Human Interferon-Inducible 10-kDa Protein and Human Interferon-Inducible T Cell α Chemokattractant Are Allotopic Ligands for Human CXCR3: Differential Binding to Receptor States

MARY ANN COX, CHUNG-HER JENH, WALDEMAR GONSIOREK, JAY FINE, SATWANT K. NARULA, PAUL J. ZAVODNY, and R. WILLIAM HIPKIN

Department of Immunology, Schering-Plough Research Institute, Kenilworth, New Jersey

Received October 6, 2000; accepted December 7, 2000

This paper is available online at http://molpharm.aspetjournals.org

ABSTRACT

The human CXC chemokines IP-10 (10-kDa interferon-inducible protein), MIG (monokine induced by human interferon-γ), and I-TAC (interferon-inducible T cell α chemokattractant) attract lymphocytes through activation of CXCR3. In the studies presented here, we examined interaction of these chemokines with human CXCR3 expressed in recombinant cells and human peripheral blood lymphocytes (PBL). IP-10, MIG, and I-TAC were agonists in stimulating [35S]GTPγS binding in recombinant cell and PBL membranes but had no effect in the absence of hCXCR3 expression. 125I-IP-10 and 125I-I-TAC bound hCXCR3 with high affinity, although the 125I-I-TAC B_{max} value in saturation bindings was 7- to 13-fold higher than that measured with 125I-IP-10. Coincubation with unlabeled chemokines decreased 125I-IP-10 binding with a single discernible affinity. However, with 125I-I-TAC, competition with IP-10 or MIG was incomplete, and multiple binding affinities were evident. Moreover, in contrast to I-TAC, IP-10 and MIG binding IC_{50} values did not increase predictably with increased 125I-I-TAC concentration in competition bindings, suggesting that these chemokines are noncompetitive (i.e., allotopic) ligands. Uncoupling of hCXCR3 eliminated 125I-IP-10 binding but only decreased 125I-I-TAC binding 30 to 80%, indicating that unlike IP-10, I-TAC binds with high affinity to uncoupled (R) and coupled (R*) hCXCR3. To examine chemokine binding to R*, we tested the effect of anti-hCXCR3 antibody on I-TAC- and IP-10-stimulated [35S]GTPγS binding. The antibody attenuated [35S]GTPγS binding in response to IP-10 but not to I-TAC, suggesting that the two chemokines bind differently to R*. Moreover, increased occupancy of R* with a >75-fold increase in 125I-I-TAC concentration did not increase the I-TAC binding IC_{50} value, and I-TAC increased the dissociation rate of 125I-IP-10. From these data, we conclude that the binding of IP-10 and I-TAC to the R* state of hCXCR3 is allotopic.

Chemoattractant cytokines (chemokines) stimulate leukocyte chemotaxis by activation of various G protein-coupled receptors. As such, chemokines are important mediators of inflammatory responses. Interferon-inducible 10-kDa protein (IP-10) and monokine induced by human interferon-γ (MIG) are CXC chemokines originally characterized as potent chemotactants for activated T and natural killer cells (Luster and Leder, 1993; Farber, 1997). IP-10 and MIG attract leukocytes through activation of CXCR3 expressed on these cells. Recently, a novel non-ELR (glutamate-leucine-arginine) CXC chemokine, interferon-inducible T cell α chemoattractant (I-TAC), was also identified as a potent hCXCR3 agonist in human and mouse (Cole et al., 1998; Widney et al., 2000). Interestingly, there is evidence that I-TAC expression and its regulation differ from that of MIG and IP-10 (Mach et al., 1999), suggesting that these chemokines are more than just redundant ligands for hCXCR3.

Cole et al. (1998) used both signaling assays and binding studies with 125I-I-TAC to examine I-TAC pharmacology at hCXCR3. They found that I-TAC was more potent and efficacious than IP-10 or MIG as a chemoattractant and in stimulating calcium flux and receptor desensitization. Indeed, these findings led them to propose that I-TAC is the dominant ligand for this receptor. Competition bindings with 125I-I-TAC, human IP-10, and human MIG generated binding profiles that seem non-Michaelian. The authors suggested that these nonclassical binding curves reflected the poor affinity for IP-10 and MIG relative to I-TAC for hCXCR3. Cole et al. (1998) used both signaling assays and binding studies with 125I-I-TAC to examine I-TAC pharmacology at hCXCR3. They found that I-TAC was more potent and efficacious than IP-10 or MIG as a chemoattractant and in stimulating calcium flux and receptor desensitization. Indeed, these findings led them to propose that I-TAC is the dominant ligand for this receptor. Competition bindings with 125I-I-TAC, human IP-10, and human MIG generated binding profiles that seem non-Michaelian. The authors suggested that these nonclassical binding curves reflected the poor affinity for IP-10 and MIG relative to I-TAC for hCXCR3. The studies presented here elucidate I-TAC and IP-10 binding at hCXCR3 expressed in recombinant or hu-

ABBREVIATIONS: IP-10, 10-kDa interferon-inducible protein; GTPγS, guanosine-5′-O-(3-thio)triphosphate; I-TAC, interferon-inducible T cell α chemoattractant; MIG, monokine induced by human interferon-γ; PBL, peripheral blood lymphocytes; WGA-SPA, wheat germ agglutinin bead-scintillation proximity assay.
man peripheral blood lymphocytes. Using a variety of pharmacological approaches, we demonstrate that IP-10 and I-TAC have vastly different affinities for uncoupled hCXCR3 and are allotropic ligands for coupled hCXCR3.

Experimental Procedures

Cells and Cell Culture. The cDNA encoding human CXCR3 was generated as described previously (Jenh et al., 1999) and cloned into the mammalian expression vector pME18Sneo, a derivative of the SRe expression vector (Takebe et al., 1988). Interleukin-3-dependent mouse pro-B cells (Ba/F3) were transfected to express hCXCR3 (Ba/F3-hCXCR3) and maintained in RPMI 1640 medium supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 100 µg/ml streptomycin, 1 g/ml G418 (Life Technologies, Gaithersburg, MD), and 100 µg/ml hygromycin (Roche Molecular Biochemicals, Indianapolis, IN). Human peripheral blood lymphocytes (PBL) were prepared by Ficoll-Hypaque centrifugation, depleted of monocytes, (Wahl and Smith, 1991) and stimulated for 2 days with 1 µg/ml phytohemagglutinin (Murex Diagnostics, Dartford, UK) and 100 U/ml interleukin-2 (Sigma, St. Louis, MO) in RPMI 1640 supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 100 µg/ml streptomycin and 100 U/ml penicillin, 100 µg/ml G418, and 300 µg/ml hygromycin (Roche Molecular Biochemicals, Indianapolis, IN). Human peripheral blood lymphocytes (PBL) were prepared by Ficoll-Hypaque centrifugation, depleted of monocytes, (Wahl and Smith, 1991) and stimulated for 2 days with 1 µg/ml phytohemagglutinin (Murex Diagnostics, Dartford, UK) and 100 U/ml interleukin-2 (Sigma, St. Louis, MO) in RPMI 1640 supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 100 µg/ml streptomycin and 100 U/ml penicillin, 1% nonessential amino acids, and 2 mM HEPES. After stimulation, PBL were cultured in above media containing 5% conditioned media (Sigma) for up to 15 days.

Cell Membrane Preparation. Ba/F3-hCXCR3 were pelleted and resuspended in lysis buffer containing 10 mM HEPES, pH 7.5, and Complete protease inhibitors (1 tablet/100 ml) (Roche Molecular Biochemicals) and kept on ice. Membranes in 96-well plates (1–2 µg/pool, in triplicate) were incubated with 1 µM GDP, 0.3 nM guanosine 5′-γ-35S-triphosphate ([35S]GTPγS, triethylammonium salt; specific activity, 1250 Ci/mm; PerkinElmer Life Sciences) in the presence or absence of various ligands for 30 to 60 min at 30°C. The reaction was terminated by placing the plates on ice and filtering the membranes through a UniFilter GF/B filter plate (Packard Instrument Co., Meriden, CT) using a Tomtec 96-well cell harvester (Hamburg, CT). The filters and membranes were washed 10 times at room temperature with 20 mM HEPES and 10 mM sodium pyrophosphate. Membrane-bound [35S]GTPγS was measured by liquid scintillation using a TopCount NXT Microplate scintillation and luminescence counter (Packard Instrument Co.). In some experiments, [35S]GTPγS bindings were performed, and membranes were preincubated for 60 min at room temperature in the absence or presence of 100/2CXCR3 or isotype control antibody (see above) before addition of ligands and [35S]GTPγS. In these experiments, the bindings were done in SPA binding buffer (as described above) containing 1 µM GDP and 0.3 nM [35S]GTPγS. Membrane-bound [35S]GTPγS was measured by scintillation proximity assay.

Materials. Chemokines were purchased from R & D Systems Inc. (Minneapolis, MN). Nonlinear regression analysis of the data was performed using Prism 2.0b (GraphPad Software, San Diego, CA). All other reagents were of the best grade available and purchased from common suppliers.

Results

Effect of Chemokines on [35S]GTPγS Exchange in Ba/F3-hCXCR3, 293-hCXCR3, and Peripheral Blood Lymphocyte Membranes. Activation of G protein-coupled receptors with agonists stimulates the molecular exchange of GTP for GDP on the active site of the Go protein (Gilman, 1987). By substituting the nonhydrolyzable GTP analog [35S]GTPγS for GTP, agonist activation and subsequent guanyl nucleotide exchange in cell membranes results in an increase in [35S]GTPγS binding (Hilf et al., 1989; Lorenzen et al., 1993; Gonsiorek et al., 2000). To this end, a [35S]GTPγS exchange assay was instituted to measure chemokine agonism in membranes from two cell lines transfected to overexpress hCXCR3 or from activated PBL. Ba/F3-hCXCR3 (Fig. 1, left) or PBL (Fig. 1, right) membranes were incubated with 0.3 nM [35S]GTPγS, 1 µM GDP, and the indicated concentrations of IP-10, I-TAC, or MIG for 60 min at 30°C, upon which the reaction was terminated by filtration (as described under Experimental Procedures). Under these assay conditions, IP-10, I-TAC, and MIG were all full agonists in stimulating [35S]GTPγS exchange (Fig. 1) but varied considerably in their potency (Ba/F3-hCXCR3, EC50 = 0.3 µM, 0.08 ± 0.07, and 11 ± 1 nM, respectively; n = 3; PBL, EC50 = 5.0 ± 3.7, 0.24 ± 0.08, and 70.0 ± 1.1 nM, respectively; n = 2). [35S]GTPγS exchange assays within 293-hCXCR3 membranes produced similar results (data not shown; IP-10
EC$_{50}$ = 0.19 ± 0.15, I-TAC = 0.08 ± 0.05, and MIG = 13.5 ± 6.3 nM; n = 2). There was no stimulation of [35S]GTP$_{S}$ binding in membranes from untransfected Ba/F3 and 293 cells, which do not bind 125I-IP-10 or 125I-I-TAC (data not shown). Therefore, we conclude that the stimulation of [35S]GTP$_{S}$ binding upon incubation with the chemokines is mediated through binding to hCXCR3.

Saturation and Competition Binding Analysis with 125I-IP-10 and 125I-I-TAC. 125I-IP-10 and 125I-I-TAC affinities for hCXCR3 were measured in Ba/F3-hCXCR3, 293-hCXCR3, and human PBL membranes by saturation binding analyses (as described under Experimental Procedures). Membranes were incubated at room temperature with the indicated concentrations of radioligand in the presence or absence of 30 nM I-TAC. 125I-IP-10 bound with one discernable affinity in membranes from both recombinant cells (Ba/F3-hCXCR3, 65 ± 28 pM; 293-hCXCR3, 180 ± 42 pM; Fig 2) and PBL (235 ± 190 pM). Parallel saturation analysis with 125I-I-TAC showed that it bound hCXCR3 with slightly higher affinity than did 125I-IP-10 (30 ± 4, 99 ± 7, and 26 ± 11 pM, respectively). More strikingly, the calculated B_{max} value with 125I-I-TAC was 7- to 13-fold higher in both recombinant cell and PBL membranes (Fig. 2) and in intact PBL (data not shown). This incongruity in specific binding suggests that I-TAC and IP-10 are not binding to the identical receptor population.

In competition binding analysis with Ba/F3-hCXCR3 membranes and 125I-IP-10 (Fig. 3, left), human I-TAC, human IP-10, and human MIG all competed for binding with the expected high affinities (K_i ± S.D. = 79 ± 27 pM, 33 ± 6 pM, and 1.2 ± 0.4 nM, respectively; n = 2–3). As can be seen in the representative experiment shown in Fig. 3 (center), human IP-10 and MIG also inhibited 125I-I-TAC binding, although multiple affinities were apparent, especially in competition with human IP-10 (25%, K_i = 1.0 nM; 75%, K_i = 86 nM; n = 3). In addition, competition with human IP-10 and MIG was incomplete relative to that seen with I-TAC. Moreover, the I-TAC K_i value calculated from competition with 125I-I-TAC (K_i = 480 ± 35 pM) was considerably lower than that calculated with 125I-IP-10 competition (see above). Competition binding in human PBL membranes using 125I-I-TAC, IP-10, and I-TAC (Fig. 3, right) generated a binding profile similar to that seen in the recombinant cell membrane. I-TAC competed with a similar affinity (0.52 ± 0.2 nM), whereas IP-10 was ineffective in competing for binding (n = 3). We next measured the potency of IP-10 and I-TAC to inhibit binding in Ba/F3-hCXCR3 membranes in the face of increasing concentrations of 125I-I-TAC (33, 333, or 1300 pM). As shown in Fig. 4, the binding IC$_{50}$ value for I-TAC competition increased when the 125I-I-TAC concentration was elevated such that the calculated K_i value remained constant (K_i = 50–60 pM), consistent with the binding of competitive ligands. In contrast, IP-10 did not fully compete for binding with 125I-I-TAC, and the potency of binding inhibition varied with the concentration of 125I-I-TAC. The inconsistent K_i values (0.3–52 nM) generated from the binding IC$_{50}$ values using the Cheng-Prusoff calculation again suggests that IP-10 and I-TAC bind in an allotopic (noncompetitive) manner to hCXCR3.

Effect of Functional Uncoupling of hCXCR3 on I-TAC and IP-10 Binding. We assessed the effect of hCXCR3 uncoupling on IP-10 and I-TAC binding. Ba/F3-hCXCR3 membranes were incubated with 125I-I-TAC or 125I-IP-10 and the indicated concentrations of GTP$_{S}$, 10 nM IP-10, or 30 nM I-TAC. As shown in Fig. 5A, GTP$_{S}$ decreased the binding of both 125I-I-TAC and 125I-IP-10 with IC$_{50}$ values of 97 ± 33 and 18 ± 6 nM, respectively (n = 2). GTP$_{S}$ inhibited 125I-IP-10 binding to the same extent as did excess unlabeled IP-10; 125I-I-TAC binding was decreased by only 35 ± 2% versus 93 ± 1% binding inhibition with 30 nM I-TAC. These data indicate that I-TAC has a higher affinity for uncoupled hCXCR3 than does IP-10. To more fully investigate this observation, we performed experiments in Ba/F3-hCXCR3 membranes using 125I-I-TAC in the presence or absence of GTP$_{S}$ (Fig. 5B). Again, GTP$_{S}$ decreased I-TAC affinity by 30 to 40%, consistent with the decrease in total 125I-I-TAC binding. In the absence of GTP$_{S}$, IP-10 competes for 125I-I-TAC binding with two apparent affinities (27% ± 2%, IC$_{50}$ = 0.7 ± 0.4 nM; 73% ± 2%, IC$_{50}$ = 50 ± 6 nM). However, in the presence of GTP$_{S}$, IP-10 competes for 125I-I-TAC binding at a single low-affinity binding site (83 ± 16 nM; n = 2).

As an alternative approach to uncouple hCXCR3, 293-hCXCR3 cells and activated PBL were incubated for 18 to 20 h in the absence or presence of 100 ng/ml of pertussis

![Chemokine (log M)](image)

Fig. 1. The effect of chemokines on [35S]GTP$_{S}$ exchange in Ba/F3-hCXCR3 and PBL membranes. Ba/F3-hCXCR3 (left) or PBL membranes (right) were incubated for 60 min at 30°C in GTP$_{S}$ binding buffer (as described under Experimental Procedures) containing 0.3 nM [35S]GTP$_{S}$, 1 μM GDP, the indicated concentrations of I-TAC (), IP-10 (), or MIG (). After filtration, membrane-associated radioactivity was measured by liquid scintillation. Data, expressed relative to basal binding, represent the mean total binding ± range of triplicate determinations from two to four independent experiments.
toxin. Pertussis toxin ADP-ribosylates the C-terminal region of G_{i/o} preventing the interaction of these G proteins with their receptors (Passador and Iglewski, 1994). Membranes from these cells were then incubated with 20 nM [125I]-I-TAC and the indicated concentrations of IP-10 and I-TAC or 10

\mu M GTPγS. As shown in Fig. 5C, in pertussis toxin-pretreated 293-hCXCR3 membranes, total [125I]-I-TAC binding decreased approximately 80% (n = 2), consistent with a 5-fold decrease in I-TAC affinity (K_i = 0.62 ± 0.13 nM) relative to that seen in control membranes (K_i = 0.14 ± 0.02 nM). IP-10 binding affinity was also lower in membranes from pertussis toxin-pretreated cells (K_i = 194 ± 24 nM) relative to that measured in control membranes (K_i = 32 ± 4 nM; n = 2). Not surprisingly, there was no measurable specific binding of [125I]-IP-10 in membranes from pertussis toxin-pretreated cells (data not shown). Uncoupling of hCXCR3 in pertussis toxin-pretreated cell membranes was complete as 10

\mu M GTPγS did not further decrease total [125I]-I-TAC binding, indicating that hCXCR3 interacts only with G_{i/o}. In PBL membranes (Fig. 5D), I-TAC competed with [125I]-I-TAC binding (K_i = 0.19 ± 0.13 nM), whereas IP-10 binding was incomplete and low affinity (IC_{50} = 35 ± 10 nM; see Fig. 3). Pertussis toxin pretreatment of PBL again decreased total [125I]-I-TAC binding approximately 80% (n = 2).

From these data, we conclude that [125I]-I-TAC binds with high affinity to both the uncoupled (R) and coupled (R*) hCXCR3 conformations, whereas [125I]-IP-10, for all practical purposes, binds only to R*.

Effect of Anti-hCXCR3 Antibody on I-TAC and IP-10 Binding. We assessed the effect of a monoclonal antibody raised against a peptide corresponding to the first 37 amino acids of the N-terminal region of hCXCR3 on IP-10 and I-TAC binding. This antibody (clone 1/C6; α-CXCR3) has been reported to block the binding of human IP-10 to hCXCR3 (Qin et al., 1998). Ba/F3-hCXCR3 membranes were incubated with the indicated concentrations of α-CXCR3 or its isotype control for 60 min before a 3-h incubation with either [125I]-I-TAC or [125I]-IP-10. The isotype control had no effect on the binding of either radioligand, whereas α-CXCR3 blocked [125I]-I-TAC binding to R* with an IC_{50} value of 0.55 nM (Fig. 6A). [125I]-I-TAC binding was also potently inhibited by the antibody (IC_{50} = 1.1 nM), although binding was inhibited only 30 to 40%, whereas [125I]-IP-10 binding decreased 70 to 80%. As [125I]-I-TAC binds to both R* and R, we conducted experiments to assess the ability of the antibody to inhibit I-TAC binding to the different receptor conformations. Membranes from 293-hCXCR3 cells pretreated in the absence or presence of pertussis toxin (see above) were incubated with [125I]-I-TAC and the indicated concentrations of α-CXCR3 antibody (Fig. 6B). Again, the antibody potently (IC_{50} = 1.2 nM) but incompletely inhibited [125I]-I-TAC binding in control membranes. Interestingly, in membranes from pertussis toxin-pretreated cells, [125I]-I-TAC binding was completely inhibited by the α-CXCR3 antibody (IC_{50} = 0.6 nM). These data suggest that the antibody is more efficient at inhibiting I-TAC binding to uncoupled hCXCR3 and that the I-TAC binding site(s) on coupled and uncoupled receptor differ. Next, 293-hCXCR3 membranes were coincubated with [125I]-I-TAC and the indicated concentrations of GTPγS in the absence or presence of 80 nM α-CXCR3 or its isotype control. As shown in Fig. 7, with the isotype control, GTPγS displaced 52 ± 3% of the specific binding. Incubation with α-CXCR3 antibody alone decreased specific binding (51 ± 0.5%; n = 2). Coincubation with GTPγS further decreased specific [125I]-I-TAC binding 78 ± 2%. Therefore, in the presence of the α-CXCR3, a higher percentage of the remaining [125I]-I-TAC binding represents interaction with coupled receptor. This observation is consistent with the hypothesis that this antibody preferentially inhibits the binding of I-TAC to uncoupled receptor.

Effect of Anti-CXCR3 Antibody on hCXCR3 Activation. We assessed the effect of α-CXCR3 on hCXCR3 activation by both IP-10 and I-TAC. Ba/F3-hCXCR3 membranes prebound to WGA-SPA beads were incubated with 12.5 µg/ml of α-CXCR3 or its isotype control for 60 min before incubation with the indicated concentrations of IP-10 or I-TAC and 0.3 nM [35S]GTPγS for 45 min at 30°C (as described under Experimental Procedures). As shown in Fig. 8, α-CXCR3 inhibi-
ited activation of the receptor by IP-10 in a competitive manner (isotype control, EC\textsubscript{50} = 0.45 ± 0.06 nM; α-CXCR3, EC\textsubscript{50} = 11.3 ± 3.1 nM; n = 3). In contrast, the antibody had only a small effect on the potency of receptor activation by I-TAC (isotype control, EC\textsubscript{50} = 34 ± 14 pM; α-CXCR3, EC\textsubscript{50} = 74 ± 31 pM; n = 2–3). These data are consistent with the binding data, which showed that α-CXCR3 blocked the binding of IP-10 to R* but was less effective in interfering with I-TAC binding to the active receptor conformation.

Effect of 125I-IP-10 Concentration on the Apparent Binding \textit{K}_i Value for IP-10 and I-TAC on hCXCR3 R*. The antibody experiments (Figs. 6–8) suggest that IP-10 and I-TAC are allotopic ligands on the R* conformation of hCXCR3. To test this hypothesis, competition bindings were set up with Ba/F3-hCXCR3 membranes using increasing concentrations of 125I-IP-10 (22, 173, or 1730 pM) and the indicated concentrations of I-TAC. As would be expected, total radioligand binding increased as 125I-IP-10 concentration was raised (Fig. 9, left). However, the I-TAC binding IC\textsubscript{50} value remained unchanged despite the >75-fold increase in 125I-IP-10 concentration (Fig. 9, right). Cheng-Prusoff analysis generated \textit{K}_i values that decreased as the 125I-IP-10 concentration increased. This is inconsistent with the binding of competitive ligands. The binding IC\textsubscript{50} values for both IP-10 and MIG increased predictably with the concentration of 125I-IP-10 (data not shown) such that binding \textit{K}_i values remained constant (IP-10, 0.021 ± 0.01 nM; MIG, 4.2 ± 0.9 nM; n = 2), confirming that these ligands bind competitively with 125I-IP-10. The large population of uncoupled hCXCR3 in the membrane preparations and the relatively small difference in affinities of I-TAC for coupled and uncoupled receptor precluded attempting analogous studies with 125I-I-TAC.

Effect of I-TAC on 125I-IP-10 Dissociation Rate from hCXCR3 R*. We assessed whether I-TAC decreased 125I-IP-10 binding from the R* conformation by increasing its dissociation rate from hCXCR3. Ba/F3-hCXCR3 membranes were incubated with 125I-IP-10, pelleted, washed, and resuspended in cold binding buffer. The membranes and bound radioligand were then incubated at 30°C with various concentrations of I-TAC for the indicated times (as described under Experimental Procedures). As shown in Fig. 10, receptor-bound 125I-IP-10 dissociated at two discrete rates (t\textsubscript{1/2} =...
Incubation with I-TAC stimulated dissociation of 125I-IP-10 binding from the high-affinity site in a concentration-dependent manner. The half-time of dissociation from the high-affinity site decreased to 3.4 ± 1.0 h with 0.01 nM I-TAC and to 22 ± 6 min with 10 nM I-TAC ($n = 2$). The dissociation of 125I-IP-10 by 10 nM I-TAC was complete in that binding was reduced to nonspecific levels (data not shown). Taken together, we conclude that IP-10 and I-TAC bind to the R^* conformation of hCXCR3 in an allotopic manner.

Discussion

The studies presented herein used functional, pharmacological, and immunological approaches to characterize hCXCR3 interaction with its chemokine ligands. As has been reported previously (Cole et al., 1998), we found that I-TAC, IP-10, and MIG are potent agonists at hCXCR3. Surprisingly, we found that only IP-10 and MIG bound to hCXCR3 in a competitive manner. Both binding and functional studies using an anti-hCXCR3 antibody showed that I-TAC binds...

Fig. 5. The effect of hCXCR3 uncoupling on 125I-IP-10 and 125I-I-TAC binding. A, Ba/F3-hCXCR3 membranes (1–2 μg/well) in binding buffer were incubated with 100 pM 125I-IP-10 (○) or 125I-I-TAC (●) and the indicated concentrations of GTPγS, 10 nM IP-10 (□), or 30 nM I-TAC (■). Ba/F3-hCXCR3 membranes (1 μg/well) were incubated in binding buffer in the absence (open symbols) or presence (closed symbols) of 100 μM GTPγS and the indicated concentrations of IP-10 (○ and ■) or I-TAC (□ and ▲). Membranes from 293-hCXCR3 cells (○) or PBL (D) pretreated overnight in the presence (open symbols) or absence (closed symbols) of 100 ng/ml of pertussis toxin were incubated with 100 pM 125I-I-TAC and the indicated concentrations of IP-10 (○ and ■), I-TAC (□ and ▲), or 100 μM GTPγS (C, △ and ▲). Radioligand binding to the membranes was measured by WGA-SPA scintillation. Data represent the mean total binding ± S.E.M. of triplicate determinations from an experiment representative of two to four independent experiments. Ligand affinities from competition bindings were calculated from binding IC₅₀ value using the Cheng-Prusoff equation.
allotopically with IP-10 and MIG to the active conformation of hCXCR3 (R*). Moreover, I-TAC was the only ligand of the three that also bound with high affinity to uncoupled receptor (R).

In competition binding with 125I-I-TAC, the K_i value for I-TAC remained constant in the face of increased radioligand concentration, which would be expected if I-TAC bound competitively with 125I-I-TAC. However, IP-10 and MIG were ineffective and impotent in displacing 125I-I-TAC and became

Fig. 6. The effect of α-hCXCR3 antibody on chemokine binding to hCXCR3. A, Ba/F3-hCXCR3 membranes (2 μg/well) were incubated with 50 pM 125I-IP-10 (□ and ▪) or 125I-I-TAC (○ and ●) and the indicated concentrations of α-hCXCR3 (clone 1/C6, closed symbols) or isotype control antibody (open symbols). Radioligand binding to the membranes was measured by WGA-SPA scintillation. Data, expressed as a fraction of the specifically bound radioligand, represent the mean ± S.E.M. of triplicate determinations from an experiment representative of two independent experiments. B, 293-hCXCR3 membranes (2 μg/well) from cells pretreated in the presence (○ and □) or absence of pertussis toxin (● and ▪) were incubated with 200 pM 125I-I-TAC and the indicated concentrations of α-hCXCR3 (clone 1/C6) or 30 nM I-TAC (● and ▪). Radioligand binding to the membranes was measured by WGA-SPA scintillation. Data represent the mean total binding ± S.E.M. of triplicate determinations from an experiment representative of three independent experiments.

Fig. 7. The effect of receptor uncoupling on the inhibition of 125I-I-TAC binding with α-hCXCR3 antibody. 293-hCXCR3 membranes (3 μg/well) were incubated with 50 pM 125I-I-TAC, the indicated concentrations of GTPγS, and 80 nM α-hCXCR3 (●) or isotype control antibody (○). Radioligand binding to the membranes was measured by WGA-SPA scintillation. Data represent the mean total binding ± S.E.M. of triplicate determinations from an experiment representative of three independent experiments.

Fig. 8. The effect of α-hCXCR3 antibody on hCXCR3 activation by IP-10 and I-TAC. Ba/F3-hCXCR3 membranes (2 μg/well) were incubated for 60 min at 30°C with the indicated concentrations of IP-10 (squares) or I-TAC (circles) in the presence of 80 nM α-hCXCR3 (● and ○) or isotype control antibody (○ and □) in binding buffer containing 0.5 nM [35S]GTPγS and 1 μM GDP. Radioligand binding to the membranes was measured by WGA-SPA scintillation. Data, expressed relative to basal binding, represent the mean total binding ± S.E.M. of triplicate determinations from two independent experiments.
increasingly so as the concentration of 125I-I-TAC was increased. This was our first indication that I-TAC and IP-10/MIG bound at discrete sites on the receptor. Cole et al. (1998) also noted an unusual binding profile but suggested that it resulted from differences in the affinity with which I-TAC binds hCXCR3 relative to IP-10 and MIG. Our data suggest that the relative ineffectiveness of IP-10/MIG to displace I-TAC binding is because the I-TAC concentration used in our studies, approximately 60 to 70% of the total binding represents binding to unoccupied receptor. Therefore, the incomplete competition of I-TAC binding by IP-10 and MIG probably reflects their inability to displace radioligand binding from the unoccupied receptor population.

By using 125I-IP-10 in competitions, however, it is possible to characterize the binding of these chemokines to the R^* conformation of hCXCR3. Using this approach we found that the IC$_{50}$ value for I-TAC displacement remained constant as the concentration of the 125I-IP-10 increased 75-fold such that the calculated I-TAC K_i values decreased progressively. In contrast, the IP-10 and MIG binding IC$_{50}$ value predictably increased with increased radioligand such that the calculated K_i value remained unchanged. These data suggest that although IP-10 and MIG are competitive, I-TAC binds hCXCR3 at a nonoverlapping region(s) on the receptor protein. This hypothesis was further tested by assessing the effect of unlabeled I-TAC on the dissociation rate of 125I-IP-10 from R^*. Indeed, we found that incubation with I-TAC caused a 24-fold increase in the dissociation rate of 125I-IP-10. As competitive ligands will not affect ligand K_{off}, these data support the hypothesis that IP-10 and I-TAC bind allotopically to the active confirmation of CXCR3. Presumably, binding of the ligands occurs within distinct regions of the N-terminal and/or extracellular loops of the receptor. At this point, however, we cannot exclude the possibility that the binding of these ligands occurs on separate receptor proteins within a receptor multimer. A number of G protein-coupled receptors are thought to form homo- or heterodimers (Jordan and Devi, 1999; Lee et al., 2000), including the metabolic glutamate receptor (Romano et al., 1996) and the chemokine receptor, CCR5 (Vila-Coro et al., 2000). It is tempting to speculate that hCXCR3 may also form multimers. By whichever mechanism, the evidence supports the hypothesis that IP-10 (and possibly MIG) and I-TAC binding occur within discrete regions in the active receptor confirmation.

Although the binding data make a compelling argument for differential binding to CXCR3, we also undertook biochemical studies using an antibody reported to block IP-10 binding and activation of CXCR3 (Qin et al., 1998). Indeed, α-hCXCR3 antibody completely blocked 125I-IP-10 binding and competitively inhibited IP-10 stimulation of $[^{35}]$GTPyS exchange. Interestingly, the same antibody also inhibited specific 125I-I-TAC binding but only by 50%, the majority of which (~80%) could be displaced with GTPyS. However, when co-incubated with the isotype control antibody (or in the absence of antibody; Fig. 5, top right), binding of 125I-I-TAC was inhibited by approximately 50% with GTPyS. These data suggest that, unlike IP-10, α-CXCR3 preferentially inhibited

Fig. 9. The effect of 125I-IP-10 concentration on competition with I-TAC in Ba/F3-hCXCR3 membranes. Membranes (2 μg/well) were incubated in binding buffer containing 22 pM (○), 175 pM (■) or 1.73 nM (▲) of 125I-IP-10 and the indicated concentrations of I-TAC. Radioligand binding to the membranes was measured by WGA-SPA scintillation. Data represent (left) the mean total bound radioligand ± S.E.M. or (right) as a fraction of the specifically bound radioligand ± S.E.M. of triplicate determinations from a study representative of three independent experiments. Ligand affinities from competition bindings were calculated from binding IC$_{50}$ value using the Cheng-Prusoff equation.

Fig. 10. The effect of I-TAC on the dissociation rate constant for 125I-IP-10 in Ba/F3-hCXCR3 membranes. Membranes (4 μg/point) were incubated in binding buffer containing 200 pM 125I-IP-10 in the absence or presence of 30 nM I-TAC, pelleted, washed, and further incubated at 30°C for various times with 0 (○), 0.01 (■), or 10 nM I-TAC (▲). Membranes were filtered and bound radioligand measured by liquid scintillation. Data represent the mean total binding ± range of duplicate determinations from two independent experiments. Nonlinear regression analysis of the data was performed using Prism 2.0b (GraphPad).

I-TAC binding to uncoupled CXCR3 and that I-TAC binding to R^* was largely undisturbed. This observation was consistent with functional studies in which the α-CXCR3 antibody competitively inhibited IP-10 stimulation of $[^{35}]$GTPγS exchange (see above), whereas I-TAC stimulation was not significantly affected. Taken together, these data also suggest that the point(s) of I-TAC interaction with uncoupled and coupled receptor differ. Furthermore, the point(s) of interaction between I-TAC and R may overlap with the region of IP-10-R^* binding. The biological consequence(s) of the allotopic interaction of chemokines with CXCR3 is not clear. What is apparent, however, is that I-TAC is a more potent agonist than either IP-10 or MIG and effectively displaces IP-10 from the active conformation of hCXCR3. Therefore, in the face of equal concentrations of the three chemokines, I-TAC would be the dominant ligand for hCXCR3 in vivo.

Acknowledgments

We acknowledge Drs. Jay Fine, R. Kyle Palmer, Dan Lundell, and Charles A. Lunn and Roger Barber for critical discussions about the data.

References

Cheng Y and Prusoff WH (1973) Relationship between the inhibition constant (K_i) and the concentration of inhibitor which causes 50 per cent inhibition (I_{50}) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108.

Send reprint requests to: R. William Hipkin, Department of Immunology, Schering-Plough Research Institute, Kenilworth, NJ 07033. E-mail: William.Hipkin@spcorp.com