Functional Characterization of Gαo Signaling through G Protein-Regulated Inducer of Neurite Outgrowth 1

Hiroko Nakata1 and Tohru Kozasa

Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois

Received June 15, 2004; accepted December 6, 2004

ABSTRACT

G protein-regulated inducer of neurite outgrowth 1 (GRIN1) was initially identified as a binding protein for guanosine 5’-3-O-(thio)triphosphate–bound Gαo. GRIN1 is specifically expressed in brain and interacts selectively with activated α subunits of the Gi subfamily. GRIN1 colocalizes with Gαo at the growth cone of neuronal cells and promotes neurite extension in Neuro2a cells when coexpressed with constitutively active mutant GαoQ205L. These results suggest that GRIN1 functions as a downstream target for Gαo. However, GRIN1 does not contain domains that are homologous to known signaling motifs. To understand the mechanisms of Gαo-GRIN1 pathway, we analyzed functional domains of GRIN1 that are involved in binding with Gαo or with its targeting to the plasma membrane. Using pull-down assays with glutathione S-transferase–fused GRIN1 deletion mutants, Gαo binding regions were localized to amino acid residues 716 to 746 and 797 to 827 of GRIN1. The Gαo binding region of GRIN1 did not demonstrate GTPase accelerating activity for Gαo. GRIN1 localized in the cell periphery in Neuro2a cells, and two cysteine residues at C-terminal region of GRIN1 (Cys818 and Cys819) were shown to be critical for its membrane targeting. Coexpression of GRIN1 with GαoQ205L or GRIN1Δ(717–827), which lacks Gαo binding region, promoted microspike formation in Swiss 3T3 cells or neurite extension in Neuro2a cells. The dominant-negative mutant of Cdc42 blocked these morphological changes. Coexpression of GRIN1 and GαoQ205L stimulated the formation of GTP-bound Cdc42 in Swiss 3T3 cells. These results suggest that the binding of activated Gαo to GRIN1 induces activation of Cdc42, which leads to morphological changes in neuronal cells.

Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) transduce a variety of signals from a large number of seven-transmembrane–type receptors to intracellular effectors (Gilman, 1987; Hepler and Gilman, 1992). Agonist-activated receptors induce dissociation of G protein subunits, generating a GTP-bound form of α subunits and free βγ subunits. Both GTP-α and βγ can regulate downstream effectors. Hydrolysis of GTP to GDP on the α subunit leads to reassociation of α and βγ to form an inactive heterotrimer. More than 30 RGS proteins have been identified as novel regulators of G protein signaling. RGS proteins associate with GTP-bound Gα and, in most cases, accelerate GTPase activity of Gα to facilitate the inactivation of G proteins (Berman et al., 1996; Ross and Wilkie, 2000).

α Subunits of the Gi subfamily are highly expressed in the nervous system. Particularly, Gαo and Gai1 constitute nearly 1% of membrane protein in brain. However, the only well-established effectors of these α subunits are certain isoforms of adenylyl cyclase (Taussig et al., 1994; Kozasa and Gilman, 1995). We have identified recently G protein-regulated inducer of neurite outgrowth 1 and 2 (GRIN1 and GRIN2, respectively) as novel effector candidates for Gαo (Chen et al., 1999). GRIN1 was isolated through screening of a mouse embryo cDNA expression library with phosphorylated guanosine 5’-3-O-(thio)triphosphate–Gaz as a probe. A homolog of GRIN1, GRIN2 (KIAA0514), was identified by database search. GRIN1 and GRIN2 bind selectively to activated forms of Gαo, Gaz, and Gai. Among different tissues, GRIN1 is specifically expressed in the brain. Furthermore, GRIN1 is enriched in the growth cones of neurites similar to Gαo and GAP43 (neuromodulin) (Chen et al., 1999). Coexpression of GRIN1 with the constitutively active mutant of...

ABBREVIATIONS: RGS, regulator of G protein signaling; GRIN1, G protein-regulated inducer of neurite outgrowth 1; DTT, dithiothreitol; GAP, GTPase activating protein; PBS, phosphate-buffered saline; GFP, green fluorescent protein; PCR, polymerase chain reaction; GST, glutathione S-transferase; PAK, p21-activated kinase; PBD, p21-binding domain; PAGE, polyacrylamide gel electrophoresis; DMEM, Dulbecco’s modified Eagle’s medium.

Received June 15, 2004; accepted December 6, 2004

This work was supported by National Institutes of Health grants GM61454 and NS/GM 41441 and by an American Heart Association grant (to T.K.). T.K. is an Established Investigator of the American Heart Association.

1Current address: National Institute of Neuroscience, Department of Biochemistry and Cellular Biology, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.

Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.

doi:10.1124/mol.104.003913.
Gao promoted the extension of neurites in Neuro2a cells. Although GRIN1 does not contain domains that are homologous to other known signaling motifs, these results suggest that the Gao-GRIN1 pathway may be involved in the regulation of neurite growth.

Similar to heterotrimeric G proteins, Rho family GTPases, Cdc42, Rac, and Rho, function as molecular switches by cycling between a GDP-bound, inactive state and a GTP-bound, active state. These GTPases are involved in various cellular processes, such as gene expression, cell-cycle progression, cell polarity, or vesicle trafficking (Symons and Settleman, 2000; Etienne-Manneville and Hall, 2002; Schmidt and Hall, 2002). Among them, the most well-established role of Rho family GTPases is the reorganization of the actin cytoskeleton, which is crucial for cellular responses such as cell migration, adhesion, phagocytosis, or axonal guidance (Dickson, 2001; Etienne-Manneville and Hall, 2002).

In this study, we characterized functional domains of GRIN1 to understand the molecular mechanisms of Gao-GRIN1 signaling. We have identified regions in GRIN1 that are involved in Gao binding or membrane targeting. We also identified a possible link of the Gao-GRIN1 pathway to Cdc42 activation.

Materials and Methods

Materials. The anti-GRIN1 monoclonal antibody and anti-GFP polyclonal antibody were purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, CA). Anti-Flag (M2) antibody was purchased from Upstate Biotechnology (Lake Placid, NY) and Sigma-Aldrich (St. Louis, MO). The anti-Gao monoclonal antibody was purchased from Calbiochem (San Diego, CA). The anti-Rac1 monoclonal antibody was purchased from Transduction Laboratories (Lexington, KY). Rhodamine phalloidin and Alexa Fluor 350-F(ab')2 fragment of goat anti-mouse IgG were from Molecular Probes (Eugene, OR).

[y-32P]GTP was purchased from MP Biomedicals (Irvine, CA). Antibodies against GRIN1 (T116) and Gao (U1901) were described previously (Chen et al., 1999). VECTASHIELD mounting medium was purchased from Vector Laboratories (Burlingame, CA). Fibronectin and laminin were from Sigma-Aldrich. Plasmids for GST-PAK-PBD and Rho family GTPases were kindly provided by Drs. G. Bokoch (Scripps Research Institute, La Jolla, CA) and T. Satoh (Kobe University, Kobe, Japan).

Plasmid Constructs. Mouse GRIN1 cDNA (Chen et al., 1999) was used for the construction of plasmids for GST or GFP fusion proteins. The corresponding fragments of GRIN1 cDNA were subcloned in frame at the C terminus of GST in pGEX-KG or at the C terminus of enhanced GFP in pEGFP-C1 vector. The GRIN1 fragment (797–827) was generated by PCR using the following primers: 5’- ggagctcagcggccgacagc-3’ and 5’- cagcatggtaatacgcagAAGCggcggg-3’. C818A and C819A mutations of GRIN1 were generated using QuickChange site-directed mutagenesis (Stratagene, La Jolla, CA) with primers 5’-ggtagctgacgctcggagcggctcggg-3’ and 5’-ggggcgcccgctcgcgagcgggcccc-3’.

Expression and Purification of Recombinant Proteins. GST-fused GRIN1 mutants, GST-PAK-PBD, or Gao-His6 were expressed in BL21 or JM109 by induction with 100 μM isopropyl β-D-thiogalactoside at 30 or 37°C for 2 h to 3 h, respectively. GST fusion proteins were purified using glutathione Sepharose 4B column (Amersham Biosciences, Piscataway, NJ). Gao-His6 was purified using a nickel-nitrilotriacetic acid column (QIAGEN, Valencia, CA).

Gao Binding Assay. The lysates of Escherichia coli expressing GST-fused GRIN1 mutants were mixed with purified Gao in the binding buffer (50 mM HEPES, pH 8.0, 50 mM NaCl, 50 μM GDP, 5 mM MgCl2, 2 mM DTT, 0.1% C12E10, and protease inhibitors) in the presence or absence of AlF4− (10 mM NaF and 30 μM AlCl3) and incubated on ice for 1 h. The resin was washed twice with wash buffer A (50 mM HEPES, pH 8.0, 100 mM NaCl, 50 μM GDP, 5 mM MgCl2, 1 mM DTT, 0.1% C12E10, and protease inhibitors) and once with wash buffer B (50 mM HEPES, pH 8.0, 50 μM GDP, 5 mM MgCl2, 2 mM DTT, 0.1% C12E10, and protease inhibitors). The bound proteins were eluted by boiling the resin in SDS sample buffer and analyzed by SDS-PAGE, followed by immunoblotting using an anti-Gao antibody, U1901 (Chen et al., 1999).

Cell Culture. Neuro2a mouse neuroblastoma cells or Swiss 3T3 fibroblast cells were cultured in DMEM containing 10% fetal bovine serum with 10% CO2.

Fluorescence Microscopy. Neuro2a cells on laminin-coated chambered coverslips were transiently transfected with appropriate expression plasmids using LipofectAMINE Plus (Invitrogen, Carlsbad, CA). Two hours after transfection, medium was changed to DMEM with 7.5% fetal bovine serum for 2 h and then to DMEM without serum for 24 h before capturing fluorescence images. Swiss 3T3 cells plated on fibronectin-coated coverslips were subjected to serum starvation overnight. Then, expression plasmids with total DNA concentration of 0.85 mg/ml were microinjected into the nucleus of cells using computer-assisted microinjection system (Eppendorf - 5 Prime, Inc., Boulder, CO, and Cellbiology Trading, Hamburg, Germany). After 20 to 22 h, cells were rinsed with PBS, fixed in 4% paraformaldehyde/0.5% glutaraldehyde/PBS, permeabilized in 0.1% Triton X-100/PBS, and then stained with rhodamine phalloidin. For indirect immunofluorescence staining, cells were fixed in 0.1% Triton X-100/PBS, and then stained with rhodamine phalloidin. For indirect immunofluorescence staining, cells were fixed and permeabilized as described above and incubated with anti-Flag antibody (1:200 dilution in PBS/2% bovine serum albumin). Cells were washed in PBS before incubating with secondary antibody Alexa Fluor 350 (anti-mouse IgG, 1:200 dilution in PBS/2% bovine serum albumin). Coverslips were mounted with VECTASHIELD mounting medium. Fluorescence images were captured using an LSM510 confocal microscope (Carl Zeiss GmbH, Jena, Germany).

Cdc42-GFP Pull-Down Assay. For Cdc42-GFP pull-down assay, Swiss 3T3 cells were transfected with Flag-tagged Cdc42 expression plasmid. After 40 h, they were further transfected with expression plasmids for GaoQ205L and/or GFP-GRIN1. After 6 h, the cells were lysed with lysis buffer (25 mM HEPES, pH 7.5, 1% Nonidet P-40, 10 mM MgCl2, 100 mM NaCl, 5% glycerol, 1 mM sodium vanadate, and protease inhibitors). The lysates were incubated at 40°C with GST-PAK-PBD (15 μg) in binding buffer (25 mM HEPES, pH 7.5, 0.5% Nonidet P-40, 30 mM MgCl2, 50 mM NaCl, and 1 mM DTT). The beads were washed three times with washing buffer (25 mM HEPES, pH 7.5, 0.5% Nonidet P-40, 30 mM MgCl2, 40 mM NaCl, and 1 mM DTT) and boiled in SDS sample buffer. The amount of Gao protein bound to Cdc42 was analyzed by 12.5% SDS-PAGE, followed by immunoblotting with anti-Flag antibody (for Cdc42) or anti-Rac1 antibody.

Downloaded from molpharm.aspetjournals.org at September 30, 2017
GAP Assay. GAP assays of Goα were performed as described previously (Nagata et al., 2001; Rochdi et al., 2002).

Results

Goα Interaction Region of GRIN1. The initial characterization of GRIN1 demonstrated that its carboxyl-terminal region (amino acid residues 555–827) contains the Goα binding domain (Chen et al., 1999). To further characterize the Goα-GRIN1 interaction, several GST-tagged deletion mutants of GRIN1 were constructed. The lysates of E. coli expressing these GST-GRIN1 constructs were mixed with purified Goα in the presence or absence of AlF4⁻⁻, a reversible activator of Goα subunits. Their interaction was assessed by GST pull-down experiments. As shown previously, in the presence of AlF4⁻⁻, the binding of Goα was detected with full-length GRIN1 as well as with GRIN1 (562–827) (Fig. 1A; data not shown). As shown in Fig. 1B, with further deletion, the binding of Goα was detected in the region of GRIN1 (716–827). In contrast, the mutant without this carboxyl-terminal region, GRIN1 (562–716), did not interact with Goα. Within amino acids 716 to 827 of GRIN1, Goα binding was detected in the region of 716 to 746 or 797 to 827 but not in the region of 746 to 771, although the interaction with these short segments was weaker than that with GRIN1 (716–827). These experiments indicate that the both regions of GRIN1 (716–746 and 797–827) are involved in the association with Goα. RGS protein recognizes the activated form of Goα and accelerates its GTPase activity. Given that GRIN1 specifically recognizes activated Goα, we tested whether the interaction with GRIN1 stimulates its GTPase activity similar to RGS proteins. However, GRIN1 (716–771) showed no effect on the GTPase activity of Goα (data not shown). Thus, GRIN1 interacts with Goα without GAP activity.

Membrane Targeting Region of GRIN1. We next investigated the domain of GRIN1 involved in its subcellular localization. Neuro2a cells were transiently transfected with GRIN1 constructs that were fused with GFP at their amino terminus, and their expression was analyzed by fluorescence microscopy (Fig. 2). Full-length GRIN1 localized mainly at the cell periphery. GRIN1 (716–827) and GRIN1 (766–827) also demonstrated a membrane distribution pattern. In contrast, GRIN1 (717–827) and GRIN1 (716–771), constructs lacking the carboxyl-terminal region, showed cytosolic distribution. These results indicate that the carboxyl-terminal region of GRIN1 (772–827) is involved in its membrane targeting.

Because the amino acid sequence of GRIN1 does not contain any apparent transmembrane region, the membrane distribution of GRIN1 suggests the possibility of lipid modification of GRIN1. A variety of signaling proteins undergo palmitoylation at cysteine residues. It is known that palmitoylation affects the activity of the protein in addition to its
subcellular distribution (Wedegaertner and Bourne, 1994; Tu et al., 1999; Osterhout et al., 2003). Within the membrane-targeting region of GRIN1 (772–827), potential palmitoylation sites were found at Cys818 and Cys819. These cysteine residues were conserved in both human and mouse GRIN1, suggesting the functional importance of these residues. We

Fig. 3. Effects of coexpression of GooQ205L and GRIN1 or GRIN1Δ(717–827) on morphology of Neuro2a cells. A, expression plasmids for GFP, GFP-GRIN1, or GFP-GRIN1Δ(717–827) were transiently cotransfected with either empty vector or pCMV5-GooQ205L into Neuro2a cells. After 20 to 22 h, the cells were fixed and stained for filamentous actin with rhodamine-phalloidin. The cells were observed by fluorescence confocal microscopy. Scale bars, 10 μm. Magnification, 1260×. Bottom, the percentage of cells with neurite growth of more than one cell-body length. Results are mean ± S.E. from three to five experiments (n = 103–142). B, expression plasmid for GFP-GRIN1 or GFP-GRIN1CCAA was transiently cotransfected with DsRed, Goo-DsRed, or GooQ205L-DsRed in Neuro2a cells. After 20 to 22 h, the cells were fixed and observed by fluorescence confocal microscopy. Scale bars, 10 μm. Magnification, 1260×. Bottom, the percentage of cells with neurite growth of more than one cell-body length. Results are mean ± S.E. from three independent experiments (n = 123–188).
thus generated a GRIN1 mutant, GRIN1CCAA, in which both cysteine residues were mutated to alanine. The GRIN1CCAA mutant demonstrated a cytosolic pattern of distribution (Fig. 2). The results indicate that Cys818 and Cys819 residues are critical to target GRIN1 to plasma membrane.

Effect of the Goα–GRIN1 Pathway on Cell Morphology. When coexpressed with GoαQ205L, GRIN1 induced neurite formation in Neuro2a cells or fine process formation in MA104 cells (Chen et al., 1999). To further characterize this morphological change induced by GoαQ205L, a GRIN1 mutant lacking the Goα binding region, GFP–GRIN1Δ(717–827), was expressed in Neuro2a cells with or without GoαQ205L. As shown in Fig. 3A, expression of GRIN1Δ(717–827) in Neuro2a cells promoted neurite extension similar to cells coexpressing wild-type GRIN1. Furthermore, this effect of GRIN1Δ(717–827) did not require coexpression of GoαQ205L. These results suggest that the Goα binding domain may have an inhibitory effect on GRIN1 activity, and the deletion of the Goα binding domain of GRIN1 may change its conformation to a constitutively active form.

In Fig. 3B, we examined the neurite-promoting activity of GRIN1CCAA mutant. GRIN1CCAA demonstrated membrane distribution when coexpressed with GoαQL but not with Goα wild-type, suggesting the activation-dependent interaction with Goα. It also promoted neurite extension in the presence of activated Goα. These results suggest that although Cys818 and Cys819 are required for the membrane distribution of GRIN1, they are not critically involved in the interaction with Goα or the neurite-promoting activity for GRIN1.

We also examined the specificity of GRIN1-induced morphological changes using activated mutants of several different Go subunits. In this experiment, Swiss 3T3 cells were used to eliminate the morphological changes through endogenous GRIN1. As shown in Fig. 4, Swiss 3T3 cells coexpressing GRIN1 and GoαQ204L formed microspikes similar to cells expressing GoαQ205L and GRIN1. However, no such morphological changes were detected in cells coexpressing GRIN1 and GoαR183C or GoαQ227L. The results are consistent with the results from in vitro experiments showing that GRIN1 specifically interacts with α subunits of Gi subfamily. The results also support that these morphological changes are induced by the interaction of GRIN1 with Ga/o.

Involvement of Rho Family GTPases in the Goα–GRIN1 Signaling Pathway. It is well established that Rho family GTPases, Rho, Rac, and Cdc42, are involved in morphological changes of cells through regulation of the actin cytoskeleton. We thus investigated whether the morphological changes induced by the Goα–GRIN1 pathway involves these Rho family GTPases. Swiss 3T3 cells were microinjected with expression plasmids encoding dominant-negative mutants of Rho GTPases, Cdc42N17, Rac1N17, or RhoAN19, along with GoαQ205L–DsRed and GFP–GRIN1. As shown in Fig. 5A, coexpression of dominant-negative Cdc42 blocked microspike formation in Swiss 3T3 cells, whereas dominant-negative Rac1 or RhoA had no pronounced effect on Goα–GRIN1–induced morphological changes. We also conducted similar experiments using Neuro2a cells (Fig. 5B). Both dominant-negative Cdc42 and dominant-negative Rac1 inhibited neurite extension in Neuro2a cells expressing GoαQ205L and GRIN1, whereas dominant-negative RhoA showed no effect. These results suggest that Goα–GRIN1 signaling may involve the activation of Cdc42 downstream to induce microspike formation.

Coexpression of GoαQ205L and GRIN1 Activates Cdc42. Finally, we examined whether the Goα–GRIN1 pathway activates Cdc42 in cells. The amount of GTP–Cdc42 in cells was quantified by pull-down assays using GST–PAK–PBD as described under Materials and Methods. As shown in Fig. 6, coexpression of GoαQ205L and GRIN1 in Swiss 3T3 cells increased GTP–Cdc42 approximately 2-fold. The expression of GRIN1Δ(717–827) induced similar levels of increase in GTP–Cdc42. This suggests again that GRIN1Δ(717–827) is constitutively active and independent of Goα. These results agree well with the morphological data shown in Fig. 5 and further support the model that Goα–GRIN1 signaling pathway activates Cdc42 to induce morphological changes in cells.

Discussion

In this study, we have characterized the mechanism of the Goα–GRIN1 signaling pathway. We identified the Goα binding domain of GRIN1 and also the amino acid residues critical for membrane targeting of GRIN1. We also presented evidence suggesting the possible link of the Goα–GRIN1 pathway to the activation of Cdc42, which is probably responsible for the induction of neurite growth by Goα–GRIN1.
Using deletion mutants of GRIN1, the Go\textsubscript{o} binding domain of GRIN1 was mapped to its carboxyl-terminal regions (716–746 and 797–827). Go\textsubscript{o} interacts with both of these regions, and the presence of either region in GRIN1 could show activation-dependent association with Go\textsubscript{o}. Amino acid sequences of these binding regions are highly conserved in

Fig. 5. Effect of dominant-negative mutants of Rho family GTPases on the morphology of cells expressing GRIN1 and Go\textsubscript{o}Q205L. A, expression plasmids encoding for Go\textsubscript{o}Q205L-DsRed and GFP-GRIN1 were microinjected with the dominant-negative mutant of RhoA, Rac1, or Cdc42 into the nucleus of Swiss 3T3 cells. After 20 h, the expression of Flag-tagged RhoA, Rac1, or Cdc42 mutant was detected using anti-Flag antibody. Scale bars, 10 \textmu m. Magnification, 1260 \times. Bottom graph, the percentage of microinjected Swiss 3T3 cells coexpressing GRIN1 and Go\textsubscript{o}Q205L with more than 10 microspikes per cell. Results are the mean ± S.E. from three to five independent experiments (n = 45–56). B, expression plasmids encoding for Go\textsubscript{o}Q205L-DsRed and GFP-GRIN1 were transfected with the dominant-negative mutant of RhoA, Rac1, or Cdc42 into Neuro2a cells. After 20 h, the expression of Flag-tagged RhoA, Rac1, or Cdc42 mutant was detected using anti-Flag antibody. Scale bars, 10 \textmu m. Magnification, 1260 \times. Bottom graph, the percentage of transfected cells with neurite growth of more than one body length is shown. Results are mean ± S.E. from 3–5 independent experiments (n = 127–163).
GRIN2, suggesting that GRIN2 will probably interact with G_o through the corresponding regions. The G_o binding domain did not show apparent homology with any known Gα-interacting motifs, and GRIN1 did not demonstrate GAP activity for G_o. Thus, these regions are considered to be novel Gα interacting motifs. Further characterization and identification of the critical residues of GRIN1 for interaction with G_o will be pursued.

The inhibitory effect of GRIN1 on the GAP activity of RGS4 for G_o indicates the competition of the interaction of RGS4 and GRIN1 on G_o. However, the results do not exclude the possibility that other RGS proteins might associate G_o simultaneously with GRIN1 and regulate the G_o-GRIN1 signaling pathway. For example, in the retinal phototransduction system, Gat has been shown to interact simultaneously with its effector, PDE_y, and its GAP, RGS9–1 (Slep et al., 2001). The presence of RGS9–1 was critical for the temporal resolution of Gat-mediated visual signal transduction (Skiba et al., 2001). In contrast to RGS4, which is an effective GAP for both G_o and G_i, members of R7 subfamily of RGS protein, such as RGS6 and RGS7, show specific GAP activity for G_o but not for G_i (Posner et al., 1999). Furthermore, they are expressed only in the brain, similar to GRIN1 (Withrow and Slepak, 2003). It will be important to further characterize the involvement of RGS proteins, such as R7 subfamily members, in the G_o-GRIN1 pathway in brain.

We demonstrated that the carboxyl-terminal region of GRIN1 was involved in its membrane targeting. In particular, cysteines 818 and 819 were identified as critical residues for membrane localization. Mutation of these cysteine residues abolished the membrane distribution pattern of GRIN1. However, they are not required for the interaction with G_o or the neurite-promoting activity of GRIN1. Similar to other signaling proteins, it is possible that these cysteine residues are modified by palmitoylation. In addition to the regulation of subcellular distribution, palmitoylation also participates in the regulation of biochemical function of various proteins (Wedgeaertner and Bourne, 1994; Tu et al., 1999; Osterhout et al., 2003). It will be important to confirm whether GRIN1 is palmitoylated at these residues and, if it is palmitoylated, whether this modification regulates G_o-GRIN1–mediated signaling.

Coexpression of G_oQ205L and full-length GRIN1 stimulates microspike formation in Swiss 3T3 cells and promotes neurite extension in Neuro2a cells. Similar morphological changes were observed under conditions of GRIN1Δ(717–827) overexpression, which lacks the G_o binding region. Coexpression of G_oQ205L was not required for the morphological changes induced by GRIN1Δ(717–827). These results suggest that deletion of the G_o binding domain may change the conformation of GRIN1 into a constitutively active form. It is possible that the G_o binding domain acts to inhibit GRIN1 function and that the binding of G_o to GRIN1 releases the autoinhibitory effect of the G_o binding domain.

We also presented evidence suggesting the possible link of the G_o-GRIN1 pathway to the activation of Cdc42. Overexpression of dominant-negative Cdc42 blocked microspike formation induced by G_oQ205L and GRIN1 in Swiss 3T3 cells. Similarly, overexpression of dominant-negative Cdc42 inhibited the neurite growth in Neuro2a cells. Furthermore, GST pull-down assays to detect GTP-bound Cdc42 in cells showed that GRIN1 activated Cdc42 synergistically when coexpressed with G_oQ205L. Consistent with the morphological studies, GRIN1Δ(717–827) stimulated Cdc42 independent of G_oQ205L. Thus, the binding of activated G_o to the carboxyl-terminal region of GRIN1 is likely to induce activation of Cdc42, which will then lead to these morphological changes.

Rho family GTPases, Rho, Rac, and Cdc42, are well known for playing critical roles in the regulation of synaptogenesis, growth-cone guidance, or neurite outgrowth (Ziv and Smith, 1996; Threadgill et al., 1997; Jey, 2000). G_o is expressed most abundantly in the brain, and expression of a constitutively active mutant of G_o promoted neurite extension in PC12 cells (Strittmatter et al., 1994). The molecular mechanisms for these G_o-mediated effects has remained poorly characterized. As indicated in this study, one possibility is that G_o regulates neurite outgrowth through GRIN1 by controlling the activity of Cdc42. Further analysis of the function of endogenous GRIN1 in G_o-mediated Cdc42 activation and neurite growth, and the characterization of the mechanism of regulation of Cdc42, such as the identification of a guanine nucleotide exchange factor for Cdc42 downstream of GRIN1, will be critically important to further un-

Fig. 6. Coexpression of GRIN1 and G_oQ205L activates Cdc42. Expression plasmids encoding the indicated proteins were transiently cotransfected with Flag-tagged wild-type Cdc42 in Swiss 3T3 cells. The amounts of GTP-bound Cdc42 in cell lysates was measured by the GST-PAK-PBD pull-down assay as described under Materials and Methods. A, GTP-bound Cdc42 was detected by immunoblotting using anti-Flag antibody. The amount of GTP-bound Cdc42 was quantified by densitometry. B, Cdc42 activity was indicated by the amount of GTP-bound Cdc42 normalized to total Flag-Cdc42 in whole-cell lysates. Expression of G_o or GRIN1 in cell lysate was detected by immunoblotting with anti-G_o or anti-GRIN1 antibody. 1, control; 2, G_oQ205L; 3, GRIN1; 4, G_oQ205L + GRIN1; 5, GRIN1Δ(717–827); 6, G_oQ205L + GRIN1Δ(717–827). The values are the mean ± S.E. of four separate experiments. The asterisks indicate the results of the t test analysis. ***, p < 0.01; *, p < 0.05 compared with the control.
understand the physiological role of Gαq-GRIN1 signaling in neuronal cells.

Acknowledgments

We thank Drs. X. Du and N. Yokoyama for helpful suggestions and Drs. G. Bokoch and T. Satoh for the gift of plasmids for GST-PAK-PBD and Flag-tagged Rho GTPases, respectively. We also thank Dr. S. Nakamura at National Institute of Neuroscience in Japan for encouragement and helpful discussions.

References

Address correspondence to: Dr. Tohru Kozasa, Department of Pharmacology (M/C 868), University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612. E-mail: tkozasa@uic.edu