate that increased expression of additional subunits does not likely contribute to the pharmacological results we report here. Alterations in GABA$_A$-R production in these mutant mice are of great interest because they may yield insight into the mechanisms regulating and coordinating production of the diverse array of GABA$_A$-R isoforms present in the mammalian brain. In rats, both the a1 and a6 subunit mRNAs increase during the second and third postnatal weeks (20). Although the a1 subunit is predominant early postnatally, the a6 subunit mRNA increases significantly during the same time frame. In the adult, mixed populations of receptors containing a1, a6 and a1/a6 combinations have been shown to coexist in cerebellar GABA$_A$-Rs (9, 46). These studies demonstrate that the mixed a1/a6 receptors show a pharmacology that is not dominated by either subunit but rather the pharmacology of these receptors shows properties of both subunits. This may be related to the lack of a difference with respect to the actions of volatile anesthetics and barbiturates in the homozygous mice reported in the current study. That is, 39% of cerebellar receptors contain a6 subunits, and of these, 41–45% also contain an a1 receptor subunit (9, 46). It may be that the action of volatile anesthetics and barbiturates at a1/a6 hybrid receptors is less evident than actions at GABA$_A$-Rs that contain only one type of a subunit in vivo.

Our data showing that the homozygous mice exhibit an increased K_N value for muscimol binding is consistent with the formation of receptors dominated by the a1 subunit, which has a lower affinity for GABA agonists than does the a6 subunit (17, 18, 44). Furthermore, the similar maximal binding for muscimol in both wild-type and homozygous mice is consistent with the hypothesis that normal levels of expression of the a1 subunit are sufficient to compensate for the a6 deficiency in terms of establishing the requisite numbers of GABA$_A$-Rs for normal cerebellar development. This also suggests that in wild-type mice, the a1 and a6 subunits compete during the process of assembly, with the total numbers of GABA$_A$-Rs determined by additional (or extrinsic) factors.

An alternative point to consider concerning the lack of a behavioral phenotype is that our rudimentary knowledge of the nervous system and our predictions about expected phenotypes are naive. It is also plausible that although pharmacological observations in isolated artificial systems in vitro are accurate predictors of other in vitro responses, they may be inadequate to reliably predict behavioral correlates in the context of intact animals. Thus, one of the goals of future research in this area should be to define the physiological role of each subunit of the GABA$_A$-R in whole-animal systems. Although this goal is unrealistic at present, mutant mice lacking GABA$_A$-R subunits (singly and in combination) represent the state of the art. Research with such mice will undoubtedly yield exciting insights into the contribution each subunit makes to the neuronal pathways that mediate the behavioral effects of ethanol, barbiturates, benzodiazepines, and volatile general anesthetics.

Acknowledgments

We thank Frank Kist and Joanne Steinmiller for their expert technical assistance, Francie Siegfried for editorial assistance, Andres Nagy for R1 ES cells, and Robert Mihailek for critical reading of the manuscript. We also thank Esa Korpi for autoradiographic analysis and William Wisden for openly sharing unpublished results derived from their a6 knockout mice.

References

43. Pregenzer, J. F., W. B. Im, D. B. Carter, and D. R. Thomsen. Comparison of interactions of 1Hmuscimol, t-butylbicyclophosphorono-13H]thionate, and 1Hflunitrazepam with cloned γ-aminobutyric acid α$_{1}$ receptors of the α1β2 and α1β2γ2 subtypes. Mol. Pharmacol. 43:801–806 (1993).

Send reprint requests to: Gregg E. Homanics, Ph.D., University of Pitts- burgh, W1356 Biomedical Science Tower, Pittsburgh, PA 15261. E-mail: homanics@smtp.anes.upmc.edu