A Novel Class of Peptides with Facilitating Action on Neuronal Nicotinic Receptors of Rat Chromaffin Cells in Vitro: Functional and Molecular Dynamics Studies

SILVIA DI ANGELANTONIO, VALERIA COSTA, PAOLO CARLONI, LUIGI MESSORI, and ANDREA NISTRI

Biophysics (S.D.A., V.C., A.N.) and Condensed Matter Sectors (P.C.) and Istituto Nazionale per la Fisica della Materia Unit (S.D.A., P.C., A.N.), International School for Advanced Studies, Trieste, Italy; and Department of Chemistry, University of Florence, Firenze, Italy (L.M.)

Received June 7, 2001; accepted September 21, 2001 This paper is available online at http://molpharm.aspetjournals.org

ABSTRACT

Peptides related to the N-terminal region of calcitonin gene-related peptide (CGRP) were tested for their ability to modulate neuronal nicotinic acetylcholine receptors (nAChRs) of rat cultured chromaffin cells under whole cell patch-clamp conditions. Although CGRP 1–7 and CGRP 2–7 depressed responses mediated by nAChRs, CGRP 1–6, CGRP 1–5, or CGRP 1–4 rapidly and reversibly potentiated submaximal nicotine currents while sparing maximal currents. CGRP 1–5 was inactive. The threshold concentration for the enhancing effect of CGRP 1–6 was 0.1 μM. CGRP 1–5 or CGRP 1–4 were less effective than CGRP 1–6. Co-application of CGRP 1–6 and of the allosteric potentiator phystostigmine (0.5 μM) gave additive effects on nicotine currents. CGRP 1–6 did not enhance responses generated by muscle-type nicotinic receptors of cultured myoblasts or by γ-aminobutyric acidA receptors expressed by human embryonic kidney cells. Molecular dynamics (MD) simulations suggested that CGRP 1–7 exhibited a relatively rigid ring structure imparted by the disulfide bridge between Cys2 and Cys7. The circular dichroism (CD) spectrum recorded from the same peptide was in agreement with this result. Shorter peptides, missing such a bridge, exhibited propensity for α-helix configuration. Replacing Cys7 with Ala yielded CGRP 1–7A, a fragment with partial α-helix structure and ability to enhance nicotine currents. CD measurements on CGRP 1–6 were compatible with these MD structural findings. Short terminal fragments of CGRP represent a novel class of substances with selective, rapid, and reversible potentiation of nAChRs.

Neuronal nicotinic acetylcholine receptors (nAChRs) belong to a family of ACh-gated cationic channels consisting of different subtypes with distinct anatomical distribution in the vertebrate central and peripheral nervous systems (for reviews, see Role and Berg, 1996; Gotti et al., 1997; Lindstrom, 1997; Paterson and Nordberg, 2000). Current interest in nAChRs has been prompted by their apparent involvement in a large number of neuropsychiatric disorders such as Alzheimer’s disease, Parkinson’s disease, epilepsy, and schizophrenia (for a recent review, see Paterson and Nordberg, 2000). Despite their different causes and pathogenesis, these diseases share a common neurochemical deficit: loss or dysfunction of nAChRs. Hence, the identification of chemicals that can selectively potentiate responses mediated by nAChRs is clearly a major goal to develop potential therapeutic drugs. So far, two main classes of compounds have been used for this purpose: cholinesterase inhibitors, which prevent breakdown of endogenous ACh and thus lead to a build up of this transmitter at the receptor level (Maelicke and Albuquerque, 2000), and allosterically potentiating ligands (APLs) of nAChRs, which enhance ACh interaction with its receptors (Maelicke et al., 1997; Krause et al., 1998). Although these substances have been shown to induce clinical benefit (Maltby et al., 1994; Nordberg et al., 1998; Sjoberg et al., 1998), either approach has some pitfalls. First, these compounds are not entirely selective for nAChRs. Second, their use may lead to receptor desensitization caused by persistent activation of nAChRs. Third, some agents, such as APLs, possess a relatively narrow range of pharmacological effectiveness and can actually block nAChRs if used at doses not much higher than the potentiating ones.

Using nAChRs of rat chromaffin cells as a model system, we have reported that the 1 to 7 N-terminal fragment of

ABBREVIATIONS: nAChR, neuronal nicotinic acetylcholine receptor; ACh, acetylcholine; APL, allosterically potentiating ligand; CGRP 1–x, 1 to x N-terminal fragment of calcitonin gene-related peptide, where x is 3, 4, 5, 6, or 7; HEK, human embryonic kidney; GABA, γ-aminobutyric acid; BAPTA, 1,2-bis(2-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid; CGRP 1–7A, N-terminal fragment of calcitonin gene-related peptide missing Ser7; CD, circular dichroism; TFE, trifluorethanol; Rg, radius of gyration; MD, molecular dynamics.
calcitonin gene-related peptide (CGRP1–7) behaves as a potent antagonist of nAChRs (Giniatullin et al., 1999). The composition of rat chromaffin cell nAChRs is not clear, although in bovine chromaffin cells, α3(α5)δ4 subunits are the main constituents (Campos-Caro et al., 1997). It is noteworthy that rat chromaffin cells do not possess α7 receptors as indicated by their lack of α-bungarotoxin-sensitive binding sites and absence of α-bungarotoxin antagonism of fast nAChR-mediated responses (Khiroug et al., 1998). Because in the adrenal medulla CGRP is present in nerve fibers (Costa et al., 1994; Heym et al., 1995) and in the chromaffin cells themselves (Kuramoto et al., 1997), modulation of nAChRs by the native peptide (and perhaps even by its fragments in case of any significant cleavage by peptidases) might be of physiological significance.

In the attempt to identify the minimal amino acid sequence retaining this antagonist action, we decided to investigate the effects of shorter fragments of this peptide, namely, CGRP1–6, CGRP1–5, CGRP1–4, and CGRP1–3. To our surprise, some of these compounds exhibited a potentiating action on nAChRs. The present report thus comprises a functional characterization of this unexpected phenomenon and molecular dynamics studies of these peptides to identify some structural requirements that may impart either potentiating or antagonist properties to these molecules. The MD calculations were supported by circular dichroism measurements. Our structural investigation led to the synthesis of a substituted peptide endowed with receptor-potentiating effects.

Experimental Procedures

Cell Preparation for Electrophysiology

Adrenal medulla were removed from 25- to 35-day-old rats (anesthetized with slowly rising levels of CO2) and rinsed in a medium, pH 7.2, containing 137 mM NaCl, 3 mM KCl, 0.7 mM Na2HPO4, 25 mM HEPES, 10 mM glucose, and 350 units/ml penicillin and streptomycin. Chromaffin cells were dissociated by treating adrenal tissue fragments and cultured at 37°C for 1 to 2 days under a 5% CO2-air atmosphere as described previously (Khiroug et al., 1998; Di Angelantonio et al., 2000). I28 cells in culture were prepared as described by Irintchev et al. (1997). HEK 293 cells were transfected with α1β2γ2 GABA_A receptors as previously reported (Granja et al., 1998).

Patch-Clamp Recording

Cell-containing culture dishes (used at 0–3 days from plating) were mounted on the stage of an inverted Nikon Diaphot microscope and superfused (5–10 ml/min) with control saline solution containing 135 mM NaCl, 3.5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 15 mM glucose, and 10 mM HEPES (pH adjusted to 7.4 with NaOH; osmolarity, 285 mOsm). Patch pipettes pulled from thin glass had 5- to 6-MΩ resistance when filled with 120 mM CsCl, 20 mM HEPES, 1 mM MgCl2, 3 mM Mg-ATP, and 10 mM BAPTA (240 mOsm). The pH of the pipette solution was always adjusted to 7.2 with CsOH. Unless otherwise indicated, cells were voltage clamped at −70 mV. After obtaining whole cell configuration, a 10-min period of stabilization normally elapsed before membrane currents were recorded, filtered at 1 kHz, and acquired on the hard disk of a PC by means of pCLAMP 6.04 software (Axon Instruments, Foster City, CA).

Drugs and Application Method

A series of peptides related to the N-terminal sequence of CGRP were custom synthesized by Neosystem (Strasbourg, France). These are listed in Fig. 1 and include CGRP1–7 and its derivatives CGRP1–7A (in which Cys7 was replaced by Ala) and CGRP1–7 (with missing Ser1), CGRP1–6, CGRP1–5, CGRP1–4, and CGRP1–3. nAChRs of chromaffin cells are particularly prone to desensitization, which develops with a fast time constant of 110 ± 20 ms (Khiroug et al., 1998), thus ruling out attainment of steady-state responses with applications of nicotine lasting even 1 s only. This property makes it very difficult to use standard methods for agonist application to construct dose-response curves under equilibrium conditions and to express meaningful quantitative values in terms of drug receptor occupancy on intact cells. To circumvent this problem, agonists were usually delivered by pressure application (10–20 psi) from glass micropipettes positioned about 15 to 25 μm away from the recorded cell (Giniatullin et al., 2000). We have recently reported, with experimental and theoretical data, an approach to quantify the pressure application method in terms of actual drug concentration applied to single cells (Di Angelantonio and Nistri, 2001). For this purpose, we compared, on the same cells, the inward currents generated by applying nicotine via a pressure pipette or via a PC-controlled rapid solution exchanger (BioLogic, Strasbourg, France) consisting of a

Fig. 1. Linear amino acid structure of the peptides CGRP1–7 (note disulfide bond), CGRP1–7A, CGRP2–7, CGRP1–6, CGRP1–5, CGRP1–4, and CGRP1–3.
multibarrelled array of glass tubes (1 mm o.d.) rapidly rotating to generate a stream of solution to the recorded cell. With the rapid solution system, the shortest application time was 1 s, to avoid significant dilution of the agonist concentration inside the glass tubes by their capillarity backfilling from the bath (this problem does not apply to pressure pipettes with narrow orifices of about 3 μm in diameter). We then compared equiamplitude peak responses induced with the two different application methods whenever they were reproducible and without fading (indicative of desensitization). We observed that with the typical puffer pipette concentration (100 μM nicotine), the largest agonist concentration reaching the cell membrane was 92 μM and was attained after 117 ms. For shorter nicotine pulses (usually in the 5–100-ms range), a standard pulse lasting, for example, 20 ms would yield 42 μM concentration at membrane level 30 ms later (corresponding to the peak of nicotine current). Intermediate pulses generated an average 2.3-fold agonist dilution, a value close to the nearly 3-fold dilution calculated with a different method based on changes in junction potentials in the absence of cells (Giniatullin et al., 1996). These results indicate that, to obtain reliable responses due to nAChR activity, the pressure application method was a simple approach yielding responses in which receptor desensitization was minimized.

Parallel tests were also performed to validate the effects of peptides on responses to puffer-applied agonists by repeating experiments with the rapid superfusion system. In this case nicotine and the peptide fragment were rapidly coapplied via glass barrels and gave results analogous to those found with the puffer application of nicotine (see Results; Fig. 2). Note that the limited number of barrels that the rotating head assembly could carry restricted the number of drug concentrations in combination with the agonist to be tested on each cell. This method was therefore unsuitable to explore, in quantitative manner, a broad concentration range of test compounds. Conversely, fast superfusion of antagonists or modulators (which per se did not have any agonist activity) was a convenient approach to apply such substances (within a small range of known concentrations), whereas agonists were applied via puffer pipettes.

Electrophysiological Data Analysis

Data are presented as mean ± S.E.M. (n is number of cells) with statistical significance assessed with Wilcoxon test (for nonparametric data) or paired t test (for normally distributed data). A value of P ≤ 0.05 was accepted as indicative of a statistically significant difference. Dose-response curves were fitted with a standard logistic equation (Sokolova et al., 2001); zero for the fit was set when there was no agonist or current.

Circular Dichroism Spectroscopy

CD spectra were obtained at 20°C under a constant flow of nitrogen by a Jasco J715 spectropolarimeter, which was calibrated with an aqueous solution of ammonium 1-camphorsulfate. Experimental measurements were carried out in aqueous or aqueous/trifluoroethanol (TFE) solutions by using a 1-mm path-length cuvette. CD spectra of the free peptides were recorded in the UV region (190–250 nm). Peptide concentration was around 0.3 mg/ml. Spectra represent the average of four scans. CD intensities are expressed as mean residue ellipticities (degree cm² mol⁻¹) calculated by θ = 100lcn, where θ is the ellipticity observed (degrees), l is the pathlength of the cuvette (cm), c is the peptide concentration (M), and n is the number of amino acids in the peptide.

Computational Methods

Structural Models. We examined four CGRP terminal fragments (Fig. 1): 1) CGRP1–6, in which Cys5 and Cys6 form a disulfide bridge; 2) CGRP1–7, which is the same as CGRP1–6 except that Ala replaced Cys7; 3) CGRP1–4, and 4) CGRP1–3. The initial structural model of CGRP1–7 was built through a systematic search of the Protein Data Bank for a protein containing a ring of six amino acids closed up by a disulfide bridge. We selected the X-ray structure of progastricisin (Moore et al., 1995; entry 1HTR, www.rcsb.org/pdb/index.html, because its residues Cysα–Glnα–Serγ–Glnα–Alaγ–Cysβ form a six-membered disulfide ring. These residues were found to display a very good Ramachandran plot (Ramachandran and Saikishar, 1968), indicative of a highly plausible spatial conformation of this protein. To build the CGRP1–7 model, we replaced Gln46.
Sect, Glu, and Ala with Asn, Thr, Ala, and Thr, respectively. A Ser residue was attached to Cys\(\beta\)
NH\(^+\) and COO\(^-\) terminal groups were added. The initial models of CGRP\(_{1-7}\), CGRP\(_{1-8}\), or CGRP\(_{1-5}\) were constructed as follows. A linear structure (i.e., backbone dihedral angles \(\Phi = \Psi = 180^\circ\)) was first constructed. A simulated annealing procedure similar to that of Daura et al. (1998) was then performed in three steps: 1) for each peptide molecular dynamics simulations at 1000 K temperature were first carried out for 10 ps; 2) eight structurally different conformers, selected from this simulation, were cooled from 600\(^\circ\)K to 0.5\(^\circ\)K in 1.5 ns; and 3) the lowest-energy models were finally used for the molecular dynamics simulation in water.

The computational setup was the same as the one described in the section below, except that no periodic boundary conditions and no cutoff for electrostatic interactions were used. The four CGRP terminal fragments simulated in a water cubic box of about 30 Å\(^3\) were further studied as indicated below.

Computational Setup. The AMBER (Cornell et al., 1995; http://www.amber.ucsf.edu/amber/) or TIP3P (Jorgensen et al., 1983) force fields were used to derive the interatomic potential energy functions of peptides or water, respectively. The dielectric constant was set to 1. The time-step integration of the Newton equation of motion was set to 1 fs. Temperature (298\(^\circ\)K) and pressure (1 bar) were kept constant by coupling the peptide/water systems to a Berendsen bath algorithm (Berendsen et al., 1984) with 1-ps relaxation time. van der Waals interactions were truncated up to a spherical, residue-based cut-off of 12 Å. Periodic boundary conditions (Allen and Tildesley, 1987) were imposed to avoid problems due to the small dimensions of the system. Electrostatic interactions were calculated using the Ewald particle mesh method (Essmann et al., 1995).

Molecular Dynamics Calculations. The simulation procedure was carried out as follows. First, the solvent underwent energy minimization and was equilibrated (with a molecular dynamics process) with the peptide for 30 ps at constant volume. Subsequently, the entire system was heated from 0\(^\circ\) to 298\(^\circ\)K for 0.12 ns at 1 bar pressure. Finally, 10-ps molecular dynamics simulations at 298\(^\circ\)K temperature and 1 bar pressure were performed. All calculations were carried out with the SANDER module of the AMBER5 suite of programs running on a four-processor SGI Origin 200 parallel machine (SGI, Mountain View, CA). Ten-nanosecond simulation for each peptide required approximately 20 days of calculations.

Calculated Properties. Data for the last 9 ns of molecular dynamics simulations were collected for analysis. The radius of gyration (\(G_r\)) of the peptide backbone atoms was calculated, taking as a reference the atom position at 1 ns. \(G_r\) was calculated as

\[
\frac{1}{nr} \sum_{i=1}^{N} (r_i - r_0)^2
\]

where \(nr\) is the number of residues, \(N\) is the number of steps (about 2000) for which averages were calculated, \(r_i\) is the position vector of all backbone atoms at step \(i\), and \(r_0\) is the position vector of the mass center.

Ramachandran plots were calculated using the Procheck program (Laskowski et al., 1993; http://www.biochem.ucl.ac.uk/~roman/procheck/procheck.html). \(\alpha\)-Helix conformations were assigned based on the \(\Phi\) and \(\psi\) backbone torsion angles.

Results

Potentiation of Nicotine-Evoked Responses by CGRP\(_{1-6}\)

Figure 2A shows inward currents generated by nicotine (applied via brief pressure pulses from a 0.1 mM pipette concentration to minimize rapid desensitization; Khiroug et al., 1997) from a chromaffin cell in culture. When a 20-ms pulse was delivered in the presence of CGRP\(_{1-6}\) (1 \(\mu\)M; applied by rapid superfusion), the inward current was unexpectedly potentiated (53%; Fig. 2A, top). This phenomenon was not associated with any direct action of CGRP\(_{1-6}\) on resting conductance or baseline current, indicating that this substance did not have agonist activity on nAChRs or non-specific actions on membrane leak channels. On the same cell, CGRP\(_{1-6}\) (1 \(\mu\)M) was ineffective on 200-ms pulse nicotine currents (Fig. 2A, bottom), which were large enough to reach the responsiveness plateau (Giniatullin et al., 1999).

Figure 2B shows effects observed when nicotine or nicotine plus CGRP\(_{1-6}\) were both applied via the fast superfusion system. Again, the inward current induced by 20 \(\mu\)M nicotine was potentiated by coapplied CGRP\(_{1-6}\) (1 \(\mu\)M; 39% potentiation), whereas the maximal current elicited by 200 \(\mu\)M nicotine was unaffected by the peptide. On average, CGRP\(_{1-6}\) enhanced currents to 20 \(\mu\)M nicotine by 33 ± 8% (\(n = 5; P < 0.05\)). Previous experiments have indicated that semilog plots of pressure pulse/current responses were linear within the 10- to 50-ms application range and corresponded very closely to those produced by superfusing 20 to 100 \(\mu\)M nicotine (Di Angelandontio and Nistri, 2001), suggesting the upper and lower concentration limits reached with puff application.

The CGRP\(_{1-6}\) effect was manifested already with the first nicotine response elicited just 5 s after starting peptide superfusion, and was reversible after 1 min of washout (Fig. 2C; \(n = 11\)). The rapid action of CGRP\(_{1-6}\) was also confirmed by the fact that, when coapplied with nicotine, it immediately increased nicotine currents as long as the responses were submaximal (Fig. 2B).

Further tests were performed to characterize the action of CGRP\(_{1-6}\) (1 \(\mu\)M). Figure 2D shows that the plot relating inward current amplitude to the amount of nicotine (expressed as millisecond application; Giniatullin et al., 1999) with plateau value at 100-ms pulse (\(n = 5–12\) cells). When comparable applications were repeated in the presence of 1 \(\mu\)M CGRP\(_{1-6}\) (15-s preapplication), inward currents induced by 5- to 30-ms nicotine pulses were significantly (\(P < 0.05\)) potentiated, whereas responses induced by 50- to 200-ms pulses were unaffected. Thus, the plot was shifted to the left in an apparently parallel manner while retaining analogous maximum response. CGRP\(_{1-6}\) (1 \(\mu\)M) thus enhanced nicotine responses at approximately mid-point of the curve (20 ms) by 31 ± 7% (\(n = 30\)). These data, therefore, demonstrate that the potentiating action of CGRP\(_{1-6}\) was dependent on the amount of agonist delivered to the cell.

Figure 3A shows the concentration dependence (0.05–100 \(\mu\)M range) of CGRP\(_{1-6}\) effects on nAChRs activated by a fixed dose of nicotine (20 ms; 0.1 mM): potentiation had threshold at 0.1 \(\mu\)M (5 ± 7%; \(n = 7; P < 0.05\)) and reached an apparent maximum at 50 \(\mu\)M (56 ± 6%; \(n = 5; P < 0.05\)). Note that, as indicated by Fig. 2D, this “dose” of puffer-applied nicotine induced membrane current amplitudes approximately one-half of the apparent maximum (Di Angelandontio and Nistri, 2001). The CGRP\(_{1-6}\) potentiating action was also present when cytisine rather than nicotine was the test agonist (20 ms; 0.1 mM; Fig. 3B), as also indicated by the superimposed plots for the potentiation by CGRP\(_{1-6}\) toward nicotine- or cytisine-evoked currents (Fig. 3B, inset). The slope values for the nicotine or cytisine plots of Fig. 3, A and B, were 1.1 ± 0.02 and 1.02 ± 0.02, respectively. These results thus demonstrate that nAChR facilitation by CGRP\(_{1-6}\) was agonist-
The average potentiation due to CGRP_{1-6} was 31 ± 7% (n = 30) and the mean depression due to CGRP_{1-7} was 42 ± 11% (n = 17). Coapplication of 0.5 μM CGRP_{1-6} plus 1 μM CGRP_{1-7} depressed (by 34 ± 3%; n = 5) the 20-ms nicotine-induced submaximal currents, whereas coapplication of the same peptides at equimolar concentration (1 μM) left nicotine responses unchanged (99 ± 4%; n = 9). When 1 μM CGRP_{1-6} plus 0.5 μM CGRP_{1-7} was applied, the nicotine currents were significantly enhanced by 16 ± 6% (n = 5). These results suggest that these peptide fragments were apparently equipotent in exerting their modulatory action, although of diametrically opposite direction.

Effect of CGRP_{1-5}, CGRP_{1-4}, or CGRP_{1-3} Fragments

How conserved is the enhancing action of CGRP_{1-6}? This question was addressed by studying the effects of the shorter fragments CGRP_{1-5}, CGRP_{1-4}, or CGRP_{1-3}. Figure 4A shows that CGRP_{1-5} significantly potentiated 20-ms nicotine-induced currents in a concentration-dependent manner. However, this facilitation was less pronounced than the one exerted by CGRP_{1-6}. In fact, although CGRP_{1-6} (1 μM) potentiated by 31 ± 7% (n = 30), CGRP_{1-5} (1 μM) potentiated by 20 ± 4% only (n = 8). To obtain a comparable degree of potentiation (26 ± 4%) it was necessary to use a 10-fold higher concentration of CGRP_{1-5} (10 μM; n = 5). Further increases in CGRP_{1-5} concentrations (50–100 μM) did not augment the extent of potentiation (Fig. 4A).

The fragment CGRP_{1-4} (1 μM) also displayed a slight, yet significant, potentiation effect (8 ± 1%; n = 14), whereas at 10 μM concentration, it significantly potentiated by 18 ± 3% (n = 6). CGRP_{1-3} (1 or 10 μM) did not alter nicotine-induced currents (0 ± 1%; n = 7). These data are summarized in Fig. 4B, in which the action of the various CGRP fragments is compared with the one of the native peptide (all compounds tested at 1 μM concentration).

Fig. 3. Analysis of the mechanism of action of CGRP_{1-6}. A, nicotine current potentiation (0.1 mM; 20 ms) at different CGRP_{1-6} concentrations; the threshold for potentiation is 0.1 μM; the same behavior is shown in B with cytisine as test agonist (0.1 mM; 20 ms). Abscissa: CGRP_{1-6} concentrations (log units); ordinate: current ratio in CGRP_{1-6} alone or in mixture with CGRP (left ordinate) or in control (right ordinate). Inset, superimposed plots for nicotine and cytisine responses, indicating similar shape. C, histograms demonstrating the equi-amplitude increase in 20-ms nicotine-evoked currents (expressed as percentage of control) at the three holding membrane potentials indicated below columns. Each column is significantly different from control (*, P < 0.05; n = 7). D, comparison of the action of CGRP_{1-4} or CGRP_{1-7} or a mixture of the two on 20-ms nicotine currents. Note that the potentiation due to CGRP_{1-4} is canceled by the competitive antagonism exerted by CGRP_{1-7} when the two peptides are applied together. All responses are expressed as ratio of nicotine-evoked currents in the presence of the peptides with respect to control (n = 61).
Comparison between CGRP₁₋₆ and a Typical Allosterically Potentiating Ligand

The unusual action by CGRP₁₋₆ on nAChRs raised the possibility that this substance might belong to the category of APLs. These drugs bind to a discrete site of nAChRs from which they allosterically up- or down-regulate the action of nicotinic agonists (Maelicke et al., 1997; Changeux and Edelstein, 1998; Maelicke and Albuquerque, 2000). APLs often produce a biphasic action such that, in low doses, they facilitate agonist responses, whereas in higher doses they depress them. One example of an APL is physostigmine that at the concentration of 0.5 μM maximally enhances nAChRs via allosteric modulation, whereas at higher concentrations, it actually inhibits them (Maelicke et al., 1997). In the present investigation, we first tested whether this action of physostigmine was also present on native nAChRs of chromaffin cells. To this end, nicotine (20-ms pulse) was applied in the presence of either a small (0.5 μM) or a high (5 μM) concentration of physostigmine. Figure 5A shows sample traces demonstrating that 0.5 μM physostigmine potentiated nicotine-induced responses (on average 28 ± 5%; n = 14), whereas 5 μM depressed them (on average 48 ± 2%; n = 4). Figure 5B shows the nicotine dose-response curve in control solution or in the presence of 0.5 μM physostigmine (n = 4–14 cells). Physostigmine shifted the plot to the left, which attained a larger (85 ± 5%) maximal response (P < 0.01). These data confirm that physostigmine acted on nAChRs of chromaffin cells with a pharmacological profile typical of an APL and quite distinct from that of CGRP₁₋₆ (Fig. 2). These observations led us to study whether CGRP₁₋₆ and physostigmine had distinct action on nAChRs. For this purpose, on a sample of five cells, standard responses induced by 20-ms nicotine were first potentiated, by the same degree, by CGRP₁₋₆ (1 μM) or physostigmine (0.5 μM) applied separately (21 ± 4% or 20 ± 6% potentiation, respectively; Fig. 5C). We then coadministered these two substances while testing currents produced by 20-ms nicotine puffs. In the latter case, the potentiation was 37 ± 6%, which is a value near the sum of the two individual effects (Fig. 5C).

Conversely, when the physostigmine concentration was...
higher (5 μM), nicotine-induced currents became 23 ± 1% of the control amplitude (Fig. 5D). In this case, adding CGRP1-6 (1 μM) could partly counteract the inhibition caused by physostigmine because the nicotine-evoked responses were 79 ± 1% of the control amplitude (Fig. 5D; n = 4). These results indicate that the action of CGRP1-6 on nAChRs took place whether these were enhanced or inhibited by physostigmine.

Effect of CGRP1-7A or CGRP2-7 Fragments

Why did deletion of a single amino acid from CGRP1-7 convert a depressant action into a potentiating one? Inspection of the primary amino acid sequences in Fig. 1 shows that absence of Cys from position 7 removed the disulfide bridge linking two cysteines in position 2 and 7. Assuming that removal of the disulfide bridge by deleting Cys7 from CGRP1-7 but lacking a cyclic structure should yield an AChR-potentiating peptide. This hypothesis was tested by replacing Cys7 with Ala, thus yielding a new fragment termed CGRP1-7A (Fig. 1). Figure 6A shows that CGRP1-7A potentiated (+18%) the nicotine (20 ms)-evoked current, and that this effect was reversible after 1 min of washout. The time course of the CGRP1-7A action on nicotine-induced responses is depicted in Fig. 6B: this potentiation was rapid in onset, reached apparent steady-state conditions (maximum potentiation = 17 ± 4%; n = 8), and was readily reversible during washout. Figure 6C shows the nicotine dose-response curve in control solution and in the presence of 1 μM CGRP1-7A (15-s preapplication; n = 4–8 cells). In the presence of this peptide inward currents induced by 5 to 50-ms nicotine pulses were significantly (P < 0.05) potentiated, whereas responses induced by 100- to 200-ms pulses were unaffected. Thus, the plot was shifted to the left in an apparently parallel manner but retained analogous maximum response.

Further insight into the structure-activity relation of these peptides was sought by deleting Ser1 from CGRP1-7, thus converting this peptide into a shorter fragment, which nevertheless retained the disulfide bridge (Fig. 1). Figure 6D shows that 1 μM CGRP2-7 reversibly depressed (43%) the current response to 20-ms nicotine. The plot of Fig. 6E indicates that the depressant action by CGRP2-7 toward 20-ms nicotine currents was concentration-dependent (within the 0.1–10 μM range). Hence, the CGRP2-7 retained (albeit weakly) the depressant action of the longer compound CGRP1-7 because at 1 μM concentration, CGRP1-7 and CGRP2-7 inhibited nicotine currents by 45 ± 5% (Fig. 4B) and 32 ± 8% (n = 6; Fig. 6E), respectively.

Structural Determinants of Peptides in Solution

A major goal of our work was to relate the structural properties of the peptides in solution to their modulatory properties on nAChRs. To this end, we have performed a combination of circular dichroism measurements, which can provide insights into the relative preponderance of various secondary structures for each peptide in solution (Impellizzeri et al., 1998, and references therein), and molecular dynamics, which can provide atomic structural models.

CD Spectra of CGRP1-7 and CGRP1-6

The CD spectra of CGRP1-7 and CGRP1-6 in aqueous salt solution (containing 25 mM phosphate buffer and 4 mM NaCl at pH 7.4) were significantly different, suggesting underlying dissimilarities in their structure (Fig. 7). Indeed, the spectrum of CGRP1-6 (Fig. 7a) showing a negative band peak at 198 nm is diagnostic of an essentially “disordered” conformation; its CD intensity at 220 nm was very low. In contrast, a negative band at 204 nm characterized the spectrum of CGRP1-7 (Fig. 7c) with a hump around 220 nm; the band was indicative of some structural organization. Further data were obtained by recording the CD spectra of the two peptides in 50% TFE/water solution. The spectrum of CGRP1-6 was largely af-

Fig. 6. Effect of the CGRP1-7A fragment on nicotine-evoked responses. A, examples of current induced by 20-ms nicotine that is potentiated by 1 μM CGRP1-7A (preapplied for 15 s). This effect is reversible after peptide washout (right). B, time course of CGRP1-7A potentiation of 20-ms nicotine-induced responses. Note rapid onset of the potentiation that reaches 18% and is rapidly washed out. C, nicotine dose-response curve (doses expressed as pulse duration, ms) in control solution and in the presence of 1 μM CGRP1-7A (n = 4–8 cells). The plot is shifted to the left in an apparently parallel manner without significantly changing maximal response. Asterisks indicate P < 0.05. D, example of reversible depression by CGRP2-7 (1 μM) of inward currents induced by 20-ms nicotine. E, log plot of CGRP2-7 concentration versus response ratio of currents observed in CGRP2-7 solution over control. Data are from six cells.
fected (Fig. 7b) as the negative band was shifted to 202 nm and development of a negative hump around 220 nm appeared. Conversely, the conformation of CGRP1–7 in solution was only slightly changed by switching to the TFE/water medium (Fig. 7d).

The CD spectrum of an α-helix is characterized by two minima at 222 and 206 nm, and a maximum at 193 nm in solution (Impellizzeri et al., 1998). Thus, any increase in ellipticity absolute values observed at 222 nm when passing in phosphate buffer (a), record of CGRP1–7A in phosphate buffer (b), record of CGRP1–7 in phosphate buffer (c), and record of CGRP1–7 in phosphate buffer/TFE (50/50%) (d). The resulting backbone geometry was rather flexible (R_G = 0.59 ± 0.04 Å).

In conclusion, simulation data highlighted that the AChR-depressant CGRP1–7 possessed a ring structure stabilized by a hydrogen bond, whereas the AChR-enhancing peptides preferentially displayed a flexible shape, in which α-helix structural elements could be formed and broken during the dynamics.

Comparison of Peptide Structures. The ring structure of CGRP1–7 set it apart from the other peptides tested in the present study. Instead, CGRP1–6, 1–5, or 1–7A conserved the common structural motif of the α-helix disclosed by molecular dynamics simulations. However, all these structures turned out to be highly flexible, because most of the H-bond interactions stabilizing the α-helical structure were formed and broken several times during the dynamics.

The spatial alignment of CGRP1–6 and CGRP1–5 (Fig. 9A) suggests that the CGRP1–6 structure (blue) was rather similar to that of CGRP1–5 (yellow), with only a significant difference in peptide length. By fitting CGRP1–5 alongside with the corresponding five amino acids of CGRP1–6, it became clear that CGRP1–5 had a more extended conformation along the α-helical axis (Fig. 9A), possibly because of the lower number of hydrogen bonds between its backbone atoms. CGRP1–6 (blue) and CGRP1–7A (magenta) were also rather similar (Fig. 9B): their structures differed only for the conformation assumed by their N-terminal residues, which in the case of CGRP1–4 was constrained to the backbone by the two hydrogen bonds.

Discussion

The principal finding of the present study is the novel, relatively potent modulation by CGRP1–6 (and its derivatives) of neuronal nACHRs on rat chromaffin cells: this phenomenon was manifested as a rapid onset and agonist-surmountable potentiation of inward currents evoked by pulse applications of nicotine. Such a potentiation of nicotinic receptors suggests that CGRP1–6 and its derivatives are prototypes of a new class of molecules capable of enhancing responses mediated by this class of nACHRs. Further work should be directed to analyze whether the potentiating activity of CGRP1–6 (and related compounds) on chromaffin cell nACHRs will be present also on other types of nACHRs commonly found on mammalian central neurons.

Characteristics of Action of CGRP1–6 on Nicotinic-Mediated Responses. When CGRP1–6 was superfused onto a chromaffin cell, it evoked no direct change in baseline current or input conductance but it strongly potentiated in-
ward currents induced by nicotine. Potentiation was not use-
dependent and was present even with the first response to
nicotine in CGRP$_{1-6}$ solution, suggesting that this peptide
fragment could have bound nAChRs in the absence of their
agonist. The action of CGRP$_{1-6}$ was voltage- and agonist-
independent, because responses to cytisine or nicotine were
equally increased at various membrane potentials. Note that
the slope value for the facilitating action by CGRP$_{1-6}$ was
very near 1, suggesting that, within the sensitivity limits of
the present technique, there was no apparent heterogeneity
of nAChR potentiation or uneven distribution of the peptide.
When CGRP$_{1-6}$ was tested on I28 cells, it did not modify
responses mediated by muscle nicotinic receptors, indicating
specificity of action toward nAChRs present on chromaffin
cells. Future work will be necessary to explore the sensitivity
of other classes of nAChRs present in the central nervous
system to this peptide. It is clear, however, that CGRP$_{1-6}$ was
not a nonspecific modulator of ionotropic neuronal receptors
because GABA$_{A}$ receptors were insensitive to it. Therefore,
the observed enhancing effects of CGRP fragments were not
cauised by their interaction with voltage-gated Ca$^{2+}$ or Na$^{+}$
because cells were routinely voltage clamped at -70 mV, a
value very far from the voltage threshold for activating those
conductances.

**Discrete Changes in Amino Acid Composition of N-
Terminal Sequence of CGRP Induced Different Effects
on nAChRs.** It was interesting to observe that equimolar
concentrations of CGRP$_{1-6}$ and CGRP$_{1-7}$ (Giniatullin et al.,
1999), coapplied to the same cell, left nicotine-induced sub-
maximal currents unchanged. This observation suggests that
a discrete change in the amino acid sequence, consisting of a
single amino acid deletion, could transform an antagonist
into a potentiating substance. It seemed thus useful to test
whether further reduction in the amino acid sequence length
might influence the type of effect on nAChRs. This approach
should also help to identify the minimal structure for recep-
tor modulation and to outline some structural characteristics
of the peptide molecules that could be exploited with molec-
ular dynamics studies to unveil analogies or differences in
spatial conformation.

Deleting one amino acid from the COO$^-$ end of the
CGRP$_{1-6}$ sequence clearly yields a compound (CGRP$_{1-5}$) still
endowed with potentiating activity on nAChRs (although
with reduced potency). Even the CGRP$_{1-4}$ fragment retained
a slight, yet significant potentiation, which was lost with
CGRP$_{1-3}$. This realization was further examined by analyz-
ing the tridimensional structure of these peptides.
Structure-Function Studies of CGRP Fragments. Inspection of the linear sequence of the CGRP fragments revealed one major difference between CGRP1–7 and CGRP1–6, namely, the presence of a disulfide bridge between Cys2 and Cys7, which determined the closed ring structure of CGRP1–7. The presence of the disulfide bridge was probably responsible for producing the depressant effect because the shorter fragment CGRP2–7 (retaining Cys2 and Cys7) induced antagonism of nicotine responses.

CGRP1–6, which was obtained by deleting Cys7, was a more flexible molecule with more freedom to assume various spatial conformations. This realization prompted us to implement further approaches: 1) the synthesis of a seven amino acid peptide analogous to CGRP1–7, except that the terminal Cys7 was replaced by Ala and was thus devoid of the disulfide bridge. This new compound, termed CGRP1–7A, was observed to behave similarly to its shorter length counterpart CGRP1–6 in potentiating nAChRs, although with somewhat reduced potency. 2) CD spectra of two representative peptides (CGRP1–7 and CGRP1–6) were performed to reveal the presence of secondary structure organization. The CD spectra suggest that the two structures were different, and that CGRP1–7 was more rigid than CGRP1–6. The latter peptide assumed mostly a random coil conformation. 3) Molecular dynamics simulations were used as a tool to unveil the folding of these novel compounds. In addition, this method should aid detection of conformational analogs, which may provide a structural base for grouping substances so far associated merely by their pharmacological action. Furthermore, understanding the molecular structure of these peptides should help to understand their potential target sites on nAChRs for which substances that are even more powerful might be synthesized in the future.

MD simulations indicated that the ring structure of CGRP1–7 was stabilized by an inner ring hydrogen bond. This interaction ensured a rather rigid structure, in agreement with CD results. This rather rigid structure was presumably responsible for blocking agonist binding to nAChRs and was indeed the molecular determinant of the antagonist activity of the native CGRP itself (Giniatullin et al., 1999).

CGRP1–6, CGRP1–5, and CGRP1–7A turned out to be structurally similar and preferentially adopted a flexible structure, partly with an α-helix conformation. Most of the H-bond interactions stabilizing the secondary structure motif were lost and reformed within the time scale investigated.

Our molecular modeling suggests a larger propensity for α-helix formation when the solvent was changed from water to a semihydrophobic one (TFE/water). This result suggests that at the level of the nAChR binding site, which is expected to be a low dielectric medium, the population of α-helix structures might become relevant for biological responses. Therefore, the helical conformations of CGRP1–6, CGRP1–5, and CGRP1–7A, obtained with MD simulations, may be of special interest to interpret peptide-receptor interactions. Perhaps this conformation is important for enhancing the action of the agonist on nAChRs but is itself devoid of any direct activity on the agonist binding site. However, due to limited sampling of MD simulations, it is difficult to relate detailed structural properties of these peptides to their affinity toward nAChRs.

Insights into Mechanism of Action of CGRP1–5.

Whereas the present structure-function studies suggested some properties that may account for the receptor-modulating activity of these peptides, the precise mechanisms responsible for these effects remain unclear. This is partly due to methodological considerations because the use of nonequilibrium responses to nicotine and the puffer application protocol (to minimize receptor desensitization) precluded strictly quantitative pharmacological data to analyze in detail the

Fig. 9. Spatial alignment of CGRP1–6, 1–5, or 1–7A backbones. A, comparison of CGRP1–6 backbone (blue) with the one of CGRP1–5 (yellow). B, comparison of CGRP1–5 backbone (blue) with the one of CGRP1–7A (magenta).
nature of the CGRP$_{1-6}$-potentiating action. Recent work, however, has indicated that the amount of agonist delivered by 10- to 50-ms puff application closely corresponds to superfusing 20 to 100 μM nicotine (Di Angelantonio and Nistri, 2001), thus providing a relatively narrow range of agonist concentrations eliciting responses sensitive to CGRP$_{1-6}$.

Even with the interpretation constraints imposed by using nonequilibrium responses to brief pulses of nicotine, it was apparent that CGRP$_{1-6}$ preferentially potentiated small or large responses to nicotine. In fact, the graph plotting the fractional response amplitude versus the amount of nicotine showed a leftward shift (with unchanged maximum response) in the presence of CGRP$_{1-6}$. Thus, this peptide increased the sensitivity of nAChRs to their agonist nicotine without changing the agonist efficacy on them.

On muscle-type nicotinic receptors two ligand binding sites, formed at α-γ and α-δ interfaces, differ in their affinities for agonists and competitive antagonists (Sine et al., 1995). On nAChRs distinct binding sites can bind certain neurotoxins that, nevertheless, share a similar mechanism of competitive antagonism (Harvey et al., 1997). It is currently unknown, on nAChRs, whether different agonists can bind to discrete sites of the receptor and activate it. It might be possible that CGRP$_{1-6}$ operated by binding to one of these sites and thus facilitated the action of the agonist nicotine. This hypothetical mode of action, however, should be considered in the light of inactivity of CGRP$_{1-6}$ alone on native nAChRs, indicating that the CGRP$_{1-6}$-sensitive site could not activate nicotinic channels in the absence of nicotine (or cytsine). This possibility will therefore require future experiments based on recombinant receptors with identified subunit binding sites.

Another possibility is that CGRP$_{1-6}$ might have acted as an APL on nAChRs (Changeux and Edelstein, 1998). When used at submicromolar concentration APLs facilitate nicotine-induced responses even if generated by desensitized receptors, whereas a 10 times higher dose depresses nAChR-mediated responses (Maelicke et al., 1997; Maelicke and Albuquerque, 2000). This property was confirmed in the present study with phystostigmine, which enhanced nicotine currents at 0.5 μM and depressed them at 5 μM concentration. Note also that, for either potentiation or depression, the maximum of the nicotine dose-response curve was significantly changed, unlike the observations with CGRP derivatives, which could not increase the maximum responses and therefore could not reverse receptor desensitization associated with large membrane currents. Coapplication of enhancing concentrations of phystostigmine and CGRP$_{1-6}$ led to linear summation of the individual effects, whereas CGRP$_{1-6}$ could partly reverse the depression by a large concentration of phystostigmine. Taken together, these data indicate pharmacologically different effects by CGRP$_{1-6}$ and phystostigmine on nicotine-induced currents and suggest functionally distinct sites of action for CGRP$_{1-6}$ and phystostigmine.

Acknowledgments

We thank Dr. Stefano Piana for help with the annealing procedure and Dr. Andrea Cavalli for helpful discussions. We thank Dr. Massimo Righi for support with chromaffin cell cultures. We are most grateful to Prof. F. Ruzziere (Department of Physiology, University of Trieste) for laboratory facilities to perform electrophysiologically experiments on I28 cells in culture, and to Drs. A. Barberis and E. Pettrini (International School for Advanced Studies, Trieste, Italy) for providing a sample of transfected HEK 293 cells.

References

Malfty N, Broe GA, Creaney H, Jorm AF, Christensen H, and Brooks WS (1994)

Address correspondence to: A. Nistri, International School for Advanced Studies, Via Beirut 4, 34014 Trieste, Italy. E-mail: nistri@sissa.it