Two-Pore-Domain K\(^+\) Channels Are a Novel Target for the Anesthetic Gases Xenon, Nitrous Oxide, and Cyclopropane

Marco Gruss, Trevor J. Bushell, Damian P. Bright, William R. Lieb, Alistair Mathie, and Nicholas P. Franks

Biophysics Section, Department of Biological Sciences, The Blackett Laboratory, Imperial College London, United Kingdom

Received September 15, 2003; accepted October 30, 2003

This article is available online at http://molpharm.aspetjournals.org

ABSTRACT

Nitrous oxide, xenon, and cyclopropane are anesthetic gases that have a distinct pharmacological profile. Whereas the molecular basis for their anesthetic actions remains unclear, they behave very differently to most other general anesthetics in that they have little or no effect on GAB\(\text{A}\)_\(\alpha\) receptors, yet strongly inhibit the N\(-\)methyl\(\text{-}\)D\(-\)aspartate subtype of glutamate receptors. Here we show that certain members of the two-pore-domain K\(^+\) channel superfamily may represent an important new target for these gaseous anesthetics. TREK-1 is markedly activated by clinically relevant concentrations of nitrous oxide, xenon, and cyclopropane. In contrast, TASK-3, a member of this family that is very sensitive to volatile anesthetics, such as halothane, is insensitive to the anesthetic gases. We demonstrate that the C-terminal cytoplasmic domain is not an absolute requirement for the actions of the gases, although it clearly plays an important modulatory role. Finally, we show that Glu306, an amino acid that has previously been found to be important in the modulation of TREK-1 by arachidonic acid, membrane stretch and internal pH, is critical for the activating effects of the anesthetic gases.

Nitrous oxide, or “laughing gas,” was one of the very first general anesthetics to have been used clinically, yet its molecular mode of action has puzzled pharmacologists ever since its introduction during the 1840s. The pharmacological profile of nitrous oxide is not dissimilar to that of the “inert” gas xenon, another inorganic anesthetic gas whose mechanism of action has also been the subject of much speculation. However, only relatively recently has a plausible molecular target been proposed (Franks et al., 1998; Jevtovic-Todorovic et al., 1998) for these simple gases—the NMDA subtype of the ionotropic glutamate receptor superfamily. The inhibition of the NMDA receptor by clinically relevant concentrations of nitrous oxide and xenon neatly accounts for some of the actions of the gases, although it clearly plays an important role in their actions.

All of these are characteristic features of known NMDA receptor antagonists.

For the majority of general anesthetics, however, the most likely target is thought to be the GAB\(\text{A}\)_\(\alpha\) receptor (Franks and Lieb, 1994). This inhibitory receptor channel is potentially modulated by virtually all anesthetics, although it has recently been shown that xenon is a marked exception to this rule, having little or no effect on GAB\(\text{A}\)_\(\alpha\) receptors (Franks et al., 1998; de Sousa et al., 2000). Similarly, most (Jevtovic-Todorovic et al., 1998; Mennerick et al., 1998; Yamakura and Harris, 2000) but not all (Dzoljic and Van Duijn, 1998) reports show nitrous oxide to be relatively ineffective at potentiating GAB\(\text{A}\)_\(\alpha\) receptors. Thus, these simple gases seem to belong to a specific class of general anesthetics that inhibit NMDA receptors but do not potentiate GAB\(\text{A}\)_\(\alpha\) receptors. As a result of a recent study (Raines et al., 2001), other simple, apolar gaseous agents must also now be added to this class, including one that was used clinically for many years—cyclopropane.

The idea that these drugs act solely on the NMDA receptor to produce their myriad effects (loss of consciousness, analgesia, euphoria, neuroprotection, etc.) is open to doubt. This is partly because a number of other weak targets for these gases have been described previously (Yamakura et al., 2001) but also because supposedly selective NMDA receptor antagonists, such as ketamine, cause a distinct state of immobility.

ABBREVIATIONS: NMDA, N\(-\)methyl\(\text{-}\)D\(-\)aspartate; HEK, human embryonic kidney; MAC, minimum alveolar concentration.

\(^1\)This work was supported by a grant from the Medical Research Council (MRC), London, United Kingdom. M.G. was the recipient of a Fellowship from the Deutsche Forschungsgemeinschaft and D.P.B. was the recipient of an MRC studentship.

\(^2\)M.G. and T.J.B. should be considered joint first authors.

\(^3\)Present address: Department of Physiology and Pharmacology, Strathclyde Institute of Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom.

MOLECULAR PHARMACOLOGY Vol. 65, No. 2

0026-895X/04/6502-443–452$20.00

Copyright © 2004 The American Society for Pharmacology and Experimental Therapeutics

Mol Pharmacol 65:443–452, 2004

Printed in U.S.A.
streptomycin (10 mg/ml). When the tsA cells were 80% confluent, growth media [89% Dulbecco’s modified Eagle medium, 8.9% heat-inactivated fetal bovine serum, and 0.75% for halothane (Steward et al., 1973), 71% for xenon (Cullen et al., 1967). It should be noted, however, that these concentrations were determined at 37°C, and MAC values decrease with decreasing temperature. This effect can be quite significant for the larger volatile anesthetics (Franks and Lieb, 1996) but is much less for the smaller agents such as nitrous oxide (Antognini et al., 1994). In this article, we give all anesthetic concentrations as percentages of an atmosphere at our experimental temperature of about 22°C.

Electrophysiology. The composition of the control extracellular solution was 145 mM NaCl, 2.5 mM KCl, 2 mM MgCl2, 1 mM CaCl2, 10 mM d-Glucose, 10 mM HEPES, titrated to pH 7.4 with NaOH. Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microelectrodes were pulled from thick-walled borosilicate glass capillaries (GC150F-10; Harvard Apparatus, Edenbridge, Kent, UK) using a two-stage vertical puller (PP-830; Narishige, Japan). Glass microele...
Fire-polished pipettes were back-filled with 0.2 μm-filtered intracellular solution (120 mM KCH₃SO₄, 4 mM NaCl, 1 mM MgCl₂, 1 mM CaCl₂, 10 mM EGTA, 10 mM HEPES, 3 mM MgATP, and 0.3 mM Na₂GTP, titrated to pH 7.2 with KOH, total K⁺ concentration was 155 mM). For acidic internal solution, HEPES was substituted with 2-morpholinopropanesulfonic acid, pH was adjusted to 5.0 by KOH and K⁺ was added to a total concentration of 155 mM using KCH₃SO₄. The pipette resistance ranged from 2 to 7 MΩ. Series resistance was compensated by 75 to 90%. Voltage-clamp recordings were made using either outside-out patches or the whole-cell recording technique. Cells and patches were usually held at −80 mV, and 750-ms voltage-ramps from −120 to 0 mV were recorded every 10 to 30 s. For continuous recordings, cells or patches were clamped at a fixed potential (−50 mV, unless otherwise stated). Anesthetic sensitivity was found to be identical whether assessed using voltage ramps or continuous recordings. Only whole-cell recordings with a positive holding current at −80 mV (indicating a negligible ohmic leak conductance) and an access resistance <10 MΩ were included in the analysis. Current-voltage curves from outside-out patches were corrected for an ohmic leak using the equation Icorr = Iobs − IcorrVcorr/Vrev, where Icorr is the corrected current, Iobs is the observed current at a membrane potential Vm and Irev is the current measured at the K⁺ reversal potential. The percentage anesthetic activation was calculated relative to the average of controls taken just before and just after the anesthetic application.

Recordings were usually digitized at 10 kHz (2 kHz for continuous recordings) and the output of the patch-clamp amplifier (Axopatch 200B, Axon Instruments, Union City, CA) was usually filtered at 5 kHz using the 4-pole Bessel filter of the patch-clamp amplifier. Continuous recordings were digitized at 100 Hz (8-pole Bessel filter, −3dB, Axon Instruments, Union City, CA), unless otherwise stated, before analysis using Clampfit software (Axon Instruments, Union City, CA). All recordings were stored on a computer hard disk.

For the measurements with GABA_A receptors, HEK 293 (tsA 201) cells were transiently transfected with human cDNA coding for α1, β2, and γ2s subunits (kindly supplied by Neil Harrison, Cornell University, New York, NY). The coding sequences were subcloned into pcDNA3.1 (Invitrogen, Paisley, UK), a vector designed for high expression in mammalian cells. All other details were essentially as described above, except that the control extracellular solution was 145 mM NaCl, 3.0 mM KCl, 1 mM MgCl₂, 1.5 mM CaCl₂, 5.5 mM d-Glucose, and 10 mM HEPES, titrated to pH 7.4 with NaOH; the intracellular solution was 140 mM CsCl, 1 mM MgCl₂, 11 mM EGTA, and 10 mM HEPES, titrated to pH 7.2 with CsOH. The data were digitized at 200 Hz, filtered at 50 Hz (8-pole Bessel filter, −3dB; Frequency Devices, Lyons Instruments, Hertfordshire, UK), and anesthetic potentiations were measured at −60 mV.

All electrophysiological measurements were carried out at room temperature (21–23°C). Values are given throughout as mean ± S.E.M. Error bars are not shown where they are smaller than the size of the symbols. Statistical significance was assessed using the Student’s t test.

Results

Mock-transfected HEK-293 cells had resting potentials around −35 mV and passed only a few picoamperes or less when held at a membrane potential of −50 mV under voltage clamp. In contrast, cells expressing human TREK-1 channels had resting potentials around −85 mV and, under voltage clamp, passed large outwardly rectifying currents, consistent with many previous reports (Goldstein et al., 2001; Patel and Honore, 2001b; Lesage, 2003). Because the currents in the transfected cells were on the order of 1000 times larger than those of the untransfected cells, we considered all of the current measured under voltage clamp to be passed by the TREK-1 K⁺ channels. This current increased markedly in the presence of clinically relevant concentrations of the inhalational general anesthetics halothane, xenon, nitrous oxide, and cyclopropane. Figure 1A shows a continuous current recording from a cell held under voltage clamp at −50 mV (our standard test potential), which illustrates the rapid and reversible activation of the current. In the presence of anesthetic concentrations near the MAC values (see Materials and Methods), halothane (0.6%), nitrous oxide (80%), xenon (80%), and cyclopropane (10%) increased the TREK-1 channel current by a very similar extent, between 28 and 35% (Fig. 1B). When tested with outside-out patches (Fig. 1B, two rightmost columns), halothane (0.6%) and xenon (80%) activated the current to a comparable degree, showing that the anesthetic activation does not require the intact whole cell. Figure 1, C–F, shows current-voltage curves in the presence of increasing concentrations of the four anesthetics. At concentrations of anesthetics close to MAC values, the anesthetic-activated current was reasonably well-fitted (see Fig. 2) by a Goldman-Hodgkin-Katz equation (Hille, 2001), but with a deviation that is consistent with a small degree of voltage gating at more positive potentials (Goldstein et al., 2001; Patel and Honore, 2001a). The percentage activation of the current was essentially constant with voltage (Fig. 2, insets).

Concentration-response curves for the four inhalational anesthetics are shown in Fig. 3. They are qualitatively similar in that the percentage activation monotonically increases with no hint of saturation. Quantitatively, however, the four agents differ greatly in their potencies; the concentrations required to achieve an arbitrary value of 25% activation were 0.72% for halothane, 80% for nitrous oxide, 60% for xenon, and 12% for cyclopropane, in line with their relative anesthetic potencies in humans (Saidman et al., 1967; Cullen et al., 1969; Steward et al., 1973; Hornbein et al., 1982).

In contrast to the TREK-1 K⁺ channel currents, cells expressing TASK-3 channels behaved very differently in response to general anesthetics. Although TASK-3 channels still show a robust response to halothane, they were completely insensitive to the anesthetic gases nitrous oxide, xenon, and cyclopropane (Fig. 4, A–E). In fact, TASK-3 currents were significantly more sensitive to halothane than were TREK-1 currents, with 0.6% halothane increasing the current by 84 ± 17%. On the other hand, even the highest concentration (80%) of cyclopropane produced no significant effect on TASK-3 currents (Fig. 4E).

Because of the likely importance of the GABA_A receptor in general anesthesia, we determined the sensitivity of this inhibitory receptor channel to the four inhalational agents. We used receptors containing the combination of subunits (α1β2γ2a) that are most commonly expressed in the central nervous system. The pattern of activation (Fig. 4F) was remarkably similar to that shown by TASK-3 channels (Fig. 4E), with a strong potentiation by halothane, but little or no response to xenon, nitrous oxide, and cyclopropane (even up to 80%).

Because of the reported importance of the C-terminal cytoplasmic domain in the activation of TREK-1 by volatile anesthetics (Patel et al., 1999), we investigated the requirement of this region of the channel for the activation by the anesthetic gases. We did this in two stages. We first looked at the sensitivity of a “semitruncated” channel in which the last 49 amino acids had been deleted by introducing a stop codon...
into the DNA base sequence at amino acid position 363. This channel expressed well and gave currents that were comparable with the wild-type channel (Fig. 5A). This construct TREK-1 Δ49 was still strongly activated by the inhalational anesthetics, although the degree of activation at MAC was between 53 and 79% of that seen with the wild-type channel (Fig. 5B). Whereas this reduction in sensitivity seems to be real, because it occurred for all the anesthetics, the difference was only statistically significant in the case of xenon ($P < 0.05$).

We went on to investigate a construct in which most of the cytoplasmic C terminus had been removed (although in the absence of a high-resolution structure, the definition of exactly where this domain begins is obviously uncertain). This involved introducing a STOP codon at position 323 that resulted in the deletion of the last 89 amino acids. When HEK 293 cells were transiently transfected with cDNA encoding this TREK-1 Δ89 construct, the outward current at −50 mV was very small (a few picoamperes) and comparable with that measured with mock-transfected cells. However, when 80% cyclopropane was applied, the transfected cells behaved differently from mock-transfected cells, and a clear anes-
thetic activation was observed (Fig. 6B). This anesthetic-activated current (Fig. 6B, inset) was very small in absolute terms but qualitatively similar to that observed with the wild-type receptor (Fig. 6A). This indicated that although only a small number of active TREK-1 Δ89 channels were present in the cells, they retained much of their sensitivity to cyclopropane. In subsequent experiments with outside-out patches, we found that, as previously reported (Maingret et al., 1999), lowering the internal pH greatly increased channel activity (Fig. 6C), although fluctuations in this basal activity made quantitative recordings difficult. This showed that the truncated channels were being expressed, but their opening probability at normal pH had been greatly reduced. When the channel activity was “rescued” by reducing the internal pH, we found that the TREK-1 Δ89 construct did indeed largely retain its sensitivity to the anesthetic gases (Fig. 6, C and D). Cyclopropane (80%) activated the current by 137 ± 40% (n = 10) and xenon (80%) activated the current by 16 ± 2% (n = 7). The extent of the activation, as with the semi-truncated construct, was approximately half that of the wild-type channel, indicating the C-terminal cytoplasmic domain must play some role in the modulation of the channel by anesthetic gases but could not contain the primary binding site(s).

![Fig. 2. Voltage-dependence of anesthetic-activated currents. Currents activated by halothane (0.6%) (A), xenon (80%) (B), nitrous oxide (80%) (C) and cyclopropane (10%) (D) at concentrations of anesthetics close to MAC values were well fitted by the Goldman-Hodgkin-Katz constant field equation (Hille, 2001) (dashed lines in figures). Each inset shows the ratio of the current in the presence of anesthetics to the control current; this ratio shows little or no voltage dependence.](image)

![Fig. 3. Concentration-response curves for the activation of TREK-1 channels by halothane, xenon, nitrous oxide, and cyclopropane. Concentration-response curves for TREK-1 activation by halothane (A), xenon (B), nitrous oxide (C), and cyclopropane measured at −50 mV from ramps (−120 to 0 mV in 750 ms) (D). Data represent means ± S.E.M. from five to seven cells for halothane, seven to 14 cells for xenon, four to six cells for nitrous oxide, and four to seven cells for cyclopropane. The lines are drawn by eye and have no theoretical significance.](image)
To further explore the mechanism of anesthetic activation of the TREK-1 channels, we investigated the effect of a point mutation E306A that has been shown to eliminate the activation of TREK-1 by arachidonic acid, membrane stretch, and internal acidosis (Honore et al., 2002). We found that this mutation almost completely blocked the anesthetic activation of the channel (Fig. 7), with the activation being reduced by between 8- and 13-fold.

Discussion

General anesthetics are usually subdivided into intravenous and inhalational agents. Among the inhalational anesthetics, xenon, nitrous oxide, and cyclopropane do not affect human TASK-3 channels and human α1β2γ2s GABA_α receptors. A, current recordings (at −50 mV from standard voltage-ramps) showing that 80% xenon, 80% nitrous oxide, and 10% cyclopropane have no effect on TASK-3 channels, in contrast to halothane, which causes a large activation. B–D, recordings from voltage-ramps (−120 to 0 mV; 750 ms) show the activation by 0.6% halothane and no significant effects for 80% xenon and 80% nitrous oxide. The insets show the difference between currents in anesthetic and control solution. E, summary of anesthetic effects on TASK-3 channel currents measured at −50 mV. Halothane (0.6%) activates TASK-3 channels by 84 ± 17% (n = 15) whereas xenon (80%), nitrous oxide (80%), and cyclopropane (10 and 80%) induced only small changes of −2.6 ± 6.6% (n = 9), −4.2 ± 0.6% (n = 9), 0.7 ± 0.8% (n = 10), and −5.0 ± 5.0% (n = 15), respectively. F, summary of anesthetic effects on α1β2γ2s GABA_α receptors. Halothane (0.6%) potentiates currents evoked by 10 μM GABA by 95 ± 11% (n = 5), whereas xenon (80%), nitrous oxide (80%), and cyclopropane (10 and 80%) induced only small changes of 7 ± 4% (n = 19), 5 ± 10% (n = 5), −4 ± 5% (n = 5), and 11 ± 4% (n = 5), respectively.
Anesthetic gases and Two-Pore-Domain K⁺ channels

Anesthetic gases, however, a further subdivision can usefully be made between the volatile agents (such as halothane and isoflurane) that are liquids at the standard temperature and pressure (20°C and 1 atm.) and those that are gases (such as xenon and nitrous oxide).³ This subdivision is useful because of the apparently different pharmacological profiles and molecular mechanisms involved. The anesthetic gases nitrous oxide and xenon are notable for their potent analgesic action, their minimal effects on muscle tone and contractility, as well as their ability to cause euphoria, properties that are not generally associated with the volatile liquid anesthetics. In addition, over the last few years, clear differences have emerged from studies on ion channels between those inhalational anesthetics (such as halothane and isoflurane) that cause significant poteniations of the GABA_λ receptor (Franks and Lieb, 1994) and those (the anesthetic gases) that have little or no effect (Mennerick et al., 1998; de Sousa et al., 2000; Raines et al., 2001). Another difference seems to be the fact that the gases are more effective than the volatile at inhibiting the NMDA receptor subtype of the glutamate receptor when their effects are compared at equianesthetic concentrations (e.g., at MAC), and, presumably as a direct consequence of their ability to inhibit NMDA receptors, the gases show greater potencies as neuroprotectants (Jevtovic-Todorovic et al., 1998; Ma et al., 2002; Wilhelm et al., 2002).

³ Some gases below their critical temperatures are referred to as “vapors” because they can be condensed into liquids at high enough pressures, although this distinction is not important here.

Fig. 6. Anesthetic gases still activate TREK-1 channels when most of the cytoplasmic carboxyl terminus is removed. Anesthetic gases cyclopropane and xenon activate a truncated TREK-1 channel in which 89 amino acids have been removed at the carboxyl terminus (TREK-1 Δ89). A, current-voltage curve for wild-type TREK-1 showing the large activating effect of 80% cyclopropane. The inset shows the difference current between 80% cyclopropane and control. B, effects of 80% cyclopropane on TREK-Δ89 and mock-transfected tsA-cells. Because of the very small currents observed with this truncated channel (see text for details), data from several whole-cell experiments (n = 11 for TREK-Δ89, n = 4 for mock-transfected tsA-cells) were averaged. The inset shows the difference between the mean currents and shows the activation of a current that obeys the Goldman-Hodgkin-Katz equation. C, the effect of 80% cyclopropane on TREK-Δ89 in an outside-out patch. Cyclopropane caused a large activation (150 ± 31%, n = 10, measured from standard voltage-ramps at −50 mV). The pH of the internal solution was lowered to 5.0 to stimulate the basal stretch, temperature, arachidonic acid, as well as by a variety of internal second messenger systems. Of particular relevance to the present discussion is the fact that some members have been shown to be activated by volatile general anesthetics (Gray et al., 1998; Franks and Lieb, 1999; Patel et al., 1999; Patel and Honore, 2001a). This has been shown for both TASK and TREK members of the superfamily, although most work in this area has focused on the TASK channels, TASK-1 and TASK-3. TASK channels have been shown to be activated by halothane, isoflurane, and other volatiles in recombinant expression systems (Patel et al.,...
Anesthetic activation of TREK-1 channels requires glutamic acid Glu306. The activating effect of anesthetics is greatly reduced in a mutant channel in which the glutamic acid at position 306 is replaced by an alanine (TREK-1 E306A). A, current-voltage curves showing that xenon (80%) has a negligible effect on TREK-1 E306A and that the effect of a high concentration of cyclopropane (80%) is greatly reduced compared with the wild-type channel (compare Figure 1F). B, summary showing the effects of different anesthetics on wild-type TREK-1 and TREK-1 E306A measured at −50 mV from standard voltage-ramps. Activation of TREK-1 E306A is reduced between 8- and 13-fold compared with wild-type to 2.5 ± 1.2% (n = 7) for halothane, 2.4 ± 0.6% (n = 7) for xenon, 2.4 ± 0.7% (n = 7) for nitrous oxide, and 27.0 ± 3.0% (n = 11) for 80% cyclopropane. Note the different ordinate scale for the data at 80% cyclopropane.

Fig. 7. Anesthetic activation of TREK-1 channels requires glutamic acid Glu306. The activating effect of anesthetics is greatly reduced in a mutated channel in which the glutamic acid at position 306 is replaced by an alanine (TREK-1 E306A). A, current-voltage curves showing that xenon (80%) has a negligible effect on TREK-1 E306A and that the effect of a high concentration of cyclopropane (80%) is greatly reduced compared with the wild-type channel (compare Figure 1F). B, summary showing the effects of different anesthetics on wild-type TREK-1 and TREK-1 E306A measured at −50 mV from standard voltage-ramps. Activation of TREK-1 E306A is reduced between 8- and 13-fold compared with wild-type to 2.5 ± 1.2% (n = 7) for halothane, 2.4 ± 0.6% (n = 7) for xenon, 2.4 ± 0.7% (n = 7) for nitrous oxide, and 27.0 ± 3.0% (n = 11) for 80% cyclopropane. Note the different ordinate scale for the data at 80% cyclopropane.

Anesthetic activation of TREK-1 channels requires glutamic acid Glu306. The activating effect of anesthetics is greatly reduced in a mutated channel in which the glutamic acid at position 306 is replaced by an alanine (TREK-1 E306A). A, current-voltage curves showing that xenon (80%) has a negligible effect on TREK-1 E306A and that the effect of a high concentration of cyclopropane (80%) is greatly reduced compared with the wild-type channel (compare Figure 1F). B, summary showing the effects of different anesthetics on wild-type TREK-1 and TREK-1 E306A measured at −50 mV from standard voltage-ramps. Activation of TREK-1 E306A is reduced between 8- and 13-fold compared with wild-type to 2.5 ± 1.2% (n = 7) for halothane, 2.4 ± 0.6% (n = 7) for xenon, 2.4 ± 0.7% (n = 7) for nitrous oxide, and 27.0 ± 3.0% (n = 11) for 80% cyclopropane. Note the different ordinate scale for the data at 80% cyclopropane.
al., 1999) and TASK (Talley and Bayliss, 2002) channels has shown that the C terminus is critical to the activation of these channels by halothane, and the progressive deletion of the C terminus results in a gradual reduction in anesthetic sensitivity. Whether this occurs because of the disruption of the halothane binding site(s) or because of an effect on channel gating, is at this stage, impossible to say. In the case of TREK-1, the deletion of most of the cytoplasmic C terminus (with the last amino acid of the construct being Thr322) resulted in the channel’s almost complete insensitivity to halothane and chloroform (Patel et al., 1999). With the anesthetic gases, the semitruncated construct TREK-1 Δ49 had a somewhat reduced anesthetic sensitivity (Fig. 5). When most of the cytoplasmic C terminus was removed (TREK-1 Δ89 construct), the very low level of basal activity in the intact cells (Fig. 6B) showed the crucial role this domain plays in modulating the activity of the channel. However, it was clear that cyclopropane was still having a sizeable effect that is, in percentage terms, roughly comparable with that seen with the wild-type channel (Fig. 6A). This was clear in outside-out patches in which the basal activity of the TREK-1 channels had been enhanced by reducing the intracellular pH to 5.0. Under these conditions, cyclopropane and xenon activated the TREK-1 channels to an extent comparable to that seen with the semitruncated construct TREK-1 Δ49 and was approximately 50% of that found with the wild-type channel (Fig. 6, C and D). Thus it seems that whereas the C terminus is clearly involved in modulating the anesthetic sensitivity of the channel, the principal binding sites must lie elsewhere.

We also investigated the possible role of an amino acid (Glu306) that has been shown to be important in modulation of TREK-1 channels. It has previously been shown that mutating this glutamic acid to an alanine results in TREK-1 channels that are insensitive to activation by arachidonic acid, membrane stretch, and internal pH (Honore et al., 2002). The data in Fig. 7 show that this amino acid is also critical in regulating the sensitivity of the channel to inhalational anesthetics. The mutation of E306A resulted in an almost complete ablation of anesthetic effects. Because most if not all of the factors that modulate TREK-1 seem to be critically dependent on Glu306, this implies that activation of one pathway might influence the modulation of another pathway. Thus, neurons expressing TREK-1 channels could have a varied response to inhalational anesthetics, depending upon the channel

In summary, we have shown that the gaseous general anesthetics xenon, nitrous oxide, and cyclopropane can activate TREK-1 channels. The substantial activation of the channels over a clinically relevant range of concentrations suggests that TREK channels may play a significant role in the production and maintenance of the general anesthetic state and the neuromodulatory properties of anesthetic gases.

Acknowledgments

We thank Raquel Yustos and Emma Veale for expert technical assistance.

References

Address correspondence to: Nicholas P. Franks, Biophysics Section, Department of Biological Sciences, The Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom. E-mail: n.franks@imperial.ac.uk