Inhibition of L-Type Ca\textsubscript{v}1.2 Ca2+ Channels by 2,(4-Morpholiny1)-8-phenyl-4H-1-benzopyran-4-one (LY294002) and 2-[1-(3-Dimethylamino-propyl]-5-methoxyindol-3-yl]-3-(1H-indol-3-yl) Maleimide (Gö6983)

A. Welling, F. Hofmann, and J. W. Wegener

Institut für Pharmakologie und Toxikologie, Technische Universität München, München, Germany

Received August 11, 2004; accepted November 9, 2004

ABSTRACT

Phosphatidylinositol 3-kinase (PI3-K) is involved in physiological processes of cellular proliferation and inflammation and, as postulated recently, in the regulation of L-type Ca2+ channels. The latter conclusion arose in part from the inhibitory action of the compound 2,(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), which has been established as a selective PI3-K inhibitor (IC\textsubscript{50} = 1.4 \textmu M). Herein we show, however, that LY294002 and an inhibitor of protein kinase C (PKC), 2-[1-(3-dimethylamino-propyl]-5-methoxyindol-3-yl]-3-(1H-indol-3-yl) maleimide (Gö6983), act as direct Ca2+-channel inhibitors, with IC\textsubscript{50} values of approximately 20 and 10 \textmu M, respectively. Because both drugs are commonly used at concentrations of approximately 10 \textmu M or higher, the interpretation of such experiments is questionable with respect to a regulatory action of PI3-K or PKC on L-type Ca2+ channels.

L-type Ca2+-channel activity is crucial for heartbeat and smooth muscle tonus. Recent evidence has shown that, in both tissues, L-type Ca2+ channels are modulated by the phosphatidylinositol 3-kinase (PI3-K) pathway, which is mainly known to be involved in cell proliferation and inflammation (Wymann et al., 2003). In smooth muscle, PI3-K was reported to trigger excitation-contraction coupling (McDowell et al., 2004). However, most of the evidence either for coupling of cholinergic stimulation to Ca2+-channel activity or for regulating excitation-contraction coupling via PI3-K comes from the inhibitory effect of the compound 2,(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), which has been established as a selective PI3-K inhibitor (IC\textsubscript{50} = 1.4 \textmu M). Herein we show, however, that LY294002 and an inhibitor of protein kinase C (PKC), 2-[1-(3-dimethylamino-propyl]-5-methoxyindol-3-yl]-3-(1H-indol-3-yl) maleimide (Gö6983), act as direct Ca2+-channel inhibitors, with IC\textsubscript{50} values of approximately 20 and 10 \textmu M, respectively. Because both drugs are commonly used at concentrations of approximately 10 \textmu M or higher, the interpretation of such experiments is questionable with respect to a regulatory action of PI3-K or PKC on L-type Ca2+ channels.

Materials and Methods

Generation of Ca\textsubscript{v}1.2-Deficient Mice. All experiments complied with the animal protection laws of Germany. The generation of control (CTR) mice and mice deficient in the smooth muscle Ca\textsubscript{v}1.2 calcium channel (smooth muscle \alpha\textsubscript{1c-}subunit calcium-channel knockout, SMACKO) has been described previously (Moosmang et al., 2003). Cell Transfection and Culture. HEK 293 cells were stably transfected with the \alpha\textsubscript{1b} (Ca\textsubscript{v}1.2b) and the \beta\textsubscript{2a} subunit of the smooth muscle L-type calcium channel (GenBank accession numbers X55763 and X64298, respectively) or with only a carboxy-terminal–truncated version of the \alpha\textsubscript{1b} subunit, as described previously (Seisenberger et al., 1995). Western Blot. Western blot analysis was performed on transfected HEK 293 cells and on brain tissue from mice using an antibody against the p110 subunit of PI-3K (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) as described previously (Rong et al., 2003).

Tension Recordings. Muscles strips from murine urinary bladder were prepared as described previously (Wegener et al., 2004). Tension was recorded isometrically at 36°C using the myograph 601 (DMT A/S, Aarhus, Denmark).

ABBREVIATIONS: PI3-K, phosphatidylinositol 3-kinase; LY294002, 2,(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one; Gö6983, 2-[1-(3-dimethylamino-propyl]-5-methoxyindol-3-yl]-3-(1H-indol-3-yl) maleimide; Gö6976, 12-(2-cyanoethyl)-6,7,12,12-tetrahydro-13-methyl-5-oxo-5-methoxyindol-3-yl(2,3-d-iminopyrrolo(3,4-c)-carbazole; PKC, protein kinase C; CTR, control; HEK, human embryonic kidney; SMACKO, smooth muscle \alpha\textsubscript{1c-}subunit calcium-channel knockout.
the patch-clamp technique. Experiments were performed at room temperature using Ba\(^{2+}\) as the charge carrier. The bath solution contained 104 mM NaCl, 20 mM tetraethylammonium chloride, 5.4 mM CsCl, 5 mM BaCl\(_2\), 1 mM MgCl\(_2\), 1 mM NaH\(_2\)PO\(_4\), 10 mM glucose, and 5 mM HEPES, pH 7.4 (NaOH). The pipette solution contained 112 mM CsCl, 1 mM MgSO\(_4\), 3 mM Na\(_2\)ATP, 10 mM EGTA, and 5 mM HEPES; pH was adjusted to 7.4 with CsOH. The holding potential was \(-80\) mV. Trains of test pulses were to 0 or \(+10\) mV for 100 ms with 0.2 Hz. Cumulative dose-inhibition curves were measured using two to three different drug concentrations per cell. Drugs were freshly diluted from the stock solution into the bath solution on each experimental day. IC\(_{50}\) values were calculated by fitting the averaged dose-inhibition curves to the Hill equation.

Chemicals. All chemicals used were at least of reagent grade and were purchased from Sigma-Aldrich (St. Louis, MO) unless otherwise indicated. LY294002, wortmannin, G66983, and G66976 were obtained from Calbiochem (San Diego, CA).

Evaluation of Results. Data are presented as original recordings or expressed as means \(\pm\) S.E.M. Effects of the drugs were obtained in quasi–steady-state conditions. Concentration-response curves were fitted using Prism 4.0 software (GraphPad Software Inc., San Diego, CA). Correlation coefficients were \(>0.95\).

Fig. 1. Concentration-dependent effects of carbachol (CCh) on tension in urinary bladder muscle from CTR (circles and triangles) and SMACKO (squares) mice. The muscles were exposed to increasing concentrations of CCh in the absence (open symbols) and presence (closed symbols) of test substances (repeated-measurements design). Test substances, LY294002 (20 \(\mu\)M; A), G66983 (10 \(\mu\)M; B), and wortmannin (100 nM, C) were applied 10 min before initiation of contraction. Data points represent means \(\pm\) S.E.M. \((n = 4–12)\).

Fig. 2. Effects of LY294002 (A and B) and G66983 (C and D) on K\(^+\)-induced tension in urinary bladder muscle from CTR mice. A and C, original recordings of tension. Muscles were depolarized by exchanging 85 mM Na\(^+\) with 85 mM K\(^+\). Bars indicate the presence of 85 mM K\(^+\), 30 \(\mu\)M LY294002 (A), 10 \(\mu\)M G66983 (C), and 100 \(\mu\)M isobutyl-1-methylxanthin (IBMX), which was used to induce maximal relaxation. B and D, concentration-response curves of LY294002 (B) and G66983 (D). Data points represent means \(\pm\) S.E.M. \((n = 4–8)\).
Results and Discussion

L-type Ca\textsubscript{v}1.2 calcium-channel activity mediates contraction induced by stimulation of muscarinic receptors in urinary bladder smooth muscle from mice (Wegener et al., 2004). We tested the possibility that the PI3-K pathway is involved in this cascade as described for vascular smooth muscle (Quignard et al., 2001; Callaghan et al., 2004). Therefore, we examined the effects of LY294002, an inhibitor of PI3-K (Vlahos et al., 1994), and of Gö6983, an inhibitor of PKC isoforms including the PKC\textgreek{z} isof orm (Gschwendt et al., 1996). Both LY294002 (20 \textmu M) and Gö6983 (10 \textmu M) inhibited carbachol-induced contractions of bladder muscles from control mice to approximately 50% but not from SMACKO mice (Fig. 1, A and B). The protein kinase C inhibitor Gö6976 (10 \textmu M), which does not act on the PKC\textgreek{z} isof orm (Gschwendt et al., 1996), was without effect (data not shown). These results implied that the PI3-K/PKC\textgreek{z} pathway is involved in the coupling of muscarinic receptors to Ca\textsubscript{v}1.2 Ca2+ channels, leading to contraction in urinary bladder muscle. However, wortmannin, another inhibitor of PI3-K (IC\textsubscript{50} = 5 nM) (Aracaro and Wymann, 1993), did not inhibit carbachol-induced contractions at 100 nM (Fig. 1C). Higher concentrations of wortmannin (10 \textmu M) reduced contractions (data not shown), probably because of inhibition of myosin light-chain kinase (IC\textsubscript{50} = 200 nM) (Burdyga and Wray, 1999) but not Ca2+ current (Fig. 4C). In addition, in control experiments in which contraction was induced by K+ depolarization, both LY294002 and Gö6983 reduced contractions, with IC\textsubscript{50} values of approximately 18 and 9 \textmu M, respectively (Fig. 2).

Identical results were obtained with muscle rings from aorta.
(data not shown). Atropine (1 μM), an unselective muscarinic antagonist, did not affect K⁺-induced contractions in bladder muscle, confirming that muscarinic receptors are not involved in this response. These results suggested a more direct inhibitory action of the drugs on L-type Ca²⁺ channels because contraction induced by depolarization is completely blocked by dihydropyridines and, thus, primarily mediated by this channel type. Therefore, we tested the effects of both drugs on HEK 293 cells expressing functional L-type Ca²⁺ channels. Because there exist contrary reports whether or not HEK 293 cells contain endogenous PI3-K activity (Naga Prasad et al., 2000; Brock et al., 2003), Western blot analysis on our transfected HEK cells was performed; no p110 protein of the PI3-K isoform, which is believed to influence Ca²⁺ channels (Viard et al., 2004), could be detected (Fig. 3). LY294002 and G66983, but not wortmannin, inhibited voltage-activated Ca²⁺-channel currents in these cells being transfected with α₁b plus β₃a subunit with IC₅₀ values of 12 and 20 μM, respectively (Fig. 4). A similar IC₅₀ value for LY294002 was measured for cells only expressing the α₁b subunit (data not shown). No frequency- (0.1 versus 1 Hz) or voltage-dependent effects (–80 versus –40 mV holding potential) of the drugs were observed. However, current inactivation was accelerated by LY294002 and by G66983, indicating, at least partially, an interaction with the open channel (Fig. 4); time constants were 0.07 ± 0.005 s (n = 5) and 0.27 ± 0.09 s (n = 3) in the presence of LY294002 (30 μM) and G66983 (30 μM), respectively.

In summary, the present study shows that both LY294002 and G66983 exhibit Ca²⁺-antagonistic properties in the concentration range usually applied to selectively block PI3-K (Quignard et al., 2001; Northcott et al., 2002; Wang et al., 2002; Callaghan et al., 2004; McDowell et al., 2004) and PKC (Tao et al., 2003), respectively. Therefore, evidence of a functional coupling of the PI3-K signaling pathway to L-type Ca²⁺-channel activity is hampered by the inhibitory effects of the compounds LY294002 and G66983 on L-type Ca²⁺ channels. The side effects of the putative PI3-K inhibitor LY294002, together with its recently described effect on K⁺ currents (El-Kholy et al., 2003; Sun et al., 2004), limits the usefulness of this drug in the analysis of PI3-K function.

Acknowledgments

We thank S. Paparisto for excellent technical assistance.

References

