Nerve Growth Factor-Independent Neuronal Survival: A Role for NO Donors

Katerina Akassoglou
Department of Pharmacology, University of California, San Diego, La Jolla, CA

Received July 25, 2005; accepted July 26, 2005

ABSTRACT
Because of the limited therapeutic applications of nerve growth factor (NGF), there has been increasing focus on the development of pharmacological tools to bypass the requirement of NGF for the activation of the TrkA tyrosine kinase receptor neuronal survival pathway. In this issue of Molecular Pharmacology, the work by Culmsee et al. (p. 1006) shows that NGF-independent activation of TrkA by protein tyrosine phosphatase (PTP) inhibitors is only achieved when accompanied by release of nitric oxide (NO). This work identifies the integration of the NO/cGMP/protein kinase G (PKG) and NGF/TrkA pathways to induce activation of Akt and ERK1/2 and mediate neuronal survival in the absence of NGF. In addition, it underscores the potential therapeutic effects of ethyl-3,4-dephostatin (DPN), a stable analog of the naturally occurring PTP inhibitor dephostatin, which serves as a NO donor and protects neurons from apoptosis. This Perspective comparatively reviews two major signal transduction pathways that mediate NGF-independent neuronal survival by activating the TrkA pathway: the NO/cGMP/PKG and adenosine/G-protein-coupled receptor (GPCR) pathways.

Neurotrophins and their receptors are the major regulators of neuronal survival and apoptosis during development and after injury or nervous system disease (Chao, 2003). In vitro experiments have demonstrated the dependence of several neuronal populations on neurotrophins, particularly NGF. In addition to in vitro experiments, mice that are heterozygotes for NGF (NGF+/−) show loss of neurons in the peripheral nervous system (Crowley et al., 1994) and decreased cholinergic innervation in the hippocampus (Chen et al., 1997), further substantiating the role for NGF in neuronal survival. The survival effects of NGF are mediated via the Trk receptor tyrosine kinase A (TrkA) (Fig. 1). NGF induces dimerization of TrkA, leading to the phosphorylation of the TrkA receptor. Trk phosphorylation induces the activation of three major intracellular signaling pathways: the PI3-kinase pathway (resulting in Akt phosphorylation), the Ras pathway (resulting in ERK1/2 phosphorylation), and the phospholipase Cγ pathway (Kaplan and Miller, 2000). The PI3-kinase/Akt pathway has been identified as the major pathway involved in NGF-dependent neuronal survival (Yao and Cooper, 1995). Akt suppresses apoptosis by directly targeting pro-apoptotic proteins, such as Bad, pro-caspase-9, and forkhead (Kaplan and Miller, 2000).

In addition to NGF, NO is also required for neuronal survival (Contestabile and Ciani, 2004). In vitro, dorsal root ganglia neurons undergo apoptosis upon nitric-oxide synthase inhibition (Thippeswamy et al., 2001). In vivo, genetic depletion of neuronal nitric-oxide synthase increases the susceptibility of dorsal root ganglia neurons to apoptosis (Keilhoff et al., 2002). NO can stimulate soluble guanylyl cyclase (sGC), the enzyme that catalyzes the conversion of GTP to cGMP. Cyclic GMP alters the activity of the cGMP receptor molecules (cGMP-dependent protein kinases, cGMP-regulated phosphodiesterases, cGMP-regulated ion channels). Similar to the NGF/TrkA signaling pathway, the NO/cGC survival signal is mediated by activation of Akt (Ciani et al., 2002).

In this issue of Molecular Pharmacology, the article by...
Culmsee et al. (2005) reveals phosphorylation of TrkA as a novel point of cross-talk between the NGF and NO neuronal survival pathways. Culmsee et al. (2005) shed light on the molecular mechanism used by NO donors to rescue neurons from apoptosis. These investigators previously identified that inhibition of PTPs by orthovanadate stimulates the NGF/TrkA signaling pathway (Gerling et al., 2004). In their quest for more specific PTP inhibitors, they make the observation that only PTP inhibitors that serve as NO donors, such as DPN, induce phosphorylation of TrkA, activate Akt and ERK1/2, and are neuroprotective. By contrast, PTP inhibitors that do not release NO, such as methoxime-DPN, are not neuroprotective and do not activate TrkA. A striking observation in their work that links the NGF/TrkA with the NO/sGC survival pathways is the ability of sGC inhibition to block phosphorylation of TrkA and the neuroprotective effects mediated by NO donors.

The NGF/TrkA signaling pathway converges with pain-related ion channels to regulate NGF-mediated heat sensitivity of sensory neurons (Chuang et al., 2001) and with G-protein-coupled receptors (GPCR) to regulate neuronal survival (Lee and Chao, 2001). Activation of TrkA receptors in the absence of neurotrophins occurs upon activation with adenosine, which acts through A2A, a GPCR. Adenosine or small ligands in the GPCR family that regulate tyrosine kinase activity in neural cells have been proposed as a strategy for promoting trophic effects during normal and neurodegenerative conditions (Lee and Chao, 2001; Rajagopal et al., 2004). In this system, through TrkA receptor phosphorylation, adenosine is capable of activating the PI3-kinase/Akt cascade, resulting in a survival response in PC-12 and hippocampal cells in the absence of NGF. The results of Culmsee et al. (2005) identify the NO/cGMP pathway as another signal transduction pathway that is integrated with NGF/TrkA signaling to modulate activation of PI3 Kinase/Akt pathway and subsequent neuronal survival. Both NO and adenosine can phosphorylate TrkA and exert neuroprotective effects in the absence of NGF. Both NO and adenosine-mediated neuronal survival independent of NGF depend upon activation of Akt. However, TrkA phosphorylation is indispensable for adenosine-mediated neuroprotection (Lee and Chao, 2001), and it is not necessary for NO-mediated neuroprotection (Culmsee et al., 2005). Therefore, adenosine-mediated neuroprotection occurs through Trk receptor signaling, whereas NO-mediated neuroprotection, as suggested by Culmsee et al. (2005), seems to occur by direct action of the NO/sCG/PKG pathway on the survival pathway of Akt and ERK1/2 downstream of TrkA. (Fig. 1). Because adenosine induces production of NO and prevents death in cardiomyocytes via a PKG pathway (Xu et al., 2005), cross-talk between adenosine and NO in neuronal cells could be envisioned.

Many researchers have sought to identify small molecules to mimic the effects of NGF. NGF, which is retrogradely transported to cholinergic neurons, prevents the death of such neurons in the basal forebrain after axotomy (Kromer, 1987). In the brains of patients with Alzheimer’s disease, cholinergic neurons in the basal forebrain die, a process that contributes to the attention deficits and overall cognitive decline (Bartus et al., 1982). Given the vulnerability of cholinergic neurons in human disease, NGF is thus predicted to have therapeutic value in neurodegenerative diseases. However, properties of NGF, such as its hydrophilicity and its short half-life in the blood, make it inappropriate for crossing the blood-brain barrier through systemic delivery (Tuszynski, 2002), thus limiting its use as a neuroprotective drug. Alternative strategies have focused on either ex vivo gene

Fig. 1. NGF-dependent (left) and -independent (right) mechanisms for neuronal survival. A, NGF is the ligand of TrkA and induces its phosphorylation and the subsequent activation of the intracellular signaling pathways ERK1/2 and Akt, which are responsible for neuronal survival (Chao, 2003). B, Both NO and adenosine can mediate neuronal survival in the absence of NGF. Activation of TrkA phosphorylation occurs by both NO (Culmsee et al., 2005) and adenosine (Lee and Chao, 2001). TrkA phosphorylation is indispensable for adenosine but not for NO neuroprotection. In addition to activation of the pathways downstream of the TrkA receptor for NGF, NO might contribute to neuronal survival by inhibiting the apoptotic pathway mediated by the p75NTR NGF receptor (Lievremont et al., 1999). Because adenosine induces production of NO and prevents death in cardiomyocytes via a NO/cGMP/PKG pathway (Xu et al., 2005), cross-talk between adenosine and NO in neuronal cells could be envisioned.
delivery (Tuszynski et al., 2005) or on the design of biologi-
cally stable small molecules that can activate the NGF re-
ceptor signaling pathway so as to blunt neuronal loss in
neurodegenerative diseases (Massa et al., 2003). Culmsee et
al. (2005) identify two novel PTP inhibitors that mimic NGF:
DPN and 4-O-methyl-ethyl-3,4-DPN (Me-DPN). In their pre-
vious work, they identified orthovanadate as a neuroprotective
PTP inhibitor (Gerling et al., 2004). Orthovanadate has
limited clinical applications because it is unstable in aqueous
solutions and biological systems. In addition, orthovanadate is
a wide-range PTP inhibitor, which limits specificity and
safety. DPN and Me-DPN are stable analogs of the natural
PTP inhibitor DPN and thus have potential clinical applica-
tions (Umezawa et al., 2003). Previous studies have shown that
Me-DPN enhances NGF-induced differentiation in
PC-12 cells (Fujiwara et al., 1997). In this system, Me-DPN
induced differentiation only in the presence of NGF. In con-
trast, in the present study, DPN alone is sufficient to protect
neurons from apoptosis, even in the absence of NGF. There-
fore, stable DPN analogs bypass the requirement for NGF in
neuroprotection through a NO/cGMP signal that activates
TrkA, Akt and ERK1/2 in neuronal cells. Given their biolog-
ical stability compared with either NGF or natural DPN,
DPN analogs represent candidate therapeutic agents for
activating the TrkA neuronal survival pathway.

Although DPN analogs are neuroprotective at low concentra-
tions (1–10 μM) they are either inactive or even neuro-
toxic at higher concentrations (>100 μM). NO plays a major
role in physiological processes in the nervous system, such as
neuronal survival, plasticity, and synaptic activity. NO de-
ervation can kill a neuron, but elevation of NO is also neu-
rotoxic. NO is released by activated glia in a variety of neu-
rodegenerative diseases, including Alzheimer’s disease,
cerebral ischemia, Parkinson’s disease, and multiple sclero-
sis. DPNs activate the NGF pathway through NO release and
could possibly contribute to the endogenous levels of NO in
brain neuropathology. Increases in NO concentration above
physiological levels induce oxidative and nitrosative stress
and lead to neuronal death. NO is therefore considered a
“Janus” molecule that can exert both neuroprotective and
neurodegenerative effects (Contestabile et al., 2003). How-
ever, in Alzheimer’s type dementia, long-term administration
of NO donors that slowly release NO combined with nonste-
roidal anti-inflammatory drugs have shown protective ef-
effects, characterized by reduction of β-amyloid plaques (Bur-
gaud et al., 2002). Therefore, identifying the neuroprotective
concentration of DPN analogs as well as their contribution to
the NO levels in the brain of different animal models of
neurodegenerative diseases will determine their therapeutic
potential.

Conclusions

Deprivation of NO is akin to deprivation of NGF in terms of
ability to kill neurons. Culmsee et al. (2005) identify how
the NO/cGMP and NGF/TrkA pathways converge to mediate
neuronal survival. Their most important findings are: 1)
activation of TrkA receptor and subsequent rescue from ap-
optosis in the absence of neurotrophins by specific PTPs that
function as NO-donors, such as DPN; 2) activation of the
survival signaling pathways of Akt and ERK1/2 by NO-don-
ors in the absence of NGF; 3) induction of TrkA phosphor-

ulation via a NOsGC/cGMP and PKG pathways; and 4) bio-
logically stable analogs for DPN with NO-donor activity
could bypass the requirement for NGF and have pharmaco-
logical value as neuroprotectors.

The cross-talk of NO with NGF signaling pathways seems
not to be limited to TrkA, but extends to the low affinity NGF
receptor, p75 neurotrophin receptor (p75NTR). Recent evi-
dence has shown that NO regulates the expression of p75NTR
(Peterson and Bogenmann, 2003). In turn, neurotrophins can
induce iNOS in neurons via a p75NTR/IRF-xB pathway (Burke
and Bothwell, 2003). NO can prevent neurons from p75NTR
mediated apoptosis by decreasing activity of caspases via a
cGMP-dependent mechanism (Lievremont et al., 1999) (Fig.
1). Similar to NO, p75NTR is also a “Janus”-faced molecule: it
can be neuroprotective by potentiating the TrkA signaling
pathway or can induce apoptosis in the absence of TrkA
(Casaccia-Bonnefil et al., 1999). Experiments to elucidate the
cconvergence of NO signaling pathways with both TrkA and
p75NTR receptors, will reveal mechanistic information on the
balance between life and death as regulated by the interac-
tions of gases and growth factors in neuronal cells.

References

Bartus RT, Dean BLI, Beer B, and Lipa AS (1982) The cholinergic hypothesis of
Burke M and Bothwell M (2003) p75 Neurotrophin receptor mediates neurotrophin
activation of NF-kappa B and induction of iNOS expression in P19 neurons. J Neurobiol
receptor as a modulator of survival and death decisions. Microsc Res Technique
Chao MV (2003) Neurotrophins and their receptors: a convergence point for many
Disruption of a single allele of the nerve growth factor gene results in atrophy of
Chuang HH, Prescott ED, Kong H, Shields S, Baasalm AI, Chao MV, and
Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor
Ciani E, Virgili M, and Contestabile A (2002) Akt pathway mediates a cGMP-
dependent survival role of nitric oxide in cerebellar granule neurons. J Neuro-
chem 81:112–118.
Contestabile A, Monti B, and Ciani E (2003) Brain nitric oxide and its dual role in
neurodegeneration/neuroprotection: understanding molecular mechanisms to de-
Crowley C, Spencer SD, Nishimura MC, Chen KS, Pitts-Meek S, Armanini MP, Ling
growth factor display perinatal loss of sensory and sympathetic neurons yet
survival signaling and protect neurons against apoptosis. Mol Pharmacol 68:
1006–1017.
Enhancement or induction of neurite formation by a protein tyrosine phosphatase
inhibitor, 3,4-dephostatin, in growth factor-treated PC12h cells. Biochem Biophys
inhibitor orthovanadate mimics NGF-induced neuroprotective signaling in rat
hippocampal neurons. Neurochem Int 45:505–520.
Kaplan DR and Miller PD (2000) Neurotrophin signal transduction in the nervous
dominant nitric oxide supplier for the survival of dorsal root ganglia after periph-
Kroner LF (1987) Nerve growth factor treatment after brain injury prevents neu-
Lee PS and Chao MV (2001) Activation of TrkA neurotrophin receptors in the absence
Lievremont JP, Seiorati C, Morandi E, Paolucci C, Bunoge D, Della Valle G,
Meldolesi J, and Clementi E (1999) The p75NTR-induced apoptotic program devel-
ops through a ceramide–caspase pathway negatively regulated by nitric oxide.

Downloaded from mpharm.aspetjournals.org at ASIFT Journals on June 26, 2017

Address correspondence to: Katerina Akassoglou, Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92037-0636. E-mail: akass@ucsd.edu