Estrogen: A Mitochondrial Energizer That Keeps on Going

Thomas P. Burris and Venkatesh Krishnan

Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana (T.P.B., V.K.); and Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana (T.P.B.)

Received July 26, 2005; accepted July 28, 2005

ABSTRACT

Estrogens demonstrate vasoprotective activity in many experimental models. These effects have been attributed to beneficial activity of these steroids on lipid metabolism as well as direct effects on the vasculature via modulation of nitric-oxide synthase and phosphatidylinositol-3 kinase/Akt signaling pathways. In this issue of Molecular Pharmacology, Stirone et al. (p. 959) present evidence suggesting that 17β-estradiol may also exert vasoprotective effects in cerebral blood vessels via stimulation of mitochondrial energy production capacity and inhibition of reactive oxygen species production. These data indicate not only yet another potential mechanism underlying the vasoprotective effects of estrogens but also that the estrogen receptor may coordinate gene expression in both the nuclear and mitochondrial genomes.

The estrogen steroid hormones are commonly recognized for their well characterized role in regulation of female reproductive function. 17β-Estradiol and estrone, the predominant estrogens in humans, along with progesterone, are essential in control of the menstrual cycle and maintenance of pregnancy. In addition to the classic reproductive actions of estrogens, these ovarian steroids modulate physiological functions in diverse systems, such as the musculoskeletal, gastrointestinal, immune, neural, and cardiovascular systems. The varied effects of estrogens are mediated by estrogen receptors expressed in these tissues. The two estrogen receptors, ERα and ERβ, are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors. These intracellular receptors contain DNA-binding domains that recognize specific DNA sequences, known as estrogen response elements, within the promoters of target genes. Docking of the steroid to the carboxyl-terminal ligand-binding domain induces a conformational change within the protein that leads to its activation. This conformational change produces novel surfaces on the ligand-binding domain allowing for recruitment of various transcriptional cofactors, resulting in activation of target gene transcription and hence altered cellular and physiological function.

The average life expectancy of women is significantly longer than that of men, a fact that has been attributed to the decreased risk of vascular disease women have during their reproductive years. As ovarian steroid levels decrease during menopause, the risk of vascular disease increases to the point that the “protective” effect is completely lost a decade after the onset of menopause. A variety of experimental models established estrogens as critical mediators of this protection, and the effect seems to be multifaceted. Estrogens have been demonstrated to inhibit atherosclerosis, an effect that is correlated with their well characterized ability to decrease low-density lipoprotein cholesterol and increase high-density lipoprotein cholesterol. In addition, estrogen has direct effects on the vessel wall decreasing vascular resistance via reduced vascular tone, an effect that is mediated through targeting both the endothelial and vascular smooth muscle cells (White, 2002).

Several pathways suggesting vascular effects of estrogen have been extensively studied and include ER regulation of 1) the nitric-oxide synthase (NOS) pathway, 2) norepinephrine (NE) synthesis in the hypothalamus, 3) the Akt pathway via nongenomic action mediated by its interactions with the p85 subunit of phosphatidyl inositol-3 kinase (PI-3 kinase)

ABBREVIATIONS: NOS, nitric-oxide synthase; NE, norepinephrine; E2, 17β-estradiol; ER, estrogen receptor; PI-3, phosphatidylinositol-3; TNF, tumor necrosis factor; eNOS, endothelial NOS; ROS, reactive oxygen species; COX, cytochrome oxidase; ICI 182,780, faslodex; ET, estrogen therapy; HT, hormone therapy; CEE, conjugated equine estrogen; MPA, medroxyprogesterone acetate.
(Martin et al., 2000; Simoncini et al., 2000; Nuedling et al., 2001; Peng et al., 2003). The link between estrogen signaling and nitric oxide levels can be approached by several direct and indirect mechanisms. The best-characterized direct regulation was reported on the NOS III gene, wherein an Sp1 element was shown to mediate the estrogen-mediated increase in NOS III transcription (Kleinert et al., 1998). In addition, it has been shown that estrogen can block the activity of the TNF-α promoter (An et al., 1999) and that prolonged TNF-α presence, a hallmark of the postmenopausal status in women, leads to decreased endothelial NOS activity, which is reversed by the TNF-α blocker Ethanercept (Arenas et al., 2005). Peng et al., (2003) have reported elegant studies evaluating the role of norepinephrine synthesis as measured by the levels of NE metabolite 3-methoxy,4-hydroxyphenylglycol in the hypothalamus of the spontaneously hypertensive rat model. In an estrogen-depleted state, they demonstrated an increase in arterial pressure in female spontaneously hypertensive rats that was coincident with a decrease in 3-methoxy,4-hydroxyphenylglycol levels. Consistent with this hypothesis, forearm vasoconstrictor responses to NE were attenuated after estrogen supplementation (Sudhir et al., 1996). Finally, Simoncini et al. (2000) have shown that mice treated with estrogen show increased endothelial NOS (eNOS) activity and decreased vascular leukocyte accumulation, after ischemia, in a reperfusion injury model. This vascular protective effect of estrogen was abolished in the presence of PI-3 kinase or eNOS inhibitors, implicating a nongenomic pathway involving direct interaction between the p85 subunit of PI-3 kinase and ERα in the cytoplasm of the endothelial cells, ultimately leading to increased eNOS activity.

In this issue of Molecular Pharmacology, Stirone et al. (2005b) describe yet another potential mechanism underlying the observed vasoprotective effects of estrogen. This group previously demonstrated expression of ERα and regulation of the PI-3 kinase / Akt and eNOS pathways by E2 in cerebral blood vessels (Stirone et al., 2002, 2005a). Recent reports indicating expression of ER in mitochondria (Monje and Boland, 2002; Chen et al., 2004a,b; Yang et al., 2004) and evidence implicating mitochondrial dysfunction and reactive oxygen species (ROS) in the etiology of vascular disease (Ballinger et al., 2000; Lesnfský et al., 2001; Ramachandran et al., 2002; Ballinger, 2005; Madamanchi et al., 2005) led these investigators to examine the role of E2 on mitochondrial function in cerebral blood vessels. Using ovarioctomized female rats, it was demonstrated that E2 replacement led to increased expression of key mitochondrial proteins, including cytochrome c, and subunits I and IV of cytochrome oxidase (COX). In addition, functional assays of mitochondrial citrate synthase and COX activity indicated that E2 treatment results in significantly increased mitochondrial function. With increased mitochondrial energy capacity comes concern of an increased ROS production; however, Stirone et al. (2005b) show that E2 treatment induces expression of manganese superoxide dismutase and decreases hydrogen peroxide production from isolated cerebral blood vessel mitochondria. Thus, these data suggest that vasoprotection by E2 is mediated, at least in part, by modulation of mitochondrial function, specifically increased capacity for energy production and decreased ROS production.

Many questions remain as to the mechanism by which E2 regulates mitochondrial function. Stirone et al. (2005b) show that ERα is localized to both the nucleus and mitochondria and coordinates the expression of both nuclear and mitochondrial genes. These effects were clearly ER-mediated, in the induction of cytochrome c was inhibited by the ER antagonist ICI 182,780, but were not affected by PI-3 kinase or NOS inhibitors, suggesting that the effects were completely independent of E2 modulation of these signaling pathways. One hint of how E2 may be controlling expression of the nuclear-encoded mitochondrial genes is the observation of induction of nuclear respiratory factor-1 (NRF-1), a key transcription factor responsible for regulating the expression of an array of nuclear encoded mitochondrial genes. However, it remains unclear whether ER regulates NRF-1 or any of the nuclear-encoded mitochondrial genes expression directly. The possibility of regulation of mitochondrial encoded genes by ER is more intriguing. The fact that ERα was found in the mitochondria suggests it may be playing some direct role in regulation of gene expression within the organelle. Limited data indicating the presence of estrogen response elements within the regulatory regions of genes in mitochondrial DNA (Demonacos et al., 1996) and induction of mitochondrial genes by E2 in addition to subunit I of COX described in the current study supports this possibility (Chen et al., 2004b). However, the role of ER in the mitochondria has been met with considerable controversy and additional studies will be required to resolve its role within this organelle.

The identification of an additional mechanism potentially mediating vasoprotective effects of estrogen is particularly timely given relatively recent clinical evidence questioning the validity of the protective effect in women. Estrogen therapy (ET) or hormone therapy (HT; combinations of an estrogen(s) and a progestin) are commonly prescribed to peri- and postmenopausal women for a variety of sequelae associated with estrogen deficiency, including vasomotor flushes (hot flashes), urogenital atrophy, and decreased bone mineral density. The assumed reduction in vascular disease, including coronary heart disease and stroke, was generally considered to be an additional benefit of this therapy. However, recent clinical trials have provided results that question the benefits of ET/HT on vascular disease. The Women’s Estrogen for Stroke Trial (WEST) demonstrated that ET offers no protection against cerebrovascular disease in women with a history of stroke (Viscoli et al., 2001). A considerably larger study, the Women’s Health Initiative (WHI), was principally designed to assess the effect of ET and HT on coronary heart disease in postmenopausal women. In 2002, the HT (combined conjugated equine estrogens plus medroxyprogesterone) versus placebo component of the trial was unexpectedly discontinued after it was determined that there was an increased incidence of vascular events and breast cancer in the HT group (Rosouw et al., 2002). The overall health risks surpassed the observed benefits noted in the HT group, which included reduced risk of fracture (Rosouw et al., 2002). Later, in 2004, the ET component of the WHI trial was also interrupted based on data indicating increased risk for cerebrovascular events associated with treatment (Anderson et al., 2004). Based on the outcome of these trials, it has been recommended that HT not be used to prevent vascular disease and should only be used for short durations for treatment of menopausal symptoms (http://www.nhlbi.nih.gov/whi). However, recent clinical data contradicting ex-

glucoorticoid activity of medroxyprogesterone acetate in normal human lym-

Chen JQ, Delamont M, Cooke C, and Yager JD (2004a) Mitochondrial localization of

Chen JQ, Eshte M, Alworth WL, and Yager JD (2004b) Binding of MCF-7 cell
mitochondrial proteins and reconstituent human estrogen receptors alpha and beta
373.

Demonacov CS, Karayanni N, Hatzoglou E, Tsirigiotis C, Spandidos DA, and Sekeris

Kleintert H, Wallerath T, Euchenhofer I, Eychberg I, Li H, and Förstermann U
(1998) Estrogens increase transcription of the human endothelial NO synthase

Lesnyski EJ, Moghaddas S, Tandler B, Kerner J, and Hoppel CL (2001) Mitochon-
drial dysfunction in cardiac disease: Ischemia-reperfusion, aging and heart failure.
J Mol Cell Cardiol 33:1085–1089.

and arterial thrombosis: the disconnect between cellular studies and clinical

Martin MB, Pranko TF, Stoica GE, Channon P, Katzenellenbogen BS, Stoica BA,
McLemore MS, Olivo SE, and Stoica A (2000) A role for Akt in mediating the
estrogenic effects of epidermal growth factor and insulin-like growth factor I.
Endocrinology 141:4503–4511.

interferes with ovary steroid protection against coronary vasospasm. Nut Med
33:324–327.

Monje P and Boland R (2002) Expression and cellular localization of naturally
occurring beta estrogen receptors in uterine and mammary cell lines. J Cell
Biochem 86:136–144.

Nilsen J and Brinton RD (2003) Divergent impact of progesterone and medroxypro-
gerone acetate (Provera) on nuclear mitogen-activated protein kinase signaling.
Proc Natl Acad Sci USA 100:10506–10511.

Nuedling S, Karas RH, Mendeelson ME, Katzenellenbogen JA, Katzenellenbogen
a prerequisite for estrogen-dependent upregulation of nitric oxide synthases in

Peng N, Clark JT, Wei CC, and Wyss JM (2003) Estrogen depletion increases blood
pressure and hypothalamic norepinephrine in middle-aged spontaneously hyper-
tensive rats. Hypertension 41:1164–1167.

Ramachandrnan A, Leventon AL, Prokes CE, Kaiser S, Shiva S, Barone MC, and

Rousou JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefankic ML,
Jackson BD, Beresford SAA, Howard BV, Johnson KC, et al. (2002) Risks and
benefits of estrogen plus progestin in healthy postmenopausal women - Principal
results from the Women's Health Initiative randomized controlled trial. J Am

Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinos-

activation of phosphoinositol-3-kinase, Akt and nitric oxide signaling in cerebral

Stirone C, Duckles SP, Krause DN, and Procaccio V (2005b) Estrogen increases
mitochondrial efficiency and reduces oxidative stress in cerebral blood vessels. Mol

Stirone C, Krause DN, and Duckles SP (2002) Characterization of estrogen receptor-
alpha in cerebral blood vessels. FASEB J 16:A932–A932.

basal nitric oxide release in the forearm vasculature in perimenopausal women.

Viscoli CM, Brass LM, Kernan WN, Sarrel PM, Sussia S, and Horwitz RI (2001)
A clinical trial of estrogen-replacement therapy after ischemic stroke. N Engl J


Yang SH, Liu R, Perez Ed, Weng Y, Stevens IM, Valencia T, Brun-Zinkernagel AM,

Address correspondence to: Dr. Thomas P. Burris, Lilly Research Labora-
tories, Lilly Corporate Center, Indianapolis, IN 46285. E-mail: burris@lilly.com