Differential Uncoupling of A₁ Adenosine and D₂ Dopamine Receptors by Suramin and Didemethylated Suramin (NF037)

MARIA WALDHOER, ELISA BOFILL-CARDONA, GRAEME MILLIGAN, MICHAEL FREISSMUTH, and CHRISTIAN NANOFF
Institute of Pharmacology, Vienna University, A-1090 Vienna, Austria (M.W., E.B.-C., M.F., C.N.), and Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, University of Glasgow, Glasgow G12 8QQ, Scotland, UK (G.M.)

Received October 9, 1997; Accepted January 5, 1998 This paper is available online at http://www.molpharm.org

ABSTRACT
Suramin analogues uncouple two G/G_i-coupled receptors, the D₂ dopamine receptor in rat striatum and the A₁ adenosine receptor in human cerebral cortex, with distinct structure-activity relationships. This discrepancy may reflect true differences in the affinity of the analogues for specific receptor/G protein complexes or may be attributable to differences in species or in the tissue source used. We addressed this question by using human embryonic kidney 293 cells that stably express the human A₁ and rat A₁ receptor and the human D₂ receptor. Suramin is 10-fold more potent than its didemethylated analogue NF037 in inhibiting the interaction between G proteins and the rat A₁ or human A₁ receptor; in contrast, both compounds are equipotent in uncoupling the D₂ receptor. These differences are observed regardless of whether (1) inhibition of high affinity agonist binding to the receptors or (2) agonist-stimulated GTPγS binding is used as readout, (3) the receptors are allowed to interact with the G protein complement in human embryonic kidney 293 cell membranes, or (4) the receptors are forced to interact with a defined G protein α subunit (i.e., after reconstituting pertussis toxin-treated membranes with exogenous rGα11). The apparent affinity of suramin depends in a linear manner on receptor occupancy, which shows that suramin and the receptor compete for the G protein. Finally, the affinity of the receptors for rGα11 (human A₁ > rat A₁ > human D₂) is inversely correlated with the potency of suramin in uncoupling ternary complexes formed by these receptors and thus determines the selectivity of the suramin analogues for specific receptor/G protein tandems.

In most cells, G protein-coupled receptors interact with multiple distinct G protein oligomers, and the overall biological response to the agonist-activated receptor results from the concerted regulation of multiple G protein-dependent effector systems (Gudermann et al., 1996a). The ability of a receptor to activate multiple G proteins is specified by discrete, poorly conserved regions in the intracellular loops that connect the transmembrane helices and, in some cases, within the carboxyl terminus of the receptor (Gudermann et al., 1996b). Based on the observation that there is more than one active conformation of rhodopsin (Arnis et al., 1993, 1994), it has been proposed that other G protein-coupled receptors also may adopt several active conformations that interact with distinct G proteins; these may be selected by “biased” agonists, which will favor a conformation that preferentially interacts with one type of G protein (Gudermann et al., 1996a; Kenakin, 1996). This hypothesis is supported by two lines of experimental evidence. (1) Point mutations in a given receptor can elicit distinct effects on its coupling properties; for example, substitution of Ile486 by phenylalanine in the human thyroid-stimulating hormone receptor produces a receptor that constitutively activates both the adenylyl cyclase and phospholipase C cascade; in contrast, substitution of Phe631 by isoleucine only raises cAMP (Parma et al., 1995). (2) The PACAP receptor I can be stimulated by PACAP-27 and PACAP-38; however, on heterologous expression of the receptor, PACAP-27 activates adenylyl cyclase more potently than PACAP-38, whereas the reverse is true for stimulation of inositol trisphosphate formation (Spengler et al., 1993). Other arguments and additional experimental evidence in support of the hypothesis that multiple R* conformations exist have been reviewed recently (Gudermann et al., 1996a; Kenakin, 1996). A corollary of this concept is the assumption that compounds that block the interaction of R with G may be selective for specific R/G tandems. If compared with receptor antagonists, compounds that block the interaction of receptors and G proteins over receptor antagonists offer the advantage that they should provide for an additional level of selectivity in inhibiting signal transduction; provided that inhibitors with high selectivity can be found, they will block signaling of the activated receptor via one G

ABBREVIATIONS: PACAP, pituitary adenylyl cyclase activating polypeptide; GTPγS, guanosine-5’-(3-O-thio)triphosphate; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; XAC, xanthine amine congener; HEK, human embryonic kidney; SDS, sodium dodecyl sulfate; CPA, N⁶-cyclopentyladenosine.
protein-regulated pathway but will not perturb other receptor-generated signals within the cell.

Earlier work showed that suramin acted as an inhibitor of receptor/G protein coupling (Butler et al., 1988; Huang et al., 1990); circumstantial evidence for selective disruption of specific receptor/G protein tandems was provided by the observation that suramin inhibited the activation of pertussis toxin-substrate G proteins by δ-opioid receptors in membranes from NG 108–15 cells, whereas the stimulation of the guanine nucleotide exchange reaction of these Go/Gi proteins by serum factors, which acted on an unidentified receptor, was not blocked (Huang et al., 1990). In addition, we recently reported that the didemethylated suramin derivative NF037 discriminated between A1 adenosine receptor/G protein tandems in the human cerebral cortex and D2 dopamine receptor/G protein tandems in the rat striatum (Beindl et al., 1996). However, in rat cerebral cortex, the A1 adenosine receptor is resistant to the uncoupling effect of suramin unless the membranes are extracted with detergent to remove an inhibitory constraint imposed by an ancillary protein (Nanoff et al., 1997). Thus, the distinct activity profile of suramin and NF037 on human A1 adenosine and rat D2 dopamine receptor may have been due to species differences or may have arisen from the expression of the receptors in distinct cell types and/or in distinct microcompartments of the plasma membrane. Here, we eliminated these confounding variables by expressing the human and rat receptors in the same cell line; furthermore, the receptors were forced to interact with the same G protein α subunit. The results show that NF037 is selective for D2 dopamine receptor/G protein tandems even if the receptors couple to the same Gαi subtype. In addition, the potency of suramin and NF037 in uncoupling receptor/G protein complexes is inversely correlated to the affinity of the receptor for the G protein.

Experimental Procedures

Materials. [125I]GTPγS, [125I]OH-PIPAT ([+]trans-7-hydroxy-2[N-propyl-N-3-[125i]iodo-2'-propenyl]aminotetrain) and [125I]I were purchased from New England Nuclear Research Products (Boston, MA). [125I]HPIA ([N-6-3-[125I]iodo-4-hydroxyphenyl-isopropyl]adenosine) was synthesized according to Linden (1984). Guanine nucleotides and adenosine deaminase were from Boehringer-Mannheim. Oligomeric G proteins were purified chromatographically resolved from the jellyfish *Aequoria victoria* and a neomycin resistance cassette. The cells were grown in Dulbecco’s modified Eagle medium containing 10% fetal calf serum, 2 mM l-glutamine, β-mercaptoethanol, nonessential amino acids, 100 units/ml penicillin G, and 100 μg/ml streptomycin at 5% CO2 and 37° for 16 hr. Thereafter, the medium was removed, and the cells were subjected to an osmotic shock by adding 15% glycerol in phosphate-buffered saline for a few seconds. Cells were grown for another 24 hr and subsequently selected by adding G418 (0.8 mg/ml) to the medium for 4–6 days. pEGFP-positive clones were identified by fluorescence microscopy. Positive clones appeared in bright green and were subjected to further selection to obtain clones with different expression levels. Three clones were selected that differed in D2 dopamine receptor density (ranging from ~0.3 to 4 pmol/mg membrane protein).

Membrane preparation and protein purification. Cells were grown to confluency in 10-cm tissue culture dishes, washed once with ice-cold phosphate-buffered saline, and scraped off their plastic support in HME buffer (25 mM HEPES-NaOH, pH 7.5, 2 mM MgCl2, 1 mM EDTA). After centrifugation at 20,000 × g for 10 min, the cell pellet was resuspended in HME, subjected to a freeze/thaw cycle with liquid nitrogen, and further homogenized by sonication. Membranes were sedimented by centrifugation (38,000 × g for 10 min) and resuspended in HME at a protein concentration of 8–10 mg/ml and stored in aliquots at −80°. Recombinant (R) Gα1, and Gα1,2 were expressed in *Escherichia coli* BL21DE3 harboring a plasmid-encoding yeast myristoyl-CoA transferase and purified from bacterial lysates (Mumbey and Linder, 1994). Oligomeric G proteins were purified from bovine or porcine brain, and free βγ dimers were chromatographically resolved from the α subunits (Casey et al., 1989).

Radioligand binding experiments. Equilibrium binding with the A1 adenosine receptor agonist [125I]HPIA and with the dopaminergic D2 agonist [125I]OH-PIPAT were carried out in a final volume of 40 μl containing 50 mM Tris-HCl, pH 8, 1 mM EDTA, 5 mM MgCl2, 1 mM ascorbic acid, 8 μg/ml adenosine deaminase, 10 μg of membrane protein, and the concentrations of suramin and NF037 as indicated (ascorbic acid and adenosine deaminase are not required for determining binding to A1 adenosine and D2 dopamine receptors, respectively, but were present in all incubations to obtain identical incubation conditions). The binding reaction was carried out for 90 min at 25° and terminated by filtration over glassfiber filters using a cell harvester (Skatron, Lier, Norway). Nonspecific binding was determined in the presence of 1 μM XAC (for A1 adenosine receptors) or 10 μM sulpiride (for D2 dopamine receptors) and amounted to 5–10% of total binding in the Kp concentration range. In experiments using membranes from clones with a high receptor expression level (1.5–3.9 pmol/mg of membrane protein) or low radioligand concentrations, the amount of membrane protein added and the assay volume was adjusted (up to 250 μl) to avoid depletion of the radioligand (bound <10% of total). Specific binding of agonist or antagonist radioligands ([3H]DPCPX and [125I]epideprid for A1 adenosine and D2 dopamine receptors, respectively) was not detectable in membranes prepared from untransfected HEK 293 cells. Radioligand binding experiments were performed with membranes expressing either the human or rat receptors, and the data were analyzed with a one-site model.

Generation of transient and stable cell lines. COS-7 (African green monkey kidney fibroblasts) cells were plated at a density of 3 × 104 cells/10-cm dish and transiently transfected with 5 μg of the cDNAs pBc-A1dhfr containing the rat A1 adenosine receptor cDNA insert (Freund et al., 1994) and pCMV5 plasmid vector containing the D2short receptor cDNA using the calcium phosphate precipitation method (Chen and Okayama, 1988). The cells were harvested 48 hr after transfection; plasma membranes were prepared and used for radioligand binding assays. HEK 293 cells were plated at a density of 2.5 × 105 cells/10-cm dish and transfected with 7.5 μg of the plasmid pBc-A1dhfr (encoding the rat A1 adenosine receptor) and 0.75 μg of the resistance marker plasmid pRc-CMV carrying the neomycin phosphotransferase gene. Similarly, the plasmid encoding the short splice variant of the human D2 dopamine receptor was cotransfected with either pRc-CMV or pEGFP-C1, a vector carrying a red-shifted variant of wild-type green fluorescent protein cDNA from the jellyfish *Aequoria victoria* and a neomycin resistance cassette. The cells were grown in Dulbecco’s modified Eagle medium containing 10% fetal calf serum, 2 mM l-glutamine, β-mercaptoethanol, nonessential amino acids, 100 units/ml penicillin G, and 100 μg/ml streptomycin at 5% CO2 and 37° for 16 hr. Thereafter, the medium was removed, and the cells were subjected to an osmotic shock by adding 15% glycerol in phosphate-buffered saline for a few seconds. Cells were grown for another 24 hr and subsequently selected by adding G418 (0.8 mg/ml) to the medium for 4–6 days. pEGFP-positive clones were identified by fluorescence microscopy. Positive clones appeared in bright green and were subjected to further selection to obtain clones with different expression levels. Three clones were selected that differed in D2 dopamine receptor density (ranging from ~0.3 to 4 pmol/mg membrane protein).

Inhibition of Receptor/G Protein Coupling 809

Downloaded from molpharm.aspetjournals.org at ASPET Journals on June 20, 2017
Receptor-mediated [35S]GTPγS binding. Receptor-promoted binding of [35S]GTPγS was determined essentially as described previously (Nanoff et al., 1995). In brief, membranes from HEK 293 cells (∼10 μg) were suspended in 40 μl of buffer containing 25 mM HEPES-NaOH, pH 7.5, 1.5 mM MgCl₂, 150 mM NaCl, 1 mM EDTA, 0.01 mM GDP, and the concentrations of dopamine, CPA, and suramin analogues indicated in the respective figures. After a preincubation of 10 min at 25°C, the assay was initiated by adding 10 μl of buffer containing [35S]GTPγS to yield a final concentration of 1 nM (specific activity, 2000 cpm/fmol). The assay was terminated after 10 min by adding 0.5 ml of ice-cold stop buffer containing 10 mM Tris-HCl, pH 8.0, 100 mM NaCl, 20 mM MgCl₂, and 0.1 mM GTP. Bound and free nucleotides were separated by filtration over glass-fiber filters.

Determination of adenyl cyclase activity. Adenyl cyclase activity in HEK 293 membranes expressing the recombinant receptors was assayed in 0.1 ml containing 50 mM HEPES-NaOH, pH 8.0, 0.05 mM [α-32P]ATP (∼200 cpm/pmol), 5 mM MgCl₂, 0.1 mM rolipram, 10 mM creatine phosphate, membrane protein (25 μg), 1 mM creatine kinase, 8 μg/ml adenosine desaminase, and 1% bovine serum albumin. Inhibitory regulation of adenyl cyclase by the D₂ dopamine and A₁ adenosine receptor agonists was determined in the presence of 1 μM prostaglandin E₂ and 10 nM GTP·S. The reaction was carried out for 20 min at 25°C; cAMP was separated from ATP by sequential chromatography on Dowex and Alumina (Johnson and Salomon, 1991).

Pertussis toxin treatment and reconstitution of HEK 293 cell membranes with rGγi-1. HEK 293 cells expressing the rat A₁ adenosine, human A₁ adenosine, or human D₂ dopamine receptors were incubated with 100 ng/ml pertussis toxin for 24 hr, and membranes were prepared as described. To insert exogenously added G protein into the membranes, the stable reconstitution protocol (Freissmuth et al., 1991a) was adapted as follows: PTX-treated membranes were incubated with 4.5 ng pf rGγi-1/μg membrane protein in HME containing 1% octylglucoside. After 1 hr on ice, membranes were diluted 1:10 in detergent-free buffer and centrifuged at 38,000 × g for 12 min. Pellets were resuspended in HME and stored in aliquots at a concentration of −10 μg/ml at −80°C. The amount of rGγi-1 incorporated into the membranes was determined by immunoblotting. To assess the potency of rGγi-1 to restore high affinity agonist binding, rGγi-1 was combined with a 4-fold molar excess of purified βγ dimers in 1% octylglucoside (or 10 mM CHAPS); appropriate dilutions were added to the membranes to give 0.5% octylglucoside (or 5 mM CHAPS) and preincubated on ice for 15 min. Subsequently, radioligand binding assays were carried out after diluting the detergent 2-fold.

Immunoblots. Membrane proteins (∼25 μg/lane) were separated on SDS-polyacrylamide gels (10% acrylamide, 0.13% bisacrylamide) and transferred to nitrocellulose membranes that were probed with AST, an antiserum recognizing Gαi-1 and Gαi-2 (McClue et al., 1992) or with the Gαi-γ-specific antiserum 11C (Selzer et al., 1993). The immunostained bands were visualized by enhanced chemiluminescence using an anti-rabbit IgG antibody conjugated to horseradish peroxidase (Amersham, Arlington Heights, IL). Purified recombinant G protein α subunits were used as standards. To verify that comparable amounts of membrane proteins had been applied in individual lanes, blots also were probed with a rabbit antiserum directed against the G protein β subunit (Hohenegger et al., 1995).

Results

Uncoupling of A₁ adenosine and D₂ dopamine receptors after heterologous expression. High affinity binding of agonists to G protein-coupled receptors depends on the formation of a ternary complex of agonist, receptor, and G protein (Hepler and Gilman, 1992). After stable expression of the human D₂ dopamine and the rat and human A₁ adenosine receptors in HEK 293 cells, the coupling of the receptors with G proteins in the membrane was assessed by using agonist radioligands. Suramin and NF037 did not block binding of appropriate antagonist radioligands to the receptors (not shown; see Beindl et al., 1996) but inhibited equilibrium binding of the A₁-selective agonist [125I]HPIA and the D₂ dopaminergic agonist [125I]OH-PIPAT (Fig. 1); suramin (● in Fig. 1) was >10-fold more potent than NF037 (● in Fig. 1) in suppressing ternary complex formation of the rat (Fig. 1A) and human (Fig. 1B) A₁ adenosine receptor. In contrast, the compounds were equipotent in inhibiting binding of the D₂ dopamine receptor agonist [125I]OH-PIPAT (Fig. 1C). The same difference was seen if the rat A₁ adenosine receptor and human D₂ dopamine receptor were transiently expressed in a cell line of nonhuman origin, namely, COS-7 cells (not shown). In addition, the apparent affinity of suramin and of NF037 was highest for human D₂ receptor/G protein complexes and lowest for human A₁ receptor/G protein complexes (Table 1).

The agonist-liganded receptor catalyzes the GDP/GTP exchange reaction of the G protein; agonist-stimulated binding of [35S]GTPγS therefore can be used as an alternative readout to assess receptor/G protein coupling. The A₁-selective agonist CPA stimulated [35S]GTPγS binding with EC₅₀ values of 4.1 ± 2.4 and 161 ± 57 nM (not shown) in membranes harboring the human and the rat A₁ adenosine receptor, respectively; after a 10 min incubation period, the receptor-promoted binding was ∼2.5-fold higher than the basal binding (Fig. 2, A–C). In membranes expressing the D₂ dopamine receptor at low levels (used to generate the data shown in Fig. 1C), the dopamine-induced increment in [35S]GTPγS binding was too low (−1.2-fold) to obtain a reliable signal-to-noise ratio for assessing the inhibitory effect of suramin and NF037. Hence, membranes from a cell clone that expressed the D₂ dopamine receptor at high levels (3.9 pmol/mg) were used where dopamine-stimulated basal [35S]GTPγS binding ∼2-fold (see Fig. 2D) with an EC₅₀ value of 0.12 ± 0.02 μM. Fig. 2A summarizes experiments carried out with membranes harboring the rat A₁ adenosine receptor. The basal rate of [35S]GTPγS binding was determined in the presence of receptor antagonists (1 μM XAC or 5 μM sulpiride) to eliminate nucleotide exchange catalyzed by the unliganded receptor. Suramin and NF037 decreased basal [35S]GTPγS binding by ∼50% (Fig. 2A, open symbols); these findings are consistent with the ability of the compounds to directly block the release of GDP from G protein α subunits (Freissmuth et al., 1996). In contrast, suramin (IC₅₀ = 1.5 ± 0.3 μM) was more potent than NF037 (IC₅₀ = 15.9 ± 2.2 μM) in blocking [35S]GTPγS binding promoted by the activated rat A₁ adenosine receptor (Fig. 2B). Similarly, the apparent affinity of suramin was higher than that of NF037 when inhibition of [35S]GTPγS binding promoted by the agonist-liganded human A₁ adenosine receptor (Fig. 2C) was determined. In contrast, the two compounds were equipotent in inhibiting
inhibit receptor-promoted [35S]GTPγS binding than high affinity agonist binding (compare Figs. 1 and 2). This discrepancy is presumably due, in part, to the different assay conditions; that is, the catalytic turnover of the agonist-liganded receptor in the presence of a mixture of GTPγS and GDP (Fig. 2) versus stoichiometric interaction to form a ternary complex in the absence of guanine nucleotides (Fig. 1). Importantly, differences in receptor occupancy by the agonists contribute to the rightward shift of the inhibition curves (see also below); agonist radioligands were present at concentrations close to their

\[K_D \]

values, whereas CPA and dopamine were used at saturating concentrations (300 nM and 1 \(\mu M \), respectively) to promote [35S]GTPγS binding. If the human A\textsubscript{1} adenosine receptor was activated with 10 nM CPA, the IC\textsubscript{50} value of suramin was 2.89 ± 0.77 \(\mu M \) (not shown), whereas it amounted to 8.78 ± 1.81 \(\mu M \) at 300 nM CPA (Fig. 2C).

Stable reconstitution of high affinity agonist binding to membranes from pertussis toxin-treated cells by rG\textsubscript{iα1}. The different affinity of suramin and NF037 for ternary complexes formed by the A\textsubscript{1} adenosine and D\textsubscript{2} dopamine receptor may have been due to an interaction of the receptors with distinct G proteins. This possibility is substantiated by the following observations: both A\textsubscript{1} adenosine and D\textsubscript{2} dopamine receptors physiologically recruit adenylyl cyclase inhibition as one of the signaling pathways to elicit a biological response, and a marked (>50%) inhibition of prostaglandin E\textsubscript{1}-stimulated cAMP formation was observed for both receptor types in intact transfected HEK 293 cells (Roka F and Nanoff C, unpublished observations). However, attenuation of adenylyl cyclase activity was observed only on activation of the D\textsubscript{2} dopamine receptor in HEK 293 membranes, whereas A\textsubscript{1} adenosine receptors were inactive (data not shown). We therefore determined the expression of G\textsubscript{iα1} in the transfected cells. Two forms of G\textsubscript{iα1} were detected in HEK 293 membranes (Fig. 3A). The top band commigrates with purified rG\textsubscript{iα1}, and is recognized by I1C, an antiserum specific for G\textsubscript{iα1} (see Fig. 3B). The bottom band is detected only by the antiserum that reacts with G\textsubscript{iα2} and G\textsubscript{iα3} but not by antiserum I1C and commigrates with rG\textsubscript{iα2}. The levels of G\textsubscript{iα2} and of the G protein β subunits (migrating as a β35/β36 doublet) were comparable in all cell lines. In contrast, there was some variability in the level of G\textsubscript{iα1}; the membranes from the cell line that expressed the A\textsubscript{1} adenosine receptor (Fig. 3A, lanes 4 and 5) had more G\textsubscript{iα1} than the control cells (Fig. 3A, lane 2), whereas those harboring the D\textsubscript{2} dopamine receptor contained less G\textsubscript{iα1} (Fig. 3A, lane 3). However, this is most likely not related to an effect of receptor expression per se; other cell clones that expressed more D\textsubscript{2} receptors than that shown in Fig. 2A had G\textsubscript{iα1} levels comparable to those of untransfected control cells (not shown). This suggests that the variation in the amount of G\textsubscript{iα1} may be due to clonal selection.

To force the receptors to interact with a defined G protein α subunit, we disrupted the coupling of the receptors to the endogenous G\textsubscript{iα1} subunits by pretreating the cells with pertussis toxin and subsequently incorporating exogenously added rG\textsubscript{iα1} into the membrane. ADP-ribosylation of G\textsubscript{iα1} subunits, which occurs at a cysteine residue at position −4 from the carboxyl terminus, retards the migration of the proteins, which can be detected by gel electrophoresis under appropriate conditions (Linder et al., 1990); G\textsubscript{iα1}, which was visualized in pertussis toxin-treated membranes (Fig. 3B), was shifted to a slightly lower mobility. Pertussis toxin-treated membranes were incubated with rG\textsubscript{iα1} in the presence of detergent followed by a dilution far below the critical micellar concentration of the detergent and its removal by

![Figure 1](https://example.com/figure1.png)
centrifugation; this stable reconstitution resulted in incorporation of substantial amounts of the protein into the membranes (Fig. 3B, lanes labeled Rec). As expected, pertussis toxin treatment eliminated the high affinity binding of agonist radioligands (□ in Fig. 4). In membranes stably reconstituted with exogenous rG\textsubscript{i,1}, high affinity agonist binding to the uncoupled receptors was restored. As shown in Fig. 4 (compare ● and ○), the saturation isotherms showed varying reconstitution efficiencies for the different receptors; however, the affinities for the agonist radioligands were similar in native and reconstituted membranes. \(K_D \) values (three experiments) were 0.7 ± 0.3 and 0.7 ± 0.2 nM for binding of \([^{125}I]\)OH-PIPAT to the D\textsubscript{2} dopamine receptor in control and reconstituted membranes, and 1.8 ± 0.3 and 2.2 ± 0.4 nM and 0.7 ± 0.1 and 0.7 ± 0.1 nM for binding of \([^{125}I]\)HPIA to the rat and human A\textsubscript{1} adenosine receptor in control and reconstituted membranes, respectively.

Uncoupling of A\textsubscript{1} adenosine and D\textsubscript{2} dopamine receptors after stable reconstitution. The reconstituted membranes in which the receptors were forced to interact with identical G protein \(\alpha \) subunits were used to evaluate the ability of suramin and NF037 to inhibit receptor agonist binding (Fig. 5). The selectivity of the two compounds toward the individual receptor/G protein tandems was essentially unchanged (compare Figs. 1 and 5). In addition, the IC\textsubscript{50} estimates obtained for inhibition of \([^{125}I]\)OH-PIPAT binding to the D\textsubscript{2} dopamine and of \([^{125}I]\)HPIA binding to the human A\textsubscript{1} adenosine receptor were identical for suramin and NF037 in native and reconstituted membranes (Table 1). Only after reconstitution of the rat A\textsubscript{1} adenosine receptors with exogenous rG\textsubscript{i,1} complement was the inhibitory potency of both compounds moderately shifted to higher IC\textsubscript{50} values.

From the data summarized in Table 1, it is clear that suramin (and NF037) displayed the highest affinity for D\textsubscript{2} dopamine receptor/G protein complexes regardless of whether it was assessed in native or in reconstituted membranes; in addition, suramin and NF037 were more potent inhibitors of rat A\textsubscript{1} adenosine receptor/G protein tandems than those formed by the human homologue. If the site of action of suramin and NF037 is at the receptor/G protein interface, the ability to dissociate agonist binding relies on a competition between the receptor and the suramin analogue for binding to the G protein docking site. In this case, one would predict that the ability of the suramin analogues to discriminate among specific receptor/G protein tandems should be inversely correlated with the affinity of the receptors for the G protein. We therefore have assessed the ability of receptors to interact with rG\textsubscript{i,1} by restoring high affinity agonist binding to pertussis toxin-treated membranes. Membranes were reconstituted with increasing concentrations of rG\textsubscript{i,1}. Because \(\beta \gamma \) dimers are required for efficient interaction of the \(\alpha \) subunit with the receptor (Freissmuth \textit{et al}, 1991b), the association of rG\textsubscript{i,1} with \(\beta \gamma \) dimers endogenous to the membrane may be limiting for estimating the affinity of the \(\alpha \) subunit for the receptor. This confounding effect, however, was eliminated by combining rG\textsubscript{i,1} with a 4-fold molar excess of purified \(\beta \gamma \) dimers to reform the oligomer (rG\textsubscript{i,1} + \(\beta \gamma \)) before the incubation. After detergent dilution, agonist radioligand binding was measured at a fixed concentration (see Experimental Procedures). Fig. 6 shows a concentration-dependent restoration of agonist binding to the human (○) and rat A\textsubscript{1} adenosine receptor (●) and the D\textsubscript{2} dopamine receptor (○). \([^{125}I]\)HPIA binding to membranes carrying either the human or the rat A\textsubscript{1} adenosine receptor was restored to \(\geq 75\% \) of the values obtained in untreated control membranes; at the highest concentrations of G\textsubscript{i,1} added (300 nM), the reconstitution efficiency amounted to only \(\sim 40\% \) for the D\textsubscript{2} dopamine receptor as evaluated by \([^{125}I]\)OH-PIPAT binding. The IC\textsubscript{50} values for G\textsubscript{i,1} in the presence of \(\beta \gamma \) dimers were estimated to be 5.9 ± 1.7, 44.4 ± 9.1, and >400 nM in restoring agonist binding to the human and rat A\textsubscript{1} adenosine and the D\textsubscript{2} dopamine receptor, respectively. This is the inverse of the rank order of the selectivity that suramin and NF037 displayed in uncoupling the individual receptor/G protein tandems. The same difference in affinity between human and rat A\textsubscript{1} adenosine receptor was also observed if CHAPS was used as the detergent (instead of octylglucoside) to dilute the G protein subunits; however, agonist (and antagonist) binding to D\textsubscript{2} dopamine receptors was greatly reduced if the membranes were exposed to CHAPS.

Effect of receptor occupancy on the apparent affinity of suramin and NF037. Suramin and NF037 do not compete for binding of antagonists to the A\textsubscript{1} adenosine and D\textsubscript{2} dopamine receptors, nor do they inhibit the binding of agonists in the absence of a productive interaction between receptor and G protein (Beindl \textit{et al}, 1996). If the receptors were allowed to couple to G proteins, suramin inhibited agonist binding in a quasicompetitive manner (i.e., the IC\textsubscript{50} values increased at higher concentrations of the agonist radioligand; Beindl \textit{et al}, 1996; see also below). This phenomenon may result from a competition of the agonist-ligated receptor with suramin for binding to the G protein or, alternatively, from the direct action of suramin on the receptor to prevent the agonist-promoted transition of the receptor to the active conformation Ra. In this case, variations in the membrane concentration of the receptor should not affect the IC\textsubscript{50} values of suramin analogues. This was tested by using membranes from the three clones of HEK 293 cells expressing different D\textsubscript{2} dopamine receptor densities (0.3, 1.3, and 3.9 pmol/mg). The IC\textsubscript{50} value of suramin and NF037 was determined in the presence of the agonist radioligand \([^{125}I]\)OH-PIPAT at a concentration close to the \(K_D \) value (0.5 nM). As shown in Fig. 7A for NF037, the IC\textsubscript{50} value was shifted to the

<table>
<thead>
<tr>
<th>Human A\textsubscript{1} adenosine receptor</th>
<th>Rat A\textsubscript{1} adenosine receptor</th>
<th>Human D\textsubscript{2} dopamine receptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control IC\textsubscript{50} (μM)</td>
<td>Reconstituted IC\textsubscript{50} (μM)</td>
<td>Control IC\textsubscript{50} (μM)</td>
</tr>
<tr>
<td>Suramin</td>
<td>5.2 ± 1.0</td>
<td>5.4 ± 1.2</td>
</tr>
<tr>
<td>NF037</td>
<td>92 ± 18</td>
<td>112 ± 20</td>
</tr>
</tbody>
</table>
right with increasing expression levels of the receptors. The same was true for suramin and the decrease in the apparent affinity of suramin and of NF037 was related in a linear manner to the amount of bound agonist (Fig. 7B, solid symbols). Control experiments were carried out with the D2 dopaminergic antagonists sulpiride and haloperidol; as expected, receptor density did not affect IC50 values of the receptor antagonists (data not shown).

If the clone expressing intermediate levels of D2 dopamine receptors was incubated with increasing concentrations of [125I]OH-PIPAT, the IC50 estimates of suramin and of NF037 varied with the concentration of the radioligand (Fig. 7B, open symbols). Again, in the plot of IC50 versus receptor occupancy, the affinity estimates fall onto a straight line. The slope of the regression line is comparable within experimental error with that calculated for the IC50 values that were observed by varying receptor density (Fig. 7B, solid symbols). Hence, the number of agonist-ligated receptor present was responsible for the rightward shift of the inhibition curves (Fig. 7A) and the increase in the IC50 estimates (Fig. 7B). The dependency of IC50 estimates on the activator concentration is determined by the Cheng-Prusoff relation \[K_i = IC_{50}(1 + A/K_D) \]; on rearranging, the equation yields IC50 = Kd/Kd_A + Kd_A, stating that the IC50 value of an inhibitor depends in a linear manner on the concentration of the activator A and is determined by both the dissociation constant KdA of the activator and that of the inhibitor Kd. Thus, the y-axis intercept yields an estimate of the Kd (\(\sim 0.16 \) μM; see Fig. 7B) and the slope is given by the ratio of Kd/KdA. The slope of the regression line in Fig. 7B is \(\sim 0.2 \); thus, the KdA estimate for the activator (A) is \(\sim 0.8 \) μM. Obviously, because this number is calculated by a division with two derived parameters, it is inherently imprecise. However, this KdA estimate (\(\sim 0.8 \) μM) is 3 orders of magnitude higher than the KD value for [125I]OH-PIPAT binding to the D2 dopamine receptor (\(\sim 0.7 \) nm; see Fig. 4); in contrast, the KdA estimate for the activator is consistent with the affinity estimated for the interaction between agonist-ligated D2 dopamine receptors and exogenously added rGi2 (Fig. 6). Taken together, these findings imply that the activator (A) for which suramin and NF037 compete is not the agonist [125I]OH-PIPAT but the agonist-ligated receptor.

Fig. 2. Inhibition of [35S]GTPγS binding to HEK 293 membranes expressing the rat (A and B) and human A1 adenosine receptor (C) and the human D2 dopamine receptor (D) by suramin and NF037. A and B, [35S]GTPγS binding to HEK 293 membranes (10 μg) expressing the rat A1 adenosine receptor was determined in the presence of 0.3 μM CPA (■, ■) or of 1 μM XAC (□, □) and of increasing concentrations of suramin (□, □) and NF037 (C, C). The binding reaction was initiated by the addition of 1 μM [35S]GTPγS and carried out for 10 min at 25° as outlined in Experimental Procedures. B, Basal binding of [35S]GTPγS was subtracted from CPA-stimulated binding. C, [35S]GTPγS binding was determined as in A using membranes expressing the human A1 adenosine receptor. Shown is the agonist-stimulated binding (i.e., the difference between total binding in the presence of CPA and basal binding in the presence of XAC). D, [35S]GTPγS binding was determined as in A using membranes expressing the human D2 dopamine receptor at a level of 3.9 fmol/mg, dopamine (1 μM) as the agonist, and sulpiride (10 μM) as the antagonist. Shown is the agonist-stimulated binding (i.e., the difference between total binding in the presence of dopamine and basal binding in the presence of sulpiride). Total [35S]GTPγS binding in the presence of CPA (human A1, 167 ± 33 fmol/mg; rat A1, 168 ± 12 fmol/mg) or dopamine (153 ± 13 fmol/mg) was set at 100%. Data are mean ± standard error from three experiments carried out in duplicate.

Fig. 3. Immunodetection of Gα subunits in native HEK 293 cell membranes (A) and after pertussis toxin treatment and stable reconstitution (B). A, Membrane proteins (25 μg/lane) from untransfected control cells (lane 2), HEK 293 cells expressing the human D2 dopamine receptors (lane 3), as well as the rat (lane 4) and human A1 adenosine receptor (lane 5) were resolved on a 10% SDS-polyacrylamide gel and transferred to nitrocellulose; the blot was immunostained with AS7 (an antiserum recognizing Gαi, and Gα1). Lane 1, rGαi1 (10 ng). Lane 7, rGαi2 (5 ng). Lane 6, combination of rGαi1 (10 ng) and rGαi2 (5 ng). To rule out differences in the amount of protein loaded in each lane, the blot was also probed with a G protein β-subunit antiserum (arrow). B, Confluent cultures of HEK 293 cells expressing the recombinant receptors were treated with vehicle (Con) or 100 ng/ml pertussis toxin (PTX) for 24 hr; membranes prepared from the latter cells were also stably reconstituted with recombinant rGαi1 (Rec) as outlined in Experimental Procedures. Membrane proteins (~25 μg) from HEK 293 cells expressing the D2 dopamine receptor (lane 1–3) and the human A1 adenosine receptor (lane 4–7) were separated on a 10% polyacrylamide gel and transferred to nitrocellulose; the blot was analyzed using the Gαi1-specific antiserum 11C. Lane 4, immunostaining of 5 ng Gαi1. Two additional experiments gave comparable results.
Fig. 4. Agonist radioligand binding to the rat (A) and human A₁ adenosine (B) and human D₂ dopamine receptors (C) stably expressed in HEK 293 cell membranes. Membranes were prepared from control (○) and pertussis toxin-treated (□) HEK 293 cells expressing the recombinant rat (A) and human (B) A₁ adenosine receptors and the human D₂ dopamine receptors (C). Membranes prepared from pertussis toxin-treated cells were also stably reconstituted with Gᵢ₁₁ (4.5 ng/mg; ●). Saturation isotherms were generated with the agonist radioligands [³²P]HPIA for rat (A) and human A₁ adenosine receptors (B) or [³²P]OH-PIPAT for the human D₂ dopamine receptor (C). The binding reaction was carried out in 40 μl containing membranes (2–5 μg) and the indicated concentrations of the radioligands for 90 min at 25°C. Nonspecific binding was determined in the presence of 1 μM XAC (A, B) or 10 μM sulpiride (C) and amounted to ~5% of total binding. Insets (A and C), saturation isotherms of the stably reconstituted membranes (●) with the y-axis range (fmol/mg of radioligand bound) scaled down. Data are mean values of duplicate determination; two additional experiments gave similar results.

Fig. 5. Suramin- and NF037-mediated inhibition of agonist radioligand binding to membranes prepared from pertussis toxin-treated rat A₁ (A), human A₁ adenosine (B), and human D₂ dopamine receptors (C) in HEK 293 membranes that had been reconstituted with rGᵢ₁₁. Membranes prepared from pertussis toxin-treated cells were stably reconstituted with rGᵢ₁₁, and the binding reaction was carried out in 40 μl containing membrane protein (~10 μg). [³²P]HPIA (final concentration, 1.5 nM in A and B), or [³²P]OH-PIPAT (0.7 nM, C) and increasing amounts of suramin (■) and NF037 (●) for 90 min at 25°C as outlined in Experimental Procedures. The reconstituted membranes used in C were from the cell clone expressing D₂ dopamine receptors at 3.9 pmol/mg. Specific binding in the absence of any analogue (~1 fmol ligand bound) was set 100%. Data are mean ± standard error from three independent experiments carried out in duplicate.
in the control experiments, in which haloperidol and sulpiride were allowed to compete with \[\text{[\text{125I}]OH-PIPAT}\] at radioligand concentrations covering the range 0.3–3 nM, the intercepts yielded K_i estimates of -0.6 and -5 nM for haloperidol and sulpiride, respectively (data not shown); the K_{DA} of \[\text{[\text{125I}]OH-PIPAT}\] was estimated from these experiments to be in the range of 0.55–1.0 nM (i.e., consistent with the standard error from three experiments). Non-specific binding was assayed in the presence of 1 mM XAC or 10 mM sulpiride. In the same experiment, specific binding was determined in untreated HEK 293 membranes and was set at 100%. These values were 158 ± 41, 447 ± 5, and 576 ± 87 fmol/mg for human and rat A_1 adenosine and the human D_2 dopamine receptor, respectively. Data are mean ± standard error from three experiments.

In an analogous experiment, the occupancy of the human A_1 adenosine receptor in HEK 293 membranes was varied by using \[\text{[\text{125I}]HPIA}\] at radioligand concentrations covering the range of 0.15–7.5 nM. The IC$_{50}$ value of suramin increased in a linear manner with receptor occupancy (Fig. 7C, ●). For the purpose of comparison, the data obtained by varying occupancy of the D_2 dopamine receptors with increasing \[\text{[\text{125I}]OH-PIPAT}\] have been replotted as a fraction of B_{max} (Fig. 7C, ■). It is evident that the slope of the regression line determined for uncoupling the A_1 adenosine receptor (~18) was considerably steeper than that determined for inhibition of \[\text{[\text{125I}]OH-PIPAT}\] binding, whereas the y-axis intercepts are similar within experimental error. Division of the y-axis intercept (0.18 µM) by the slope (~18) yielded a value of ~10 nM for the K_{DA} of the activator. This is in reasonable agreement with the affinity of the agonist-ligated human A_1 adenosine receptor for \[\text{rG}_{\text{in}-1}\] determined in the reconstitution experiment (see Fig. 6).

Discussion

The current results unequivocally demonstrate that suramin and its didemethylated analogue NF037 discrimi-

ate among receptor/G protein tandems formed by the A_1 adenosine and the D_2 dopamine receptor regardless of whether the inhibition of high affinity agonist binding or of agonist-stimulated binding of \[\text{[\text{35S}]GTP-S}\] was determined. Suramin was more potent than NF037 in uncoupling A_1 adenosine receptors, whereas the two compounds were equipotent in preventing the interaction of the D_2 dopamine receptor with G proteins. These observations complement and extend previous work that was carried out on A_1 adenosine receptors in human brain cortex and D_2 dopamine receptors in rat striatum. Here, we used both the rat and human A_1 adenosine receptor and therefore rule out species differences as a trivial explanation for the distinct activity profiles of the two compounds. Because the receptors were stably expressed in the same cell line, an effect of cellular heterogeneity also can be ruled out. In agreement with this conclusion, the activity profile of the compounds was indistinguishable from the findings obtained in HEK 293 cells when the receptors were transiently expressed in COS-7 cells to obtain a nonhuman tissue readout system (not shown).

Finally, the receptors may have been targeted to different subcellular compartments that possibly differed in composition of G protein subunits; when heterologously expressed in a cell line derived from a polarized epithelium, α_2-adrenergic and A_1 adenosine receptors are localized in the basolateral and apical membrane, respectively (Saunders et al., 1996; Wozniak and Limbird, 1996). This potential source of error was eliminated by pretreating the cells with pertussis toxin and stably reconstituting high affinity agonist binding to the membranes with a defined G protein α subunit (rG_{in}). Thus, the higher affinity of NF037 for uncoupling the D_2 dopamine receptor (compared with its ability to uncouple A_1 adenosine receptors) is maintained even when the receptors are forced to interact with identical G protein α subunits. Uncoupling of the D_2 dopamine receptor/G protein complex by suramin analogues gave inhibition curves with varying slopes (Figs. 1C and 5C). On pertussis toxin treatment and reconstitution with $\text{G}_{\text{in}-1}$, the inhibition curves were shallower than in the control membranes. A steep slope (Hill coefficient ~2) suggests interference with a reaction different from the 1:1 mode of receptor/G protein coupling, such as through the formation of receptor dimers. Dimerization of G protein-coupled receptors might result in enhanced signaling efficacy as opposed to the monomeric form of receptor (Hebert et al., 1996). On the basis of evidence obtained with other types of G protein-coupled receptors (Hebert et al., 1996; Cvejec and Devi, 1997), it is attractive to speculate that the D_2 dopamine receptor in HEK 293 cells undergoes dimerization leading to steep inhibition curves with the suramin analogues. On pertussis toxin treatment of the membranes and reconstitution with $\text{G}_{\text{in}-1}$ shallow inhibition curves (Hill coefficient ~1) would suggest that the ability to dimerize is lost after manipulation of the membranes. Nevertheless, the slope of the inhibition curves but not the IC$_{50}$ values was independent of the fractional receptor occupancy generated in the inhibition experiments (see Fig. 7A). Thus, although we have no direct evidence to explain the changes in slopes, we believe that this discrepancy does not interfere with our conclusions. Finally, we stress that experiments with purified α subunit and \[\text{[\text{3H}]suramin}\] demonstrate a binding stoichiometry of 1:1 (Hill coefficient ~1.0; Hohenegger et al., 1998).

If the pertussis toxin-treated membranes were stably re-
Concentration-dependent inhibition of agonist binding by NF037 to receptor. A, Inhibition of [125I]OH-PIPAT binding was performed with membranes derived from three different HEK 293 cell clones expressing m values for suramin and NF037 in uncoupling the human D2 dopamine receptor. The difference in G protein affinity was confirmed by titrating the ability of exogenously added rG_{i,1,-} to reconstitute high affinity binding to pertussis toxin-treated membranes. We previously determined the affinity of the human A1 adenosine receptor expressed in E. coli in reconstitution experiments with individual forms of recombinant G protein α subunits (Jockers et al., 1994); the affinity currently observed for the interaction of the human A1 adenosine receptor in pertussis toxin-treated HEK 293 membranes with rG_{i,1,-}βγ (−6 nM) was in reasonable agreement with that estimated in the earlier work (~15 nM). It was, on the other hand, somewhat surprising that the affinity of the D2 dopamine receptor for rG_{i,1,-}βγ was so low.

The interaction between the D2 dopamine receptor and rG_{i,1,-}βγ may have been impeded by the presence of octyl-glucoside. We therefore exploited the Cheng-Prusoff relation to independently estimate the affinity of the human D2 dopamine receptor for its cognate G protein in HEK 293 membranes. This approach is valid if suramin competes with the agonist-ligated receptor for binding to the G protein α subunit. All available evidence supports this assumption: (1) suramin analogues bind directly to G protein α subunits (Freissmuth et al., 1996), (2) they do not affect binding of antagonists or agonists to the receptor in the absence of receptor/G protein coupling (Beindl et al., 1996), (3) the inhibition of receptor/G protein coupling can be overcome by raising the concentration of active receptor in the membrane (see Fig. 7), and (4) if the site of action of suramin is on the G protein, the regression lines in the plot of IC50 versus receptor occupancy are expected to yield similar y-axis intercepts; this was indeed observed. The affinity values estimated for the interaction between receptor and G protein were ~0.8 µM and ~10 nM for agonist-ligated D2 dopamine receptor and the human A1 adenosine receptor, respectively, and hence was <10% of the amount of radioligand added to the incubation volume. Inhibition curves were fitted by nonlinear least-squares regression analysis. B, The IC50 of NF037 (■) determined in Fig. 1A and those of suramin (□) determined in parallel were replotted as a function of [125I]OH-PIPAT bound. In addition, inhibition binding experiments with NF037 (□) and suramin (■) were carried out at logarithmically spaced concentrations of radioligand (0.1–1 nM) on membranes prepared from the clone with intermediate expression levels (B_{max} = 1.3 pmol/mg) resulting in the indicated occupancy of the receptor by [125I]OH-PIPAT. Each point represents the IC50 ± standard error of the estimate from three independent experiments. Straight lines, drawn by calculating the linear regression through all data points. C, The IC50 values of suramin was determined in inhibition experiments with various concentrations of [125I]IHP1A (0.15–7.5 nM) on HEK 293 membranes that carried the human A1, adenosine receptor (■). These IC50 values were plotted as a function of relative receptor occupancy (i.e., B_{max} was set at 1.0). The IC50 values of suramin inhibiting [125I]OH-PIPAT binding to the membranes with intermediate expression levels (■; B_{max} = 1.3 pmol/mg) from B were replotted for the purpose of comparison and receptor occupancy was also expressed as a fraction of B_{max}.
consistent with the findings in the reconstitution experiments. Based on our experimental observations, we conclude that the affinity of the individual receptors for $r_{G_{\alpha}}$ is inversely correlated to the potency of suramin in uncoupling the receptors. This conclusion predicts that a selective action of suramin on receptor/G protein coupling can also result from the difference in affinity of individual agonist-ligated receptors for the same G protein. This may also explain the earlier observation that in membranes from NG108–15 cells, suramin inhibited activation of pertussis toxin-sensitive G proteins by δ-opioid agonists but not by serum factors (Huang et al., 1990).

The structural basis for the different activity profile of suramin analogues in uncoupling α_1, adenosine (suramin > NF037) and D_2 dopamine receptors (NF037 = suramin) is not known. The contact points by which receptors interact with their cognate G proteins are formed by those segments of the receptor that are juxtaposed to the transmembrane spans. These discontiguous segments cooperatively support binding of the receptor to the G protein oligomer (Ernst et al., 1996). Apart from this triplet, only very few amino acids are conserved within the intracellular loops; hence, a clearcut consensus sequence that would allow to predict the G protein specificity of a given receptor cannot be deduced. In addition, the ability of a receptor to activate multiple G proteins is specified by distinct portions within the intracellular loops; the α_2A-adrenergic receptor can couple to both G_{α_2} and G_{α_1}. These two coupling modes, however, require distinct amino acid stretches in the second and third intracellular loops (Eason and Ligett, 1996). It is even more striking that different amino acids in the third intracellular loop are required to support coupling of the α_2A-adrenergic receptor to the closely related α_2B subunits G_{α_2A}, G_{α_2D}, and G_{α_2E} (Wu et al., 1995). These findings predict that the surface the receptors cover on a given G protein α subunit varies in individual receptor/G protein tandem. This is indeed the case; if the five last amino acids in the carboxyl terminus are exchanged between G_{α_2} and G_{α_2Q}, some, but not all, receptors are capable of recruiting this mutated α_2 subunit in a manner similar to their cognate G protein (Conklin et al., 1996). Hence, the contact sites that are formed in individual receptor/G protein tandem must be different to account for this observation. It is attractive to speculate that in the α_1 receptor,G_{α_1} tandem, the receptor covers a larger area of the G protein α subunit than in the D_2 receptor/G_{α_1} tandem. This hypothesis would explain both the higher affinity of the α_1 receptor for G_{α_1}, and the lower relative potency of NF037 in disrupting the α_1 receptor/G complex; in this model, suramin, which has two additional methyl groups, competes more efficiently than NF037 with the α_1 adenosine receptor for binding to the G protein, whereas the difference in surface covered by the two compounds does not affect the formation of the D_2 receptor/G protein complex. Taken together, our data show that two factors contribute to the selectivity of inhibitors of receptor/G protein tandem formation, namely (1) differences in affinity of individual receptors for the G protein (which determines the apparent IC$_{50}$ value of an inhibitor) and (2) differences in the contact site between individual receptors and the G protein (which gives rise to a distinct structure activity relation for inhibitors). Both aspects are relevant in the development of G protein inhibitors that may eventually be useful in vivo.

References
Casey PJ, Graziano MP, and Gilman AG (1989) G protein β-γ-subunits from bovine brain and retina: equivalent catalytic support of α-subunits by pertussis toxin but differential interaction with G_{α_1}, Biochemistry 28:611–616.
Frentz S, Ungerer M, and Lohse MJ (1994) α_1-adrenenergic receptors expressed in CHO-cells couple to adenylyl cyclase and to phospholipase C. Naunyn Schmiedeberg's Arch Pharmacol 350:49–56.

Downloaded from ioasjournals.org at ASIPT Journals on June 20, 2017 molpharm.aspetjournals.org Downloaded from

Send reprint requests to: Dr. Christian Nanoff, Institute of Pharmacology, Vienna University, Waehringer Str. 13a, A-1090 Vienna; Austria. E-mail: christian.nanoff@univie.ac.at