Identification of the P2Y₁₂ Receptor in Nucleotide Inhibition of Exocytosis from Bovine Chromaffin Cells

Steven J. Ennion, Andrew D. Powell, and Elizabeth P. Seward

Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom (S.J.E.); Department of Pharmacology, University of Bristol, Bristol, United Kingdom (A.D.P.); and Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom (E.P.S.)

Received March 8, 2004; accepted May 28, 2004

ABSTRACT

Nucleotides are released from bovine chromaffin cells and take part in a feedback loop to inhibit further exocytosis. To identify the nucleotide receptors involved, we measured the effects of a range of exogenous nucleotides and related antagonists on voltage-operated calcium currents (I_{Ca}), intracellular calcium concentration ([Ca^{2+}]_i), and membrane capacitance changes. In comparative parallel studies, we also cloned the bovine P2Y₁₂ receptor from chromaffin cells and determined its properties by coexpression in Xenopus laevis oocytes with inward-rectifier potassium channels made up of Kir3.1 and Kir3.4. In both systems, the agonist order of potency was essentially identical (2-methylthio-ATP ~ 2-methylthio-ADP >> ATP ~ ADP > UDP). αβ'Methylene-ATP and adenosine were inactive. UTP inhibited I_{Ca} in chromaffin cells (pEC₅₀ = 4.89 ± 0.11) but was essentially inactive at the cloned P2Y₁₂ receptor. The relatively nonselective P2 antagonist pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonic acid blocked nucleotide responses in both chromaffin cells and X. laevis oocytes, whereas the P2Y₁₂- and P2Y₁₃-selective antagonist N⁶-(2-methylthioethyl)-2-(3,3,3-trifluoropropylthio)-β,γ-dichloromethylene ATP (ARC69931MX) blocked responses to ATP in both chromaffin cells and X. laevis oocytes but not to UTP in chromaffin cells. These results identify the P2Y₁₂ purine receptor as a key component of the nucleotide inhibitory pathway and also demonstrate the involvement of a UTP-sensitive G_vo-coupled pyrimidine receptor.

Given the profusion of P2 nucleotide receptors in the nervous system and the many pathways for nucleotide release, the potential for extracellular nucleotides to play a major modulatory role in neurotransmission is high. Because of their structure and signaling mechanisms, P2 receptors are classified either as ligand-gated P2X₁-₇ cation channels or as metabotropic P2Y₁, P2Y₂, P2Y₄, P2Y₆, P2Y₁₁, P2Y₁₂, P2Y₁₃, P2Y₁₄, and P2Y₁₅ receptors coupled to heterotrimeric G proteins (North, 2002; Abbracchio et al., 2003; Inbe et al., 2004). Activation of P2X receptors by ATP leads directly to membrane depolarization and calcium entry both via the P2X channels themselves and by the subsequent activation of voltage-operated calcium channels (VOCCs) (North, 2002).

P2Y receptors have a wider agonist profile than the P2X receptors responding to purines, pyrimidines, and UDP-glucose. These receptors can be divided into two subgroups based on their molecular structure and coupling to G subunits, with P2Y₁₂, P2Y₁₃, and P2Y₁₄ making up one group that signals via PTX-sensitive G_vo proteins and P2Y₁, P2Y₂, P2Y₄, P2Y₆, P2Y₁₁, and P2Y₁₅ making up the second group that couples to phospholipase C and G proteins of the G_v class (Abbracchio et al., 2003; Inbe et al., 2004).

In the sympathetic nervous system, the effects of presynaptic purine receptors on neurotransmission have been well-documented; facilitation of catecholamine release is mediated by P2X receptors, whereas inhibition is mediated by the activation of an unidentified P2Y receptor (Von Kügelgen et al., 1989; Boehm and Kubista, 2002). Evidence for inhibitory presynaptic P2Y receptor(s)-regulating release of catecholamine as well as other neurotransmitters in the central nervous system is also accumulating (Cunha and Ribeiro 2000; Zhang et al., 2003). Identifying the nucleotide receptor subtypes that mediate presynaptic inhibition has been compli-

Abbreviations: VOCC, voltage-operated calcium channel; I_{Ca}, calcium current; C_m, membrane capacitance; PPADS, pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonic acid; 2-MeSATP, 2-methylthio-ATP; 2-MeSADP, 2-methylthio-ADP; PTX, pertussis toxin; ARC69931MX, N⁶-(2-methylthioethyl)-2-(3,3,3-trifluoropropylthio)-β,γ-dichloromethylene ATP; DMEM, Dulbecco’s modified Eagle’s medium; PCR, polymerase chain reaction; RACE, rapid amplification of cDNA ends; RT-PCR, reverse transcriptase-polymerase chain reaction; TM, transmembrane; PLC, phospholipase C; ATP_Y5, adenosine-5′-O-(3-thio)triphosphate; BAPTA, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid.
cated by the inaccessibility of the majority of mammalian nerve terminals, complexity arising from neural circuits in which multiple P2 receptors may be activated, stimulation of P1 adenosine receptors after breakdown of purines by ectonucleotidases, and the limited availability of P2 receptor subtype-selective agonists and antagonists.

Adrenal chromaffin cells are embryonically derived from precursors of sympathetic neurons; they also release catecholamines and ATP by Ca$^{2+}$-regulated exocytosis and express inhibitory P2 receptors that couple to neuronal VOCCs (Diverse-Pierluissi et al., 1991; Gandia et al., 1993; Currie and Fox, 1996). Moreover, evidence for an autocrine feedback loop similar to that proposed for sympathetic neurons involving an inhibitory P2-like receptor has been reported (Cara-belli et al., 1998). In a previous study, we used combined C_m measurements and voltage-clamp recordings to examine the mechanisms underlying purinergic inhibition of exocytosis in chromaffin cells (Powell et al., 2000). We showed that the purine analog 2-methylthio-ATP (2-MeSATP) inhibits Ca$^{2+}$ entry through N- and P/Q-type VOCCs and, consequently, stimulus-evoked changes in C_m through a PTX-sensitive G protein. The aim of this study was to expand on this finding by determining the molecular identity of the P2 receptor(s) involved. Here, we provide evidence for two inhibitory PTX-sensitive G$_{in}$-coupled P2Y receptors in bovine chromaffin cells. One of these receptors shows a pharmacology similar but not identical (ATP being a full agonist and equipotent to ADP) with the human P2Y$_{12}$ receptor, whereas the second receptor is UTP-sensitive and hence shows a pharmacology not matching any of the known G$_{in}$-coupled P2Y receptors.

To confirm the role of P2Y$_{12}$ in VOCC inhibition, we cloned the bovine P2Y$_{12}$ receptor from bovine chromaffin cells and expressed this receptor in Xenopus laevis oocytes coexpressing inward-rectifier potassium channels made up of rat Kir3.1 and Kir3.4. The pharmacological properties of this cloned receptor closely mirrored the pharmacology observed in chromaffin cells except that UTP was a very weak partial agonist. We therefore conclude that P2Y$_{12}$ and another yet-unidentified G$_{in}$-protein–coupled UTP-sensitive receptor inhibit VOCCs and exocytosis in chromaffin cells. These findings support the view that G$_{in}$-coupled P2Y receptors may also act as presynaptic inhibitory receptors in other neuronal systems to regulate neurotransmitter release.

Materials and Methods

Chromaffin Cell Culture. Chromaffin cells were prepared by collagenase digestion of bovine adrenal glands as described previously (Powell et al., 2000). Adrenal glands from 18- to 24-month-old cows were obtained from a local abattoir and were retrogradely perfused at 25 ml/min for 30 min at 37°C. The strategy used to clone the bovine P2Y$_{12}$ receptor consisted of three sequential rounds of cloning. First, a conserved central region of the receptor was amplified by polymerase chain reaction (PCR) with degenerate primers (PCR1). Second, 5’- and 3’-rapid amplification of cDNA ends (RACE) primers were designed from the sequence obtained from PCR product 1 and used to amplify the 5’ and 3’ ends of the receptor by 5’- and 3’-RACE, respectively (PCRs 2 and 3). Finally, the sequence obtained from PCR products 2 and 3 was used to design

[Ca$^{2+}$]$_i$ Measurements in Bovine Chromaffin Cells. Cells were loaded with the Ca$^{2+}$ indicator Fura 2/acetoxymethyl ester by the addition of 5 µM Fura 2/acetoxymethyl ester (Molecular Probes, Eugene, OR) to DMEM and incubated for 25 min at 37°C. Cells were then washed with fresh DMEM and incubated a further 15 min at 37°C. Isolated fluorescent chromaffin cells were alternately illuminated at 340 and 380 nm using a monochromator (TILL Photonics, Graefeling, Germany) controlled by the data acquisition software. Emission >430 nm was collected with a photomultiplier tube (TILL Photonics) and sampled approximately every 12 ms. Data were stored on personal computers, and ratios of 340/380 nm were calculated offline (AxoBASIC-written software; Axon Instruments Inc., Union City, CA).

Electrophysiological Recordings in Bovine Chromaffin Cells. A coverslip carrying chromaffin cells was placed in a microperfusion chamber (~200-μl volume) on the stage of an inverted phase-contrast microscope (Diaphot 200; Nikon, Tokyo, Japan). Cells were continuously superfused with an external solution consisting of 130 mM NaCl, 2 mM KCl, 1 mM MgCl$_2$, 5 mM CaCl$_2$, 10 mM glucose, and 10 mM HEPES adjusted to pH 7.2 with NaOH; osmolarity, ~280 mOsM. Special care was taken to superfuse cells at a high rate (~3 ml/min) throughout the experiment and to select well-isolated single cells for recording to avoid contaminating effects of endogenously released modulators (Carabelli et al., 1998). Ionic currents were recorded in whole-cell or perforated-patch clamp configuration using borosilicate glass electrodes coated with Sylgard 184 (Dow Corning, Midland, MI) and fire-polished on a microforge to a resistance of 1 to 2 MΩ. Electodes were filled with an internal solution consisting of 145 mM cesium-glutamate (Calbiochem, Nottingham, UK), 10 mM HEPES, 9.5 mM NaCl, 0.3 mM BAPTA (Molecular Probes), adjusted to pH 7.2 with CaOH (MP Biomedicals, Irvine, CA); osmolarity, ~280 mOsM. For whole-cell recording experiments, 2 mM Mg-ATP was added to the internal solution to prevent rundown of VOCCs and exocytosis. Gramicidin D (Sigma Chemical, Poole, Dorset, UK) at a final concentration of 9.7 µg/ml was used for perforation. For both whole-cell and perforated-patch recordings, series resistance was 10 to 12 MΩ and compensated (typically ~80%) electronically with the patch-clamp amplifier (Axopatch 200B; Axon Instruments). Voltage protocol generation and data acquisition were performed using custom data acquisition software (kindly provided by Dr. A. P. Fox, University of Chicago) running on a Pentium computer equipped with a Digidata 1200 acquisition board (Axon Instruments). Current traces were low pass-filtered at 5 kHz using the 4-pole Bessel filter of the amplifier and digitized at 10 kHz. Chromaffin cells were voltage-clamped at ~90 mV, and C_m was sampled with a resolution of 12 ma using a software-based phase-tracking method as described previously (Fidler and Fernandez, 1989; Powell et al., 2000). Data were stored on the computer hard drive and analyzed offline using custom software (AxoBASIC, Axon Instruments) and commercial (Origin; OriginLab Corporation, Northampton, MA) software. All experiments were performed at ambient temperature (21–25°C).
primers to amplify the full-length receptor from bovine chromaffin cell cDNA by RT-PCR. A proofreading polymerase (Bio-X-Act; Bio-line Ltd., London, England) was used for all PCR reactions. Total RNA was prepared from bovine chromaffin cells, and 5 μg was used in a first-strand cDNA reaction using RoRidT(17) primer (Harvey and Darlison, 1991) and Superscript II reverse transcriptase according to the manufacturer’s instructions (Amersham Biosciences UK, Ltd., Little Chalfont, Buckinghamshire, UK). The degenerate primers for PCR1, y12degF (5’-TTTCTGTGCGACATCCTGCGCCTCATG-3’) and y12degR (5’-GGTCACACCACCTCCTTGGTTTTCCTG-3’) were designed from homologous regions of the human mouse and rat P2Y12 sequences (accession numbers NM_022788, AK013804, and NM_022800, respectively). 5’ RACE (PCR2) was performed using a SMART RACE kit (BD Biosciences Clontech, Palo Alto, CA) according to the manufacturer’s instructions with the sequence-specific primer TEW81 (5’-PACKAGGAACACACTGACACTTGGTCCGACTACACGAGACACACCCAGATAACCGGT-3’). The primers 2ndby12fullfor (5’-GCTGCTGCGAAATCCACAAATG-3’) and 2ndby12fullrev (5’-CTGGCTTTGGGAGAATCT-3’) were designed from the sequence of PCR1. 5’ RACE (PCR3) was performed using the primers Ro (Harvey and Darlison, 1991) and bY12RACEfor (5’-GGGAGCAGGCATACAGC-3’) and bY12RACErev (5’-GCCAGCCGTTCAAATG-3’) were designed from the sequence of PCR1. 5’ RACE (PCR3) was performed using the primers Ro (Harvey and Darlison, 1991) and bY12RACEfor (5’-GGGAGCAGGCATACAGC-3’) and bY12RACErev (5’-GCCAGCCGTTCAAATG-3’).

RT-PCR Analysis. RT-PCR was performed on first-strand cDNA prepared from bovine chromaffin cells as described above. The only published bovine P2Y sequence available for primer design was that of P2Y1 (Henderson et al., 1995). BLAST homology searches of the bovine expressed sequence tag database found sequences corresponding to the bovine P2Y1, P2Y6, and P2Y14 receptors (accession numbers BM031311, B1680595, and CB429080, respectively), allowing for the presence of transcripts for P2Y1, P2Y6, P2Y12, and P2Y14 to be analyzed in addition to the published bovine P2Y1 (primer sequences in Table 1).

Electrophysiological Recordings in X. laevis Oocytes. X. laevis oocytes expressing the rat inwardly rectifying potassium channel Kir 3.1 and Kir 3.4 were used to assess the function of the cloned oocytes expressing the rat inwardly rectifying potassium channel Kir 3.1 and Kir 3.4 were used to assess the function of the cloned P2Y12 receptor. Oocytes were initially perfused with ND96 buffer to obtain a value for the resting membrane potential (typically ~70 mV for Kir-injected oocytes and ~20 mV for noninjected or P2Y12-only injected oocytes) before exchange to a solution of 20 mM NaCl, 70 mM KCl, 3 mM MgCl2, and 5 mM HEPES for recording of agonist-evoked membrane currents. Agonist-evoked currents could be measured in oocytes clamped constantly at ~60 mV; however, the current required (~5 μA) to clamp at this potential tended to kill cells after ~15 to 30 min. Therefore, to obtain full-concentration response-curve data for individual cells, oocytes were clamped at 0 mV during the initial period of agonist application and in recovery periods between applications. One minute after agonist application commenced, the holding potential was stepped down to ~60 mV for 5 s and the peak current was recorded. A ramp from ~60 mV to ~90 mV over 2 s was applied after the 5-s recording period to visualize the inward rectification from the Kir channels, verifying that the cell was still in a healthy condition. Currents in the presence of agonist were normalized to the mean of recordings taken 5 min before and 5 min after in the absence of agonist.

All drugs were made up as concentrated stock solutions in distilled water and stored in aliquots at ~20°C until use. Stocks were thawed once and diluted into the superfusing solution. Nucleotide analogs were obtained from Sigma. 2-MeSATP and pyridoxalphosphate-6-azophenyl-2’-4’-disulfonic acid (PPADS) were obtained from Tocris Cookson Inc. (Bristol, UK). PTX (Sigma) was dissolved in 50% glycerol containing 50 mM Tris, 10 mM glycine, and 0.5 M NaCl, pH 7.5.

Data Analysis. Ca2+ entry into chromaffin cells was determined by integration of Ica. The left limit was set ~3 ms into the voltage pulse to exclude the major portion of the contaminating Na+ current. ΔCa2+ measurements were performed as described previously (Powell et al., 2000).

Concentration-response data obtained from individual cells were fitted with the Hill equation Y = (X50 + M)/(X50 + (EC50)nH), where Y is the response, X is the agonist concentration, nH is the Hill coefficient, M is maximum response, and EC50 is the concentration of agonist evoking 50% of the maximum response. pEC50 is the −log10 value of the EC50. Data are presented as mean ± S.E.M., and differences between means were tested using either paired or independent Student’s t test, as appropriate.

Results

Measurements of Ica in Chromaffin Cells. The effects of adenine and uridine nucleotides on Ica in bovine chromaffin cells were examined (Fig. 1). Currents were activated every 30 s with step depolarizations to +20 mV from a holding potential of ~90 mV. Superfusion with ATP or the P2Y-selective analog 2-MeSATP had no effect on the holding current but reversibly inhibited Ica by 45 ± 3% (100 μM ATP, n = 13) and 44 ± 4% (100 mM 2-MeSATP, n = 11). UTP (100 μM) also inhibited Ica (36 ± 6%, n = 11) without changing the holding current. Preceding the test pulse by a 20-ms depolarizing prepulse to 120 mV reduced the inhibitory effect.

Table 1

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
<th>Expected Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2Y1</td>
<td>5’-GCCAGCCGGCTAAAGTCGAT-3’</td>
<td>5’-CAGCCCAAAATACCAACCC-3’</td>
<td>599</td>
</tr>
<tr>
<td>P2Y2</td>
<td>5’-ACTCTGCACCCCAAGC-3’</td>
<td>5’-GAACGCGAGAAACGACG-3’</td>
<td>275</td>
</tr>
<tr>
<td>P2Y5</td>
<td>5’-CTCTAGAGGCGCCTTGTCCTTC-3’</td>
<td>5’-GGGAGCCGGATCAGAC-3’</td>
<td>433</td>
</tr>
<tr>
<td>P2Y12</td>
<td>5’-TGATGGCTGAGAGCAAGACAC-3’</td>
<td>5’-TTTCTGCTTGGGAGAATCT-3’</td>
<td>205</td>
</tr>
<tr>
<td>P2Y14</td>
<td>5’-GCCATCGTTCTCCTGGGCTCA-3’</td>
<td>5’-TTGAGGGGATTCTGGCAATGEGTGA-3’</td>
<td>447</td>
</tr>
</tbody>
</table>
of 2-MeSATP to 15.5 ± 3.5% (n = 3) and of UTP to 8 ± 2% (n = 3) (Fig. 1C). The voltage-dependence of the inhibitory effect was also observed by examining the effect of 2-MeSATP on the current-voltage relationship (data not shown). Inhibition of \(I_{\text{ca}} \) by 2-MeSATP was significantly reduced at potentials positive to +30 mV. Furthermore, 2-MeSATP produced a significant depolarizing shift in the activation curve \((V_{50} \text{ control}, 14.8 ± 3.7 \text{ mV}; 2-\text{MeSATP}, 22.4 ± 4.7 \text{ mV}; n = 6, p < 0.05) \). The voltage-sensitivity of the inhibitory effects of the purines and pyrimidines on \(I_{\text{ca}} \) is consistent with a signaling pathway that involves direct modulation of the channels by \(G_{\beta\gamma} \) subunits (Dolphin, 2003). Treatment of chromaffin cells with PTX (250 ng/ml for 24 h) completely blocked the effect of both 2-MeSATP (3.5 ± 0.8%, n = 4) and UTP (2.8 ± 1.0%, n = 4) (Fig. 1, D and E), confirming the sole involvement of \(G_{\text{so}} \)-coupled P2Y receptor(s) in the modulation of \(I_{\text{ca}} \). In contrast to heterologously expressed P2Y4 receptors (Filippov et al., 2003), the inhibition produced by UTP in chromaffin cells was not sensitive to cell dialysis; application of 30 \(\mu \text{M} \) UTP (\(\sim \text{EC}_{50} \) concentration) inhibited \(I_{\text{ca}} \) recorded in the whole-cell configuration by 15.2 ± 2.1% (n = 6) and by 16.3 ± 3.1% (n = 8) in the perforated-patch configuration.

Involvement of \(\text{Ca}^{2+} \) Mobilizing P2Y or P2X Receptors in VOCC Inhibition. To investigate the possible contribution from \(\text{Ca}^{2+} \)-mobilizing P2 receptors to inhibition of VOCCs, we loaded chromaffin cells with the \(\text{Ca}^{2+} \)-sensitive dye Fura 2 to monitor \([\text{Ca}^{2+}]_i\). In 10 of 12 cells examined, neither ATP (100 \(\mu \text{M} \)) nor UTP (100 \(\mu \text{M} \)) produced any increase in \([\text{Ca}^{2+}]_i\); in these same cells, histamine (100 \(\mu \text{M} \)) and angiotensin II (300 nM), agonists known to activate PLC-coupled receptors in chromaffin cells (Cheek et al., 1993; Teschemacher and Seward, 2000), produced robust increases in \([\text{Ca}^{2+}]_i\) (Fig. 2). Superfusion with 2-MeSATP (100 nM) also failed to produce any significant change in basal \([\text{Ca}^{2+}]_i\) (mean, 186% of control). However, both of these cells were found to be relatively unresponsive to histamine (mean value of 124% of control compared with 279% for ATP/UTP-nonresponsive cells) and had approximately half the diameter of chromaffin cells usually selected for electrophysiological investigation (mean membrane capacitance, 7.7 ± 0.5 pF, n = 20, corresponding to a diameter of \(\sim 15 \mu \text{m} \)). Whether this minor population of cells corresponds to noradrenergic or cortical cells, which make up 10 to 20% of adrenal medullary cultures, was not investigated further. From these results we can conclude that neither \(\text{Ca}^{2+} \)-mobilizing P2Y receptors nor PLC-coupled P2Y1, P2Y2, P2Y4, and P2Y6 receptors are functionally detectable in the majority of chromaffin cells.

Agonist Profile of P2Y Receptors in Chromaffin Cells. The relative paucity of high-affinity subtype-selective ligands complicates the unambiguous identification of P2Y receptors within intact tissues. The method most commonly used to identify native P2Y receptors is to examine the relative order of potency of numerous purine and pyrimidine analogs. We examined the efficacy of a number of commonly used purine and pyrimidine analogs to inhibit \(I_{\text{ca}} \) in chromaffin cells. Agonist-profiling yielded an agonist order of potency of 2-MeSATP \(\sim \) 2MeSADP \(\gg \) ATP \(\gg \) ADP \(\gg \) ATP\(_{\gamma}S \gg \) UTP \(\gg \) UDP (Fig. 3A). \(\alpha\beta\)-Methylene-ATP and adenosine were inactive (100 \(\mu \text{M} \), data not shown). 2-MeSATP, 2-MeSADP, ATP, ADP, and ATP\(_{\gamma}S \) were full agonists.

Fig. 1. P2Y inhibition of \(I_{\text{ca}} \) in adrenal chromaffin cells. A, representative current traces from a single cell demonstrating ATP (10 \(\mu \text{M} \)) inhibition of \(I_{\text{ca}} \), evoked by 20-ms voltage steps from −90 mV to a test potential of +20 mV at a frequency of 0.067 Hz. Currents were recorded at the time points illustrated in B. The rapidly inactivating (\(< 3 \text{ ms} \) inward current seen at the beginning of the traces are caused by opening of tetrodotoxin-sensitive voltage-activated Na\(^+\) channels; these currents have been truncated for illustrative purposes only. B, diary plots of the effect of ATP on normalized \(I_{\text{ca}} \) as measured by integrating \(I_{\text{ca}} \) and corresponding holding current (C), measured at −90 mV, 3 ms before application of the voltage step. Data shown are the mean of four cells ± S.E.M. The bar above the graph indicates the time of agonist application. C, superimposed current traces recorded in a single chromaffin cell before (solid gray line) and during (solid black line) application of UTP (100 \(\mu \text{M} \)) in response to a 20-ms test pulse from −90 mV to +20 mV. Preceding the test pulse by a 20-ms depolarization to +120 mV (broken line) reversed the inhibition by UTP. D, superimposed current traces from a PTX-treated chromaffin cell before (solid gray line, labeled C) and during application of UTP (100 \(\mu \text{M} \)) (solid black line). E, superimposed current traces from another PTX-treated chromaffin cell recorded before (solid gray line, labeled C) and during application of 2-MeSATP (100 nM) (solid black line). PTX treatment completely blocked the inhibitory effects of nucleotides of \(I_{\text{ca}} \).
Application of a submaximal concentration of UTP (10 μM) produced a full inhibitory response (Fig. 3A), suggesting that it may act as a partial agonist on a receptor with mixed purine/pyrimidine sensitivity. To test this possibility, the effects of coapplication of a uridine analogs (Table 2), and UTP was incapable of exerting a significant difference (Table 2).

UTP was applied for 15 min and then washed out briefly to evaluate the control inhibition. Subsequent to this, either 2-MeSATP or UTP, to examine the rate and cross-desensitization of nucleotide inhibition of ICa (Fig. 4A). In the same cells, application of 2-MeSATP inhibited ICa by 48 ± 6% and 49 ± 6% (n = 4) before and after perfusion with UTP, showing that the decline in ICa inhibition seen during perfusion with UTP was not caused by rundown of the channels but rather desensitization of the receptor. Moreover, because the response to 2-MeSATP was unaffected by desensitization of the UTP response, we can conclude that there is no cross-desensitization of the purine- and pyrimidine-preferring receptors in these cells. The desensitized response of UTP did not recover after an 11-min wash period.

In response to prolonged activation, many G-protein–coupled receptors undergo desensitization; UTP-preferring P2Y4 receptors can be distinguished from UDP-preferring P2Y6 receptors in that they show rapid desensitization (Brinson and Harden, 2001). Thus, to further characterize the UTP receptor in chromaffin cells, we examined the rate and cross-desensitization of nucleotide inhibition of ICa (Fig. 4). The general protocol to study desensitization was an initial 3-min application of either 2-MeSATP or UTP, to evaluate the control inhibition. Subsequent to this, either 2-MeSATP or UTP was applied for 15 min and then washed out briefly before 2-MeSATP and UTP were reapplied to check for cross-desensitization. With prolonged superfusion of UTP, the inhibition of ICa was reduced from 35 ± 9% to 11 ± 6% (Fig. 4A). In the same cells, application of 2-MeSATP inhibited ICa by 48 ± 6% and 49 ± 6% (n = 4) before and after perfusion with UTP, showing that the decline in ICa inhibition seen during perfusion with UTP was not caused by rundown of the channels but rather desensitization of the receptor. Moreover, because the response to 2-MeSATP was unaffected by desensitization of the UTP response, we can conclude that there is no cross-desensitization of the purine- and pyrimidine-preferring receptors in these cells. The desensitized response of UTP did not recover after an 11-min wash period.

Fig. 2. Involvement of Ca2+-mobilizing P2 receptors. A, representative fluorescence measurements of cytosolic [Ca2+]i. Changes were measured with Fura 2 (expressed as the ratio of emission at 340/380 nm) from a single unclamped chromaffin cell after perfusion with ATP (100 μM), UTP (100 μM), histamine (100 μM), and angiotensin II (300 nM) as indicated by the bars above the trace. B, mean change in resting [Ca2+]i produced by the indicated agonists for n = 10 cells. Neither ATP nor UTP elicits a change in resting [Ca2+]i in chromaffin cells. **, statistically significant difference (p < 0.01) from baseline.

Fig. 3. Concentration-response curves for the inhibition of ICa by various nucleotides. A, the percentage inhibition in integrated Ca2+ entry through ICa produced by a series of nucleotide agonists is shown. Each agonist concentration was applied for 2 to 3 min until an equilibrium response was observed and then washed for 5 to 10 min to ensure full reversal of the inhibition. All points represent the mean ± S.E.M. of 3 to 15 chromaffin cells. Lines drawn through the data represent the best fit to the Hill equation. B, effect of UTP on the concentration-response curve for 2-MeSATP inhibition of ICa. Each point represents the mean ± S.E.M. of four cells. UTP (10 μM) was coapplied for 2 min with increasing concentrations of 2-MeSATP (10 pM to 10 nM). UTP did not change the maximum response produced by 2-MeSATP, showing that the responses were nonadditive, nor did it produce a significant shift in the concentration-response curve.
was back to 37 ± 6%. The size of the response to UTP (100 μM) was slightly decreased on the second application (28 ± 13% versus 19 ± 9%; n = 4); however, this was not significant.

Antagonist Sensitivity of P2Y Receptors in Chromaffin Cells. The agonist selectivity and PTX sensitivity of the P2Y receptor(s) expressed in bovine adrenal chromaffin cells do not match that reported for any single cloned mammalian P2Y receptor. We therefore proceeded to examine the antagonist sensitivity of the receptor(s). PPADS has been shown to be an antagonist at P2Y1, P2Y2, P2Y6, and P2Y13 receptors (Marteau et al., 2003) but not at P2Y4 receptors (Boyer et al., 1994; Charlton et al., 1996) or human P2Y12 receptors (Takasaki et al., 2001). PPADS antagonized the inhibitory effects of 2-MeSATP (1 nM) and UTP (30 μM) in a reversible manner. Schild analysis of PPADS antagonism of 2-MeSATP inhibition of I_{Ca} showed that the antagonist was acting in a competitive manner, with an apparent pA₂ value of 6.42 ± 0.33 (Fig. 5A). Examination of whether PPADS produced competitive antagonism of the UTP-induced inhibition of I_{Ca} was not carried out because of the low potency of UTP. Finally, we examined the ability of the antithrombotic drug ARC69931MX, reported to be selective for P2Y12 and P2Y13 receptors (Ingall et al., 1999; Marteau et al., 2003), to antagonize the regulation of I_{Ca} in chromaffin cells. Superfusion with ARC69931MX (1 μM) for 1 to 3 min had no effect on I_{Ca} (106 ± 12% of control, n = 4), but in the same cells it largely abolished the inhibition produced by ATP (100 μM) from 49 ± 4% to 6 ± 5% (n = 4). Schild analysis of ARC69931MX antagonism of 2-MeSATP inhibition of I_{Ca} gave an apparent pA₂ value of 9.90 ± 0.06. Inhibition of I_{Ca} by 30 μM UTP, however, persisted in the presence of ARC69931MX (mean, 20 ± 9%; n = 3), supporting the notion that distinct ATP and UTP receptors are expressed by chromaffin cells.

Measurements of Exocytosis in Chromaffin Cells. An increase in C_m follows vesicle fusion after Ca^{2+} entry and provides a measurement of exocytosis corresponding to 2 IF per vesicle fusion. We therefore used C_m measurements to determine the effects of VOCO inhibition by nucleotides on exocytosis from bovine chromaffin cells (Fig. 5, B and C). Application of ATP (100 μM) resulted in a marked decrease in vesicle fusion (Fig. 5B). This inhibitory effect of ATP on exocytosis was completely blocked by the P2Y_{12}-specific antagonist ARC69931MX (Fig. 5C).

Cloning of the Bovine P2Y_{12} Receptor. Taken together, the pharmacological data obtained from bovine chromaffin cells suggest that the purine receptor responsible for inhibition of I_{Ca} and exocytosis is most similar to that of P2Y_{12} or P2Y_{13} except that ATP was a full agonist rather than a weak partial agonist (Marteau et al., 2003) and PPADS is an antagonist. Unlike the pharmacology of the nucleotide responses observed in the P2Y receptors expressed in bovine chromaffin cells, human P2Y_{13} is unresponsive to both 2-MeSATP and ATP (Communi et al., 2001). Human P2Y_{12}, however, is responsive to 2-MeSATP in the nanomolar range and ATP in the micromolar range (Takasaki et al., 2001). We therefore cloned the bovine P2Y_{12} receptor to compare its pharmacology with the purine-sensitive G_{i/o}-coupled P2Y receptor expressed in bovine chromaffin cells. A PCR product of 1145 base pairs was amplified from bovine chromaffin cell cDNA using the primers 2ndby12fullf and 2ndby12fullr. This sequence is available in the European Molecular Biology Laboratory database under the accession number AJ623293. The sequence contained an open-reading frame of 339 amino acids with a consensus Kozak sequence at the starting methionine. CLUSTAL alignment of the deduced bovine P2Y_{12} amino acid sequence with human, rat, and mouse P2Y receptors confirmed that the nucleotide sequence corresponds to P2Y_{12} and not to a related receptor such as P2Y_{14} (Fig. 6A). The cloned bovine receptor showed strong sequence identity to the known mammalian P2Y_{12} sequences with percentage identities of 89.4, 84.4, and 85.9% for human, rat, and mouse P2Y_{12} sequences, respectively. Alignment of the human and bovine P2Y_{12} amino acid sequences (Fig. 6B) demonstrates the positions of the 37 residues that differ between species. There are no differences in amino acid sequence in the region from TM6 through to TM7, a region that has been implicated previously in agonist binding in the P2Y_2 receptor (Erb et al., 1995).

Measurements of Potassium Currents in X. laevis Oocytes Expressing the Bovine P2Y_{12} Receptor. Coexpression in X. laevis oocytes of the cloned cardiac inward-rectifier subunits Kir 3.1 and Kir 3.4 resulted in robust expression of an inwardly rectifying potassium channel (Fig.
Activation of this channel by G protein release was used to characterize the pharmacology of the cloned bovine P2Y₁₂ receptor. To confirm the absence of endogenous oocyte channels or receptors that could interfere with results by coupling to the exogenous bovine P2Y₁₂ receptor or rat Kir channels, noninjected oocytes, and oocytes injected with cRNA for the bovine P2Y₁₂ receptor only or only the Kir 3.1 and Kir 3.4 cRNAs were tested. These oocytes showed no nucleotided- evoked currents (data not shown). When oocytes were co- injected with cRNAs for the bovine P2Y₁₂ receptor (50 pg) and rat Kir 3.1 + 3.4 channels (1.25 ng each), nucleotide-evoked currents were observed. These currents reached a peak within 30 s, did not desensitize with the continued agonist application, and decayed back to baseline within 3 min of agonist removal.

Concentration-response data were obtained by using the voltage protocol depicted in Fig. 7A (and described in detail under Materials and Methods). Similar to the agonist profile obtained in bovine chromaffin cells, ATP and ADP were essentially equipotent at the cloned bovine P2Y₁₂ receptor, showing EC₅₀ values of 3.74 µM (pEC₅₀ = 5.47 ± 0.10) and 1.56 µM (pEC₅₀ = 5.97 ± 0.17), respectively (Fig. 7B). 2-MeSADP and 2-MeSATP were considerably more potent, with EC₅₀ values of 0.28 nM (pEC₅₀ = 9.55 ± 0.10) and 0.84 nM (pEC₅₀ = 9.31 ± 0.21), respectively. Uridine nucleotides showed varying degrees of potency with UDP, a full agonist (EC₅₀ = 105.5 µM, pEC₅₀ = 4.12 ± 0.64), UTP, a very weak partial agonist (~10% maximal UDP response with 10 mM UTP), and UMP, inactive.

The effects of the antagonists ARC69931MX and PPADS were also determined at the cloned P2Y₁₂ receptor in X. laevis oocytes (Fig. 7C). The P2Y₁₂-specific antagonist...
ARC69931MX completely blocked responses of the bovine P2Y12 receptor to 10 μM ADP (IC50 = 0.78 nM, pIC50 = 8.67 ± 0.06) and 10 μM ATP (IC50 = 2.1 nM, pIC50 = 9.14 ± 0.44). Furthermore, the responses to 1 mM UDP, a concentration normally eliciting a 100% response, was blocked completely by 1 μM ARC69931MX (n = 4 oocytes) (data not shown). PPADS, a nonspecific P2 receptor antagonist, blocked responses to 1 nM 2MeSATP with an IC50 value of 1.71 μM (pIC50 = 5.80 ± 0.05).

Detection of P2Y Receptor mRNA in Bovine Chromaffin Cells by RT-PCR. Of the nine known mammalian P2Y receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, P2Y14, and P2Y15) it was possible to design sequence-specific primers for bovine P2Y1, P2Y2, P2Y6, P2Y12, and P2Y14 (Table 1). Amplicons of the expected size were obtained for all primer pairs when PCR was performed on bovine genomic DNA (data not shown). Three primer pairs (P2Y1, P2Y12, and P2Y14) gave amplicons of the expected size when RT-PCR was performed on first-strand cDNA prepared from isolated bovine chromaffin cells (Fig. 8). Faint bands were observed in amplifications using P2Y2 and P2Y6 primers. However, these bands were not of the correct size and are therefore likely to correspond to nonspecific amplifications. No bands were observed in control reactions minus reverse transcriptase, confirming the absence of contaminating genomic DNA. Thus, from the RT-PCR analysis, transcripts for P2Y1, P2Y12, and P2Y14 but not P2Y2 or P2Y6 could be detected in bovine chromaffin cells.

Discussion

Like other classical neurotransmitters, it is now clear that postsynaptic receptors for nucleotides exist as either ligand-gated ion channels (ATP-sensitive P2X receptors), ideally suited to rapid neurotransmission, or G-protein–coupled P2Y receptors, suited to slower modulatory roles. Evidence for presynaptic nucleotide receptors in the peripheral and central nervous systems is also accumulating (Cunha and Ribeiro, 2000; Boehm and Kubista, 2002; Zhang et al., 2003). However, positive identification of the receptor subtypes mediating presynaptic effects of nucleotides has been complicated by a lack of selective pharmacological tools and a paucity of data from receptor knockout studies. We have shown previously that activation of a PTX-sensitive G_{i/o}-protein–coupled P2Y receptor in adrenal chromaffin cells inhibits exocytosis and Ca^{2+} entry through N-type and P/Q-type VOCCs (Powell et al., 2000); a similar mechanism is believed to underlie purinergic presynaptic inhibition of sympathetic neurotransmission. In this study, we have identified one of the inhibitory receptors in chromaffin cells as P2Y12. In addition, we have found evidence for a second UTP-preferring receptor that acts in a similar manner. The modulation of VOCCs in chromaffin cells by both nucleotide receptors showed all the characteristic properties of G_{i/o} signaling, namely sensitivity to voltage and PTX (Dolphin, 2003). This signaling pathway is known to be membrane-delimited, to be independent of diffusible second messengers, and to involve direct coupling between the receptor, G_{i/o} βγ subunits, and intracellular domains found on the α1A and α1B pore-forming subunits that make up neuronal N- and P/Q-VOCCs.

Similar inhibition of N-type VOCCs by heterologously expressed P2Y12 and the closely related P2Y13 receptor has also been reported (Simon et al., 2002; Kubista et al., 2003; Wirkner et al., 2004). In the chromaffin-like pheochromocytoma (PC-12) cell line, inhibition of N-type channels by a P2Y12-like receptor is found at the cell soma (Vartian and Boehm, 2001; Kubista et al., 2003) as well as in processes...
Kulick and von Kügelgen, 2002) in which it contributes to an autocrine-paracrine inhibitory loop regulating exocytotic nucleotide release (Moskvina et al., 2003). One notable difference between the PC-12 receptor and bovine P2Y12 receptor is sensitivity to PPADS. We found it to be a competitive antagonist of the bovine receptor, whereas in PC-12 cells, which are rat-derived, it is reported to be ineffective (Vartian and Boehm, 2001; Kulick and von Kügelgen, 2002; Unterberger et al., 2002). Species differences in the pharmacology of other P2Y receptor subtypes have been reported previously (Sak and Webb, 2002).

In this study, we describe the cloning and characterization of a new member of the mammalian P2Y receptor family: bovine P2Y12. At the amino acid level, the bovine receptor is similar to human P2Y12, with 89% of residues identical between species (compared with 85% between human and rat P2Y12). However, the agonist selectivity of the receptor showed some slight differences from that reported for the human P2Y12 receptor, most notably for ATP and UDP. Whether ATP acts as an agonist at human P2Y12 is unclear and most likely depends on cell type and receptor density. At purified and reconstituted human P2Y12, in which nucleotide breakdown has been eliminated, ATP is not an agonist but is rather a low-affinity antagonist (Bodor et al., 2003). However, recombinant human P2Y12 expressed in Chinese hamster ovary cells shows an EC50 value for ATP (~1 μM) similar to that reported for native rat P2Y12 in brain endothelial capillary cells (Simon et al., 2002) and to values reported here for bovine P2Y12 in chromaffin cells and oocytes. In those studies in which ATP was reported as a P2Y12 agonist, ATP potency is an order of magnitude lower than ADP (Simon et al., 2002). At bovine P2Y12, however, in both native bovine chromaffin cells and X. laevis oocytes coexpressing recombinant bovine P2Y12 with rat inwardly rectifying potassium channels, ATP acts as a full agonist equipotent to ADP. Nucleotide breakdown of ATP to ADP can be excluded as an explanation of the bovine P2Y12 ATP response, because for this to be the case, it would require that 100% of ATP be instantaneously broken down by X. laevis oocytes and bovine chromaffin cells in a constant perfusion system, and in any case, in the bovine chromaffin cell system, ATP was actually slightly more potent than ADP.

A second difference in agonist selectivity between bovine and human P2Y12 was the sensitivity to UDP. UDP is inactive at human P2Y12 (Hollopeter et al., 2001; Takasaki et al., 2002). Mean currents were normalized to 100 μM ADP (maximal response). Error bars show ± standard error; n = 5 to 6 oocytes. C, the sensitivity of bovine P2Y12 to the antagonists PPADS and ARC69931MX was determined in X. laevis oocytes coexpressing the rat Kir3.1 and Kir 3.4 channels. Recordings were made at a holding membrane potential of −60 mV using the protocol depicted in A. Currents in response to an EC50 application of agonist (10 μM for ADP and ATP; 1 nM for 2-MeSATP) were recorded in the presence of varying concentrations of antagonists and are expressed as a percentage of the EC50 response obtained in the absence of antagonist. The P2Y12-specific antagonist ARC69931MX completely blocked responses of the bovine P2Y12 receptor to 10 μM ADP and 10 μM ATP with IC50 values of 0.78 nM (pIC50 = 9.14 ± 0.04) and 2.1 nM (pIC50 = 9.14 ± 0.04), respectively. PPADS, a nonspecific P2 receptor antagonist, blocked responses to 1 nM 2-MeSATP with an IC50 of 1.71 μM (pIC50 = 5.80 ± 0.05); n = 4 to 5 oocytes.

Fig. 7. Concentration-response data for the bovine P2Y12 receptor coexpressed with rat Kir 3.1 and Kir 3.4 channels in X. laevis oocytes. Two-electrode voltage-clamp recordings were made from oocytes expressing bovine P2Y12, rat Kir 3.1, and rat Kir 3.4. A, currents recorded in response to UDP, 2-MeSATP, and ATP. Oocytes were clamped at 0 mV during the initial agonist application and recovery periods between applications. One minute after agonist application commenced, the holding potential was stepped down to −60 mV for 5 s and the peak current was recorded. A ramp from −60 mV to +90 mV over 2 s was applied after the 5-s recording period. No agonist-induced currents or rectification was observed in oocytes expressing bovine P2Y12 alone. B, concentration-response curves for the bovine P2Y12 receptor expressed in X. laevis oocytes coexpressing the rat Kir 3.1 and Kir 3.4 channels. Mean currents were normalized to 100 μM ADP (maximal response). Error bars show ± standard error; n = 5 to 6 oocytes. C, the sensitivity of bovine P2Y12 to the antagonists PPADS and ARC69931MX was determined in X. laevis oocytes coexpressing the rat Kir3.1 and Kir 3.1 channels. Recordings were made at a holding membrane potential of −60 mV using the protocol depicted in A. Currents in response to an EC50 application of agonist (10 μM for ADP and ATP; 1 nM for 2-MeSATP) were recorded in the presence of varying concentrations of antagonists and are expressed as a percentage of the EC50 response obtained in the absence of antagonist. The P2Y12-specific antagonist ARC69931MX completely blocked responses of the bovine P2Y12 receptor to 10 μM ADP and 10 μM ATP with IC50 values of 0.78 nM (pIC50 = 9.14 ± 0.04) and 2.1 nM (pIC50 = 9.14 ± 0.04), respectively. PPADS, a nonspecific P2 receptor antagonist, blocked responses to 1 nM 2-MeSATP with an IC50 of 1.71 μM (pIC50 = 5.80 ± 0.05); n = 4 to 5 oocytes.
2001). However, at bovine P2Y\textsubscript{12} expressed in X. laevis oocytes, UDP is a full agonist, albeit with a low potency (EC\textsubscript{50} ~100 μM). Although unlikely, a contamination of the commercial UDP stocks used in this study with 1% ADP or ATP would be enough to explain the UDP sensitivity observed. To rule out this possibility, we performed high-performance liquid chromatography on UDP alone and on UDP spiked with ATP and ADP. No contaminating peak in the sample was greater than 0.01%, and no contaminating peak corresponded to either ATP or ADP. We also observed a small response to UTP in bovine P2Y\textsubscript{12} expressed in X. laevis oocytes (~10% maximal response to 10 μM UTP). At such high concentrations of UTP, the possibility that responses were caused by a breakdown of UTP to UDP could not be ruled out.

The UTP receptor inhibiting IC\textsubscript{a} and exocytosis in chromaffin cells has not been identified at the molecular level. UTP does not seem to be acting as a partial agonist at the bovine P2Y\textsubscript{12} receptor because it was insensitive to ARC69931MX, caused no shift in the 2-MeSATP concentration-response curve, showed no cross-desensitization with the purine receptor in chromaffin cells, and had a very low potency at the cloned receptor. Heterologously expressed P2Y\textsubscript{2}, P2Y\textsubscript{4}, and P2Y\textsubscript{6} receptors have also been shown to inhibit IC\textsubscript{a} in a neuronal expression system (Filippov et al., 1999, 2003). However, there are notable differences between the results from the expression studies and those found with the endogenous receptor in chromaffin cells; thus, even when overexpressed in neurons, P2Y\textsubscript{2}, P2Y\textsubscript{4}, and P2Y\textsubscript{6} maintain their ability to couple to PTX-insensitive G\textsubscript{i} proteins and inhibit M potassium currents, which would lead to an increase in [Ca2+]. UTP does not cause calcium mobilization or entry in chromaffin cells, indicating that it is not acting through a G\textsubscript{i} or PLC-coupled receptor in these cells. Furthermore, inhibition of IC\textsubscript{a} by heterologously expressed P2Y\textsubscript{4} is lost in whole-cell recording of neurons, whereas the receptor in chromaffin cells showed no such sensitivity to intracellular dialysis. Because a positive RT-PCR result was obtained for P2Y\textsubscript{14} expression in bovine chromaffin cells (Fig. 8), we considered the possibility that UTP could be acting as a low-potency agonist at the bovine P2Y\textsubscript{14} receptor in chromaffin cells. However, UDP-glucose, the cognate ligand for human P2Y\textsubscript{14}, gave no response when tested in bovine chromaffin cells (E. Seward, unpublished data). Thus, either bovine P2Y\textsubscript{14} does not couple to VOCCs in bovine chromaffin cells or the P2Y\textsubscript{14} RT-PCR product originated from nontranslated mRNA in chromaffin cells or from P2Y\textsubscript{14} in a contaminating cell type. It is interesting to note that UTP inhibition of VOCCs has been observed in parasympathetic neurons (Abe et al., 2003), and evidence for a presynaptic inhibitory UTP receptor on sympathetic nerves of the rat and mouse vas deferens has also been reported (Von Kögelgen et al., 1989; Forsyth et al., 1991). Further studies will be required to determine whether one of the still-orphaned G-protein–coupled receptors that share significant sequence identity with the P2Y\textsubscript{12} receptor represent a pyrimidine-selective G\textsubscript{i}-coupled P2Y receptor in the ever-growing P2 receptor family.

Finally, the results from this study confirm that P2Y\textsubscript{12} receptors, the targets of antithrombotic agents, are not restricted to platelets but are also expressed in neuroendocrine cells, in which they act as inhibitory receptors to regulate the activity of neuronal VOCCs and vesicular neurotransmitter release. Expression of these receptors at nerve terminals could serve as an important autocrine inhibitory feedback loop to regulate neurotransmission in the periphery and mediate heterosynaptic suppression in the central nervous system.

Acknowledgments

We thank Dr. Tania Webb for help and advice with cloning the bovine P2Y\textsubscript{12} receptor and preparation of the manuscript, Prof. Mark Boyett for providing the Kir 2.1 and Kir 3.4 plasmids, Prof. Mike Boord for help with high-performance liquid chromatography analysis of nucleotides, Prof. Alan North for critical review of the manuscript, and AstraZeneca for the kind donation of ARC69931MX.

References

Currie KP and Fox AP (1996) ATP serves as a negative feedback inhibitor of voltage-gated Ca2+ channel currents in cultured bovine adrenal chromaffin cells. Neurons 16:1027–1036.

Address correspondence to: Dr. Elizabeth P. Seward, Department of Biomedical Sciences, University of Sheffield, Aldred Denny Building, Western Bank, Sheffield, S10 2TN, United Kingdom. E-mail: e.p.seward@sheffield.ac.uk