Enhanced Acetaminophen Hepatotoxicity in Transgenic Mice Overexpressing BCL-2

MICHAEL L. ADAMS, ROBERT H. PIERCE, MARY E. VAIL, COLLIN C. WHITE, ROBERT P. TONGE,†
TERRENCE J. KAVANAGH, NELSON FAUSTO, SIDNEY D. NELSON, and SAM A. BRUSCHI

ABSTRACT
Mitochondria play an important role in the cell death induced by many drugs, including hepatotoxicity from overdose of the popular analgesic, acetaminophen (APAP). To investigate mitochondrial alterations associated with APAP-induced hepatotoxicity, the subcellular distribution of proapoptotic BAX was determined. Based on the antiapoptotic characteristics of BCL-2, we further hypothesized that if a BAX component was evident then BCL-2 overexpression may be hepatoprotective. Mice, either with a human bcl-2 transgene (−/+) or wild-type mice (WT; −/−), were dosed with 500 or 600 mg/kg (i.p.) APAP or a nonhepatotoxic isomer, N-acetyl-m-aminophenol (AMAP). Immunoblot analyses indicated increased mitochondrial BAX-β content very early after APAP or AMAP treatment. This was paralleled by disappearance of BAX-α from the cytosol of APAP treated animals and, to a lesser extent, with AMAP treatment.

An important role for mitochondria is frequently observed during apoptosis or drug-induced cell death. Although the exact contribution of this organelle in APAP-induced liver injury and cell death is unclear, alterations to mitochondrial respiration with APAP treatments have been demonstrated (Burcham and Harman, 1991). Mechanistically, the arylation of free thiols (Qiu et al., 1998a,b) as well as oxidative stress (Adamson and Harman, 1993) have been proposed to play roles in the toxicity of APAP, but the consequences of these changes are still uncertain (Pumford and Halmes, 1997). More recent studies have identified proteins covalently modified by APAP or its less hepatotoxic isomer N-acetyl-m-aminophenol (AMAP), and indicate that an important component of the differential toxicity of these compounds is mediated at the level of the mitochondrial BCL-2 family of proteins may have a functional role in the progression of liver damage after APAP overdose. The BCL-2 protein family consists of both proapoptotic (e.g., BAX, BAK) and antiapoptotic (e.g., BCL-2, BCL-XL) members, which play an important role in the determination of apoptosis in response to many physiological and pathological effectors (Wei et al., 2001). This pro-versus antiapoptotic balance is reflected by the differential response of these transgenic mice to APAP treatment, with the BCL-2 overexpressor mice resistant to the hepatotoxic effects of APAP.

Early pathological evidence of APAP-induced zone 3 necrosis was seen in bcl-2 (−/+) mice, which progressed to massive panlobular necrosis with hemorrhage by 24 h. In contrast, WT mice dosed with APAP showed a more typical, and less severe, centrilobular necrosis. AMAP-treated bcl-2 (−/+) mice displayed only early microvesicular steatosis without progression to extensive necrosis. Decreased complex III activity, evident as early as 6 h after treatment, correlated well with plasma enzyme activities at 24 h (AST $r^2 = 0.89$, ALT $r^2 = 0.87$) thereby confirming a role for mitochondria in APAP-mediated hepatotoxicity. In conclusion, these data suggest for the first time that BAX may be an early determinant of APAP-mediated hepatotoxicity and that BCL-2 overexpression unexpectedly enhances APAP hepatotoxicity.

ABBREVIATIONS: APAP, N-acetyl-p-aminophenol; AMAP, N-acetyl-m-aminophenol; bcl-2, gene/coding sequence for human BCL-2 protein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GSH, reduced glutathione; GSSG, oxidized glutathione; HPLC, high-performance liquid chromatography; Ac-DEVD-amc, acetyl-Asp-Glu-Val-Asp-aminomethylcoumarin; WT, wild-type; NAPQI, N-acetyl-p-benzoquinone imine; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
antiapoptotic balance has been suggested to be controlled through dimerization of BCL-2 family members (Yin et al., 1998; Rosse et al., 1998) and/or by phosphorylation (Haldar et al., 1998). Although there is an extensive literature on the antiapoptotic properties of BCL-2, its mechanism of cytoprotection is still unknown. It has been proposed that the cytoprotective action of BCL-2 may lie in its ability to act as an antioxidant (Hockenbery et al., 1993), to block cytochrome c release (Cai and Jones, 1998), or to inhibit caspase activity after cytochrome c release (Rosse et al., 1998). Further studies are consequently required to address this uncertainty in BCL-2 function, particularly with recent reports indicating that BAX translocation to mitochondria is not prevented in apoptotic neurons despite overexpression of BCL-2 (Putcha et al., 1999).

Based on observations that APAP-induced cell death is partly apoptotic (Ray et al., 1996; Lawson et al., 1999), we examined APAP-mediated hepatotoxicity for alterations to the subcellular distribution of BAX, a BCL-2 family member implicated as a central effector of mitochondrially-mediated apoptotic cell death (Wei et al., 2001). We report here that BAX is redistributed with APAP treatment and, consequently, may play an early role in APAP-mediated hepatotoxicity. In addition, we hypothesized that overexpression of BCL-2 protein should offer protection to liver tissue exposed to doses of APAP that would otherwise cause centrilobular necrosis. Our results indicate a more pronounced liver injury produced by APAP in BCL-2-overexpressing animals with morphological and biochemical evidence of increased damage shifting from centrilobular to throughout the entire lobule (panlobular). These unexpected findings provide a basis for the further elucidation of the role of mitochondria in APAP-induced liver injury and cell death.

Materials and Methods

Animal Care and Dosing Protocols. Human bcl-2 transgenic mice (C57/B6C3H background) were kindly provided by Dr. S. J. Korsmeyer (Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA). Animals were housed in a temperature- and humidity-controlled specific pathogen free facility maintained on a 12-h light/dark cycle with free access to food and water. Animals were genotyped using tail DNA in a polymerase chain reaction assay. Briefly, tail snips were digested in proteinase K overnight at 55°C. DNA samples were fixed in Karnovsky glutaraldehyde-formaldehyde, embedded and stained with uranyl acetate–s fixative (one-half strength glutaraldehyde) and 0.5% osmium tetroxide (one-half strength formic acid). Sections of 50–80 nm thickness were stained with uranyl acetate and lead citrate and embedded in paraplast. Sections of 500 nm thickness were stained with hematoxylin and eosin using standard procedures. Sections were independently evaluated without prior knowledge of treatment regime and digital photomicrographs were taken at 100× or 200× magnification.

Assessment of Hepatotoxicity by Histopathology. Liver tissue sections from animals dosed with APAP, AMAP, or saline were fixed in formalin and embedded in paraffin. Sections of 5–μm thickness were stained with hematoxylin and eosin using standard procedures and digital photomicrographs were taken at 100× or 200× magnification.

Assessment of Cellular Morphology by Electron Microscopy. Liver sections from animals dosed with APAP, AMAP, or saline were fixed in Karnovsky’s fixative (one-half strength glutaraldehyde-formaldehyde), embedded and stained with uranyl acetate and Reynolds’ lead citrate. Specimens were examined using a Philips CM12 electron microscope.

Isolation of Subcellular Fractions and Immunoblotting Procedures. BAX subcellular localization studies were with fractions prepared by standard differential centrifugation procedures from wild-type B6C3F1 mice. BAX immunoblotting was performed using standard methods. Pretreatment (600 mg/kg, i.p.) and immunobilotted using standard procedures. Top two blots, mitochondrial fractions immunobilotted for BAX and cytochrome c content indicated early and sustained BAX–β relocalization to mitochondria in all treatments with transient cytochrome c depletion in APAP treatments. Bottom two blots, cytosolic fractions immunobilotted for BAX and cytochrome c release indicated release of cytochrome c from mitochondria of APAP-treated animals and either an absence of BAX-α immunoreactivity in APAP treatments or a relative depletion of BAX-α in APAP-treated animals. Molecular mass of immunoreactive proteins, in kilodaltons, is indicated on the right of each blot.
Liver Glutathione Content. Hepatic glutathione levels were determined as described previously (Luderer et al., 2001). Briefly, liver tissue was homogenized in 5% (w/v) sulfosalicylic acid and then immediately processed independently for either GSH or GSSG. For GSSG, free GSH was derivatized with 2-vinylpyridine at room temperature and excess 2-vinylpyridine extracted into the organic phase with chloroform. GSSG was then reduced by the addition of 50 μl of 1 M NADPH and 20 units/ml GSH reductase for 1 h at room temperature, followed by derivatization with 20 μl of 12.5 M monobromobimane in the dark for 30 min before HPLC analysis (Shimadzu LC-6A HPLC equipped with an Alltech 15 × 0.5-cm C18 reversed-phase column using a binary gradient [solvent A, 1.0 mM tetrabutylammonium phosphate, pH 3.0; solvent B, methanol] at a flow rate of 1.5 ml/min with starting conditions of 95% A/5% B). Eluted peaks were monitored fluorometrically at λex = 375 nm and λem = 475 nm. Reduced GSH was assessed by further dilution (1:10) with 5% (w/v) sulfosalicylic acid. A 100-μl volume of the diluted sample was then combined with 50 μl 10% (v/v) triethanolamine, mixed, and 100 μl of the mixture was added to 200 μl of buffer (100 mM NaH2PO4, 1 mM EDTA) before derivatization and HPLC as described above for GSSG.

Caspase Activation. Caspase activation was determined as described previously (Franklin et al., 1998). Briefly, 50 μg of liver tissue homogenate were incubated for 60 min at 37°C in 100 μl of caspase assay buffer [50 mM HEPES, pH 7.4, 100 mM sodium chloride, 2 mM EDTA, 20% sucrose (w/v), 0.2% CHAPS (w/v), 10 mM caspase assay buffer [50 mM HEPES, pH 7.4, 100 mM sodium chloride, 2 mM EDTA) before derivatization and HPLC as described above for GSH/GSSG contents using a paired, two-tailed t test analysis and for plasma ALT and AST activities using two-tailed, unpaired t test. Statistical significance was determined for transaminase and caspase activities using two-tailed, unpaired t test. The statistical significance of complex III activities was determined by Mann-Whitney U test. Values for p ≤ 0.05 were considered significant.

Results

Altered Processing and Subcellular Levels of BAX after Drug Treatment. Increased immunoreactivity of pro-apoptotic BAX was found in the mitochondrial fraction after APAP or AMAP treatment of wild-type B6C3F1 mice (Fig. 1, top). Molecular mass calculations performed on the data indicated that in these nontransgenic animals, the β splice variant of BAX represented the active isoform. Similarly, a loss of BAX immunoreactivity from the cytosol, consistent with the BAX-α isofrom, was observed (Fig. 1, bottom). Moreover, at these early time points the extent of BAX-α loss seemed well to correlate with the relative hepatotoxic potential of the two compounds being completely absent in the cytosol of APAP treatments only. Drug-induced increases to BAX-β mitochondrial levels, however, were associated only with release of cytochrome c into the cytosol in animals treated with APAP for 2 h and not observed with AMAP treatment (Fig. 1).

Assessment of Liver Damage. Liver damage was assessed histologically and by determining plasma ALT and AST activities. WT (−/−) and bcl-2 (−/+), transgenic animals induced with zinc demonstrated no alterations to hepatic morphologies (compare Fig. 2, C and D, with Fig. 2A) and no significant differences in plasma ALT and AST levels (data not shown). Consequently, WT (−/−) animals were used as the basis for comparison with treatment groups. At 6 h after injection, all treatment transaminase levels were elevated compared with vehicle-treated control animals (Table 1). The 24-h ALT and AST enzyme levels were significantly raised in APAP-treated bcl-2 (−/+), transgenic mice (55.8- and 18-fold higher, respectively) versus control (vehicle-treated) WT mice. In comparison, APAP-treatment in WT mice resulted in considerably smaller elevations of plasma ALT and AST activities versus control (vehicle-treated) WT mice (22- and 6.6-fold, respectively; Table 1). These 24-h data indicate a previously unreported difference in the biological response to APAP between WT and bcl-2 (−/+), animals with a more severe form of liver damage found in BCL-2 overexpressing mice.

In contrast to APAP treatment, AMAP-treated transgenic animals showed only early elevations in liver enzymes (6 h), which returned to uninjured (control) levels within 24 h, indicating a lack of progression to fulminant hepatotoxicity.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>6 h</th>
<th>24 h</th>
<th>6 h</th>
<th>24 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (−/−)</td>
<td>531 (361)</td>
<td>1,175 (446)</td>
<td>211 (31)</td>
<td>626 (262)</td>
</tr>
<tr>
<td>APAP (−/−)</td>
<td>5,745 (1,904)</td>
<td>10.8</td>
<td>7,787 (2380)</td>
<td>6.6</td>
</tr>
<tr>
<td>APAP (−/+)</td>
<td>3,764 (1,123)</td>
<td>7.1</td>
<td>21,196 (882)</td>
<td>18.0</td>
</tr>
<tr>
<td>AMAP (−/+)</td>
<td>1,010 (178)</td>
<td>1.9</td>
<td>564 (141)</td>
<td>0.5</td>
</tr>
</tbody>
</table>

F.C., Fold Change as compared with control values.

No significant differences were observed between bcl-2 (−/−) and (−/+), in either plasma AST or ALT levels.

p ≤ 0.05 versus control (−/−).

Dosed 6 animals, 3 survived.

p ≤ 0.001 versus control (−/−).

Dosed 7 animals, 3 survived.

p ≤ 0.05 versus APAP (−/−) 24 h.
Fig. 2. Assessment of hepatotoxicity by morphology. Hematoxylin- and eosin-stained liver sections 6 and 24 h after dosing with APAP or AMAP (500 mg/kg, i.p.). All animals were induced with 25 mM ZnSO₄ in the drinking water for 5 to 7 days before dosing. A, control WT (+/-) treated with saline showing only normal hepatic morphology. B, WT (+/-) animals 24 h after dosing with APAP showing distinct areas of centrilobular necrosis. C–D, zinc-induced bcl-2 (+/-+) animals dosed with saline only at either 100× (C) or 200× (D) magnification showing typical hepatic lobule structure and no evidence of damage. E–F, bcl-2 (+/-+) animals 6 h (E) and 24 h (F) after dosing with APAP. At 6 h, microvesicular steatosis (hollow arrowheads, E) is observed, but by 24 h, a massive confluent necrosis is evident (solid arrowheads, F) with considerable hemorrhage. G–H, AMAP-treated animals developed a qualitatively more pronounced microvesicular steatosis at 6 h (hollow arrowheads, G). In contrast to APAP, AMAP-treated bcl-2 (+/-+) animals did not progress to extensive damage (H). All photographs are 100× magnification, except D is 200×. CV, central vein.
with this nonhepatotoxic isomer (Table 1). To exclude the possibility of increased metabolism and bioactivation of APAP in bcl-2 (−/−) animals, we confirmed the extent of protein adduction formation at 6 and 24 h by immunoblot as described previously (Tonge et al., 1998). These data indicate that alterations to APAP-induced hepatotoxicity in BCL-2 overexpressing animals are not a result of increased production of the APAP reactive metabolite, NAPQI, because no difference in the extent of protein modification was detected (data not presented).

Histopathological Analyses. In comparison with vehicle-treated control animals (Fig. 2A), APAP treatment in WT mice resulted in a clear centrilobular (zone 3) necrosis with areas of focal bridging necrosis and hemorrhage (Fig. 2B). In places where the hepatocytes were less obscured by blood (i.e., at the edges of the lesion), microvesicular steatosis was also identified in intact centrilobular hepatocytes (data not shown).

Evidence of zone 3 necrosis and microvesicular steatosis was also observed after 6 h in bcl-2 (−/−) transgenic mice treated with APAP (Fig. 2E). The pronounced microvesicular steatosis found at this point time was suggestive of an early injury marker presumably involving the endoplasmic reticulum and mitochondria (Redlich et al., 1990). In contrast to the more typical centrilobular injury of WT animals (Fig. 2B), APAP-induced damage in bcl-2 (−/−) mice progressed to massive confluent necrosis and hemorrhagic infiltration by 24 h (Fig. 2F). Consequently, the extent of lobular involvement was much greater in BCL-2-overexpressing animals, indicating that BCL-2 overexpression was not hepatoprotective but instead exacerbated APAP-initiated liver damage.

BCL-2 overexpressing animals dosed with AMAP also developed microvesicular steatosis 6 h after treatment but did not progress to extensive necrosis (Fig. 2, G and H). Based on the extent of histopathologic changes, we conclude that AMAP is significantly less hepatotoxic compared with APAP in bcl-2 (−/−) transgenic mice in keeping with previous reports using other mouse strains (Tirmenstein and Nelson, 1991).

BCL-2 overexpression per se had little effect on overall cellular morphology as observed by electron microscopy except for the presence of electron dense cytoplasmic aggregates in all bcl-2 (−/−) mice induced with ZnSO₄ supplemented water (Fig. 3, A, C and D). Treatment of WT mice with APAP resulted in nuclear condensation and margination as well as mitochondrial proliferation (Fig. 3B). Increased lipid deposits were also apparent at 6 h after treatment with APAP consistent with the hepatic steatosis observed by light microscopy (Fig. 3B). Liver tissue morphology of BCL-2-overexpressing mice treated with APAP was distinctive, however, with mitochondrial/endoplasmic reticulum associations commonly observed (Fig. 3C). In addition, ringed mitochondria, which are often associated with hepatotoxicity in the rat (Ghadially, 1997), were observed (Fig. 3C). The functional significance of these structures are unknown but may be related to autophagy of this organelle (Dunn, 1990).

Further Characterizations of BCL-2 Overexpression in Control and APAP-Treated Animals. To further assess the effects of BCL-2 overexpression per se, several biochemical parameters were determined in addition to liver morphology. Early, APAP-specific increases in mitochondrial BAX content (and most likely BAX-α) were reproducibly observed in bcl-2 (−/−) transgenic mice by chemiluminescent immunoblot analysis but required extended, overnight, exposures to be detected (Fig. 4A, top blot). In comparison, no differences in saline-treated mitochondrial BAX content were observed between bcl-2 (−/−) and bcl-2 (−/+) animals (Fig. 4A, top blot). However, APAP-specific BAX mitochondrial translocations in bcl-2 (−/−) mice failed to induce cytochrome c release into the cytosol (Fig. 4A, middle blot) despite apparently excellent subcellular fractionations of mitochondria from the cytosol (cytochrome c versus GAPDH; Fig. 4A, middle and bottom blots).

Overexpression of BCL-2 was observed to marginally but significantly increase hepatic GSSG levels (p < 0.05) without significant alterations to reduced GSH (Fig. 4B). These data suggest that BCL-2 expression alone, without APAP treatment, may result in a basal oxidative stress, which does not manifest as overt injury by either morphological criteria or plasma transaminase elevations (Figs. 2 & 3, Table 1, Discussion). Furthermore, although alterations were not observed in total cellular catalase or copper/zinc superoxide...
dismutase (data not presented), increases in peroxisomal catalase content were found in the heavy membrane (mitochondrial) fraction after APAP treatment in both bcl-2 (-/-) and bcl-2 (+/+) animals (Fig. 4C).

Immunoblot Detection of BCL-2. Expression of human bcl-2 transgene was confirmed by immunoblotting mouse liver tissue homogenates with commercially available antisera directed to the N-terminal region of BCL-2 (N19; Materials and Methods), which recognizes both human and endogenous mouse BCL-2. The data demonstrated clearly an overexpression of the human bcl-2 transgene in transgenic animals, whereas little or no endogenous murine BCL-2 was detected in WT mice (Fig. 5A, top). Immunoblotting also revealed apparent decreases in BCL-2 protein content in APAP- but not AMAP-treated transgenic mice relative to GAPDH loading controls (Fig. 5A, compare top and bottom blots). These slight decreases in BCL-2 protein seemed to correlate with an increased breakdown of mouse hepatic albumin in APAP-treated groups (Fig. 5A, compare top and middle blots) and could not be attributed to general sample proteolysis as the GAPDH loading standards remained unaffected (Fig. 5A, bottom blot).

Caspase Activation. BCL-2 degradation is generally associated with a proapoptotic state and increased activity of the effector caspase, caspase-3. To further examine the possibility of BCL-2 cleavage to its proapoptotic form by caspase-3, the activation of caspase-3-like enzymes in liver tissue homogenates was evaluated. Only modest increases in Ac-DEVD-amc cleavage were observed after either APAP- or AMAP-treatment of bcl-2 (-/-) transgenic or WT mice (Fig. 5B). For example, at 6 h after treatment, AMAP-treated transgenic mice had the highest change in caspase-3-like activity (1.28-fold increase versus control, p ≤ 0.05), whereas at 24 h after treatment, APAP-treated transgenic mice were

Fig. 4. Biochemical characterizations of control, APAP-treated bcl-2 (-/-), and WT (-/-) transgenic animals. A, subcellular BAX content from mitochondrial and cytosolic fractions prepared from bcl-2 (-/-) and bcl-2 (+/+) animals 2 h after treatment with vehicle only (saline/control) or APAP (500 mg/kg, i.p.) as described under Materials and Methods. APAP-specific BAX translocation to the mitochondrial fraction was observed in bcl-2 overexpressing animals (top blot). Cytochrome c and GAPDH remained in the mitochondria and cytosol, respectively, in all treatment groups (lower 2 blots). B, hepatic GSH and GSSG contents of bcl-2 (-/-) and bcl-2 (+/+) mice induced with ZnSO4 in the drinking water for 5 to 7 days and dosed with saline vehicle only as described under Materials and Methods. a, total GSH or GSSG content reported as mean ± S.E. (n = 4); b, significant increase (p < 0.05) in GSSG in bcl-2 (+/+) transgenic animals. C, APAP-specific elevations of hepatic catalase content in “heavy membrane” (mitochondria + peroxisomes) fractions of bcl-2 (-/-) and bcl-2 (+/+) animals isolated 6 h after vehicle or drug treatment.
highest with a 1.47-fold increase in activity versus control ($p < 0.05$). These changes are in agreement with our previous studies, indicating only slight caspase-3-like activation after APAP-treatment in vitro and in vivo (Pierce et al., submitted). Although statistically significant the biological relevance of low-level Ac-DEVD-amc cleavage activity in APAP- and AMAP-treated mice observed in these studies is unclear.

Complex III Activities. To evaluate overall mitochondrial respiratory chain activity, ubiquinol:ferricytochrome c oxidoreductase (complex III) activity was determined in control and treatment groups. At 6 h and before overt liver damage, all three treatment groups demonstrated a statistically significant decrease in complex III activity compared with control levels (Fig. 6). The extent of inhibition correlated well with eventual liver damage as APAP-treated transgenic mice were most adversely affected (with the exception of AMAP-treatment; see next paragraph). The same trend was also seen in APAP-treated transgenic animals at 24 h when liver damage was well advanced but the absolute level of complex III inhibition was less. This may be a consequence of the differential centrifugation procedures used to isolate mitochondria from damaged tissue with the selection of intact, and relatively functional, organelles.

Compared with APAP-treated animals, however, AMAP-treated transgenic complex III activities had returned to control levels after 24 h in agreement with histopathological observations (Fig. 2). This provides further support for a transient complex III loss and subsequent recovery of mitochondrial function by this nonhepatotoxic isomer (Fig. 6). Observed changes in complex III activities at 24 h correlated well with plasma AST ($r^2 = 0.89$) and ALT ($r^2 = 0.87$) levels at the same time point, supporting the conclusion that mitochondrial function, and especially complex III activity, is an indicator of APAP-induced hepatotoxicity.

Discussion

The cell death and liver injury produced by APAP has been studied extensively for more than 20 years. Necrosis has usually been associated with APAP-induced hepatotoxicity; more recently, a role for apoptosis has been proposed but not supported by extensive data (Ray et al., 1996; Lawson et al., 1999). For example, studies have concluded that APAP-associated hepatotoxicity is a mixed necrotic and apoptotic event, with approximately 40% of cells undergoing apoptosis based on oligosomal DNA laddering, whereas 60% undergo necrosis as determined by plasma transaminase elevations (Ray et al., 1996). The data presented here suggest an early role for BAX in APAP-induced liver injury, indicating that necrotic cell death in these circumstances may be initiated at the mitochondrion in a proapoptotic manner. Nonetheless, the precise relationship between APAP-mediated protein modifications, mitochondrial BAX content, and cell death has yet to be fully determined.

Mitochondria play an important role in APAP-mediated cell death. This has been deduced from many studies that indicate preferential mitochondrial glutathione depletion, calcium deregulation (Tirmenstein and Nelson, 1989, 1991), and selective protein modifications within the mitochondrion (Qiu et al., 1998a,b) after APAP—but not AMAP—treatment. Consistent with general mitochondrial dysfunction, both decreased oxygen utilization and ATP levels have been associated with APAP overdosing (Tirmenstein and Nelson, 1990; Burcham and Harman, 1991). In a related observation, it has been proposed previously that ATP levels are critical in determining the path to cell death (i.e., apoptosis versus necrosis) (Leist et al., 1997).

Most studies have used protective agents to elucidate the mechanism by which APAP elicits its toxicity (e.g., antioxidants, calcium chelators). Our studies have focused on the events downstream of APAP-protein adduction and examined the cellular responses to such modifications that ultimately lead to cell death. BAX has been shown to regulate the release of mitochondrial cytochrome c via components of the permeability transition pore (Shimizu et al., 1999). Consequently, APAP- and AMAP-mediated cell death and liver injury may be attributable, at least in part, to this mechanism. Other contributing factors seem to be required, however, because mitochondrial BAX localization does not always correlate with cytochrome c loss into the cytosol (Figs. 1 and 4A; Putcha et al., 1999). In this regard, it should be noted that BAX-dependent mitochondrial cytochrome c release is insufficient to account for the capacity to undergo apoptosis in a trophic factor withdrawal model of sympathetic neuron cell death (Deshmukh and Johnson, 1998). An alternative explanation for the absence of cytochrome c in the cytosol, despite mitochondrial BAX localization, can be found with a recent report, which indicates that the absolute levels
of intracellular BAX may determine the extent and even reversibility of mitochondrial cytochrome c release (Pastorino et al., 1999). Finally, BAX-induced apoptosis requires a functional F$_{0}$F$_{1}$-ATPase proton pump in mammalian cells (Matsuyama et al., 1998), which may explain recent findings indicating that F$_{0}$F$_{1}$-ATPase inhibition protects against APAP-mediated damage (Banerjee et al., 1998).

It has also been recognized that BCL-2 itself, as well as other members, such as BCL-X$_{L}$ (the BCL-2 functional homolog expressed in hepatocytes; Tzun et al., 1997), heterodimerize with BAX (e.g., Yin et al., 1994). BCL-2 dimerization with BAX is thought to mediate its antiapoptotic action (Yin et al., 1994; Rosse et al., 1998). Recognizing the function of BAX translocation as an initiating mitochondrial event in many apoptotic systems (Wei et al., 2001), and the potential for regulatory control by BCL-2, we have attempted to determine whether BCL-2 overexpression may protect against APAP-induced hepatotoxicity as reported for other stimuli (Rosse et al., 1998; Putcha et al., 1999). In this manner, perturbing the balance between BAX and BCL-2 in favor of BCL-2, should be hepatoprotective.

The liver damage we have observed in APAP-treated bcl-2 (-/+) transgenic animals was considerably greater than that found with WT animals, contrary to our expectations (Fig. 2, Table 1). Moreover, we were able to detect APAP-specific localization of BAX to mitochondria in bcl-2 (-/+) animals (Fig. 4A). However, these levels seemed to be considerably lower than those of comparably treated nontransgenic mice as determined by immunoblot sensitivity. The only measurable difference we have observed between control BCL-2–overexpressing and WT animals is an elevation of hepatic oxidized glutathione (GSSG) in bcl-2 (-/+) animals (Fig. 4B).

Although an antioxidant function has been attributed to BCL-2, our findings are in agreement with a previous report proposing a prooxidant capacity for BCL-2 (Steinman, 1995). In addition, it has also been observed that BCL-2 overexpression fails to prevent the action of classical inducers of permeability transition in isolated mouse liver mitochondria (Yang et al., 2000). Moreover, our caspase-3-like activities (Ac-DEVD-amc cleavage) were much lower than that observed with most other apoptosis models (Fig. 5B). This low-level caspase activation was expected based on previous reports of no caspase activation (Lawson et al., 1999) and our observations of low caspase activation in APAP- and AMAP-treated mice (Pierce et al., submitted). These observations are consistent with a proapoptotic initiation of liver damage during APAP overdose and subsequent advance to death via necrosis.

Disruption of oxidative phosphorylation, specifically at complex I and complex II, after direct exposure to NAPQI, the APAP reactive intermediate, has been previously reported (Burcham and Harman, 1991) but an inhibition of complex III in vivo has not been observed. However, in vitro studies have demonstrated decreased complex III activity after NAPQI exposure to inverted membrane particles (Ramsey et al., 1989). From the studies presented here we conclude that alterations to complex III activities can be a sensitive and early marker of the eventual extent of liver damage.

The generation of a proapoptotic BCL-2 cleavage fragment by caspase-3 or other proteolytic cleavage activity may offer an explanation for the enhanced APAP-induced hepatotoxic-