RIC-3 Enhances Functional Expression of Multiple Nicotinic Acetylcholine Receptor Subtypes in Mammalian Cells

Department of Pharmacology, University College London, London, United Kingdom

Received July 29, 2005; accepted August 24, 2005

ABSTRACT

Recent studies have shown that RIC-3, originally identified in Caenorhabditis elegans as the protein encoded by the gene resistance to inhibitors of cholinesterase (ric-3), can enhance functional expression of α7 nicotinic acetylcholine receptors (nAChRs). In the present study, the influence of C. elegans and human RIC-3 upon multiple homomeric (α7, α8, and α9) and heteromeric (α3β2, α3β4, α4β2, α4β4, and α9α10) nAChR subtypes has been examined in transfected mammalian cells by radioligand binding and functional characterization. Coexpression of RIC-3 facilitates a dramatic enhancement of the ability of α7 (and the closely related α8 subunit) to generate functional nAChRs in otherwise nonpermissive mammalian cells. In contrast, coexpression of RIC-3 did not facilitate functional expression of either homomeric α9 or heteromeric α9α10 nAChRs in mammalian cell lines. It is noteworthy that whereas RIC-3 has been reported to cause a marked functional inhibition of heteromeric nAChRs such as α3β4 and α4β2 expressed in Xenopus laevis oocytes, RIC-3 significantly enhances levels of functional expression of these and other (α3β2 and α4β4) heteromeric nAChRs when expressed in mammalian cell lines. In addition, the interaction of multiple nAChR subunits (α3, α4, α7, β2, and β4) with RIC-3 has been demonstrated by coimmunoprecipitation from metabolically labeled transfected cells. It is significant that coimmunoprecipitation experiments have provided evidence that RIC-3 associates with unassembled nAChR subunits, a finding that is consistent with previous suggestions that RIC-3 may act by enhancing the maturation (subunit folding and assembly) of nAChRs. We conclude that RIC-3 is an nAChR-associated protein that can enhance functional expression of multiple nAChR subtypes in transfected mammalian cells.

Nicotinic acetylcholine receptors (nAChRs) are neurotransmitter-gated ion channels expressed at the neuromuscular junction and within the central and peripheral nervous system. Seventeen vertebrate nAChR subunits have been identified and cloned (α1–α10, β1–β4, γ, δ, and ε) that coassemble to generate a diverse family of pentameric receptors (Le Novère et al., 2002; Millar, 2003). In parallel with studies of native nAChRs, molecular cloning has enabled the characterization of recombinant nAChRs in a variety of artificial expression systems, such as Xenopus laevis oocytes and cultured mammalian cell lines. A great advantage of these approaches is that nAChRs generated from defined subunit combinations can be studied. This has provided important insights into the relationship between subunit composition and the pharmacological and physiological properties of nAChRs.

In addition to the well characterized nAChRs expressed at the skeletal neuromuscular junction (which are assembled from α1, β1, γ, δ, and ε subunits), a family of nAChRs is expressed in the central and peripheral nervous system, the “neuronal nAChRs”. Nine neuronal nAChR subunits (α2–α7 and β2–β4) are expressed in the mammalian nervous system and coassemble to generate neuronal nAChRs with a variety of distinct subunit combinations (Le Novère et al., 2002; Millar, 2003). An α8 subunit, which is closely related in primary amino acid sequence to the α7 subunit, has been identified in avian, but not mammalian, species. The two most recently identified nAChR subunits (α9 and α10) seem to be expressed primarily in hair cells of the inner ear (Elgoyhen et al., 1994, 2001) and have been implicated in auditory processing. Most neuronal nAChRs, like the muscle-type nAChR, are heteromeric complexes of more than one subunit type. The main exception is the α7 subunit (and the

ABBREVIATIONS: nAChR, nicotinic acetylcholine receptor; mAb, monoclonal antibody; RT-PCR, reverse transcriptase-polymerase chain reaction; αβTX, α-bungarotoxin; FLIPR, fluorometric imaging plate reader; PCR, polymerase chain reaction; MLA, methyllycaconitine; 5HT, 5-hydroxytryptamine; PAGE, polyacrylamide gel electrophoresis.
closely related α8 subunit). There is evidence to suggest that native α7 nAChRs are homomeric (Chen and Patrick, 1997; Dresdel and Green, 2000). The α7 subunit has also been shown to generate functional homomeric nAChRs when expressed in X. laevis oocytes (Couturier et al., 1990), as has α8 (Gerzanich et al., 1994; Gotti et al., 1994). Although the α9 subunit has been reported to form homomeric channels in oocytes (Elgoyhen et al., 1994), it seems to form heteromeric nAChRs (with α10) more efficiently (Elgoyhen et al., 2001).

Although the α7 subunit is able to generate functional nAChRs when expressed in X. laevis oocytes, considerable difficulties have been encountered in the efficient expression of functional α7 nAChRs in many cultured mammalian cell lines (Cooper and Millar, 1997; Kassner and Berg, 1997; Rangwala et al., 1997; Chen et al., 1998). Similar problems have been encountered with expression of homomeric nAChRs from α8 and α9 subunits in mammalian cells (Cooper and Millar, 1998; Baker et al., 2004). In contrast, functional neuronal nAChRs have been generated successfully from numerous heteromeric subunit combinations (such as α3β2, α3β4, α4β2, and α4β4) in cultured mammalian cells (Whiting et al., 1991; Lewis et al., 1997; Ragozzino et al., 1997). Despite success in expression of such heteromeric nAChRs, a common finding has been that only relatively low levels of correctly folded cell surface nAChRs are expressed, a conclusion that is supported by evidence of substantially enhanced levels of cell surface expression obtained with artificial subunit chimeras (Cooper et al., 1999; Harkness and Millar, 2002).

Recent studies with the nematode Caenorhabditis elegans have identified a protein (RIC-3), encoded by the gene resist-3, as a putative transmembrane domain (Halevi et al., 2002). Studies performed in X. laevis oocytes have revealed that coexpression of the C. elegans RIC-3 protein (CeRIC-3) or its human homolog (hRIC-3) can enhance levels of functional α7 nAChRs (Halevi et al., 2002, 2003) but causes a marked inhibition of functional responses with heteromeric nAChRs such as α3β4 and α4β2. Recent studies have also demonstrated that coexpression of RIC-3 can facilitate functional expression of α7 in mammalian cells (Williams et al., 2005). In the present study, we have examined the influence of RIC-3 upon multiple homomeric (α7, α8, and α9) and heteromeric (α3β2, α3β4 α4β2, α4β4, and α9α10) nAChR subtypes expressed in transfected mammalian cells.

Materials and Methods

Plasmids, Antibodies, and Cell Lines. Rat α3, α4, α7, β2, and β4 nAChR subunit cDNAs were provided by Jim Patrick (Baylor College of Medicine, TX). Human α7 and chick α8 nAChR subunit cDNAs were provided by Jon Lindstrom (University of Pennsylvania, Philadelphia, PA). Rat α9 nAChR subunit cDNA was provided by Belén Elgoyhen (Universidad de Buenos Aires, Buenos Aires, Argentina). Rat α10 nAChR subunit cDNA was provided by Jim Boulter (University of California, Los Angeles, CA). Mouse GABA_A receptor α1 subunit tagged at its N terminus with a myc epitope (GABA_A R α1MYC) (Connolly et al., 1996) was provided by Steve Moss (University of Pennsylvania). C. elegans RIC-3 cDNA was provided by Millet Treinin (Hebrew University, Jerusalem, Israel). Monoclonal antibody (mAb) mAb319, raised against the nAChR α7 subunit, and mAbFLAG-M2, raised against the FLAG epitope, were obtained from Sigma-Aldrich (St. Louis, MO). A mAb specific for the myc epitope tag (mAb9E10) was purified from the Myc1–9E10 hybridoma cell line (European Collection of Cell Cultures 85102202).

Detection of RIC-3 Transcripts. Total RNA was prepared from ~5 × 10^6 cells, by methods described previously (Gough, 1988). Reverse transcriptase-polymerase chain reaction (RT-PCR) amplification was performed using the OneStep PCR kit (Qiagen, Valencia, CA) with 0.5 μg of total RNA template. Oligonucleotide primers spanning intron-exon boundaries were designed to the human RIC-3 gene sequence (5' GGGACCTAATGGTGAGAGCCAC 3' and 5' CCTACGCTTGATACAGTCTGAAAGG 3') and to α1 tubulin gene sequence (5' ACACCTTCTCAATGTGACCG 3' and 5' CTCAATCTCAACCAGGAAGCC 3').

Molecular Cloning and Epitope Tagging of hRIC-3. Oligonucleotide primers were synthesized which correspond to the predicted 5' and 3' untranslated regions of hRIC-3 and were used to amplify hRIC-3 cDNA from a human cDNA library. The resulting fragment was subcloned into pCRII (Invitrogen, Carlsbad, CA) and then excised with EcoRI and subcloned into pRK5 to create pRK5-hRIC-3. The eight amino acid FLAG epitope tag (DYKDDDDK) was introduced into hRIC-3 by ligation of synthetic oligonucleotides at an endogenous BstEII site located near the C terminus, after a glycine residue at position 224, to create pRK5-hRIC-3FLAG.

Heterologous Expression. Human kidney tsA201 cells were cultured in Dulbecco's modified Eagle's medium (Invitrogen) containing 10% fetal calf serum (Sigma-Aldrich), penicillin (100 U/ml), and streptomycin (100 μg/ml) (Invitrogen). Cells were maintained in a humidified incubator containing 5% CO2 at 37°C. Cells were transfected using the Effectene reagent (Qiagen) according to the manufacturer's instructions. After overnight incubation in Effectene, cells were incubated at 37°C for 24 h before being assayed for radioligand binding.

Radioligand Binding. [3H]Epibatidine (55.5 Ci/mmol) was purchased from PerkinElmer Life and Analytical Sciences, and [125I]-α-bungarotoxin ([125I]-α-BTX, 150–200 Ci/mmol) from GE Healthcare (Little Chalfont, Buckinghamshire, UK). Radioligand binding to transiently transfected tsA201 cells was performed as described previously (Cooper and Millar, 1997; Baker et al., 2004). Samples were assayed by filtration onto Whatman GF/B filters (for [3H]Epiba- tidine) or GF/A filters (for [125I]-α-BTX), followed by rapid washing using a Brandel cell harvester. Before use, filters were presoaked in 0.5% polyethyleneimine. All binding experiments with [125I]-α-BTX were performed in buffer containing 0.5% bovine serum albumin to reduce nonspecific binding.

Metabolic Labeling and Immunoprecipitation. Transfected tsA201 cells were metabolically labeled as described previously (Cooper and Millar, 1997). After growth in methionine-free medium for 15 min, cells were labeled with 250 μCi of Pro-mix, a mixture of [35S]methionine and [35S]cysteine (GE Healthcare) in 3.5 ml of methionine-free medium for 3 h. Medium containing 30 mg/l methionine and 10% heat-inactivated fetal calf serum was then added, and the cells incubated for a further 90 min. Cells were washed twice with 10 ml of phosphate-buffered saline (PBS) and harvested into 300 μl of ice-cold lysis buffer (150 mM NaCl, 50 mM Tris-CL, pH 8.0, 5 mM EDTA, and 1% Triton X-100) containing protease inhibitors (0.2 mM phenylmethylsulfonyl fluoride, 2 mM N-ethylmaleimide, and 10 μg/ml each of leupeptin, aprotime, and pepstatin). Solubilization and all subsequent steps were performed at 4°C. After 1-h solubilization, the cell lysate was precleared by incubation overnight with 30 μl of protein G-Sepharose (GE Healthcare) in a 1:1 mixture with lysis buffer. Nonosibilized material was pelleted by centrifugation at 14,000g for 15 min. Cell lysates were incubated with primary antibody for 3.5 h. The antibody-receptor complex was immunoprecipitated by the addition of 35 μl of protein G-Sepharose, incubated for a further 3.5 h, and isolated by centrifugation. Samples were washed with 4 × 1 ml lysis buffer. Lysates were examined by SDS polyacrylamide gel electrophoresis followed by autoradiography as described previously (Lansdell et al., 1997).
Electrophysiology. Cells, grown on glass coverslips coated in collagen and polylysine (both 10 μg/ml), were cotransfected with pEGFP-C2 (BD Biosciences Clontech, Palo Alto, CA) encoding green fluorescent protein and with plasmids containing RIC-3 and nAChR subunit constructs. Whole-cell recordings were performed at room temperature, 36 to 48 h after transfection, from cells identified under fluorescence microscopy as green fluorescent protein-positive. Recording solution contained 110 mM NaCl, 5.4 mM KCl, 0.8 mM MgCl₂, 1.8 mM CaCl₂, 25 mM glucose, 0.9 mM NaH₂PO₄, and 44 mM NaHCO₃. Borosilicate electrodes (GC150F-7.5; Harvard Apparatus Inc., Holliston, MA) of resistance 6 to 12 MΩ contained 140 mM CaCl₂, 10 mM HEPES, 10 mM EGTA, 0.5 mM CaCl₂, and 29.53 mM CsOH, pH adjusted to 7.26, osmolarity 283 mOsmol/kg H₂O. Unless otherwise specified, the holding potential was −60 mV. Fast cell superfusion of agonists was achieved with a theta-barreled application pipette made from 1.5-mm-diameter theta tubing (AH-30-0114; Harvard Apparatus Inc.), which was moved laterally using a stepper motor. Agonist-evoked currents were recorded using an Axopatch 200B amplifier (Molecular Devices, Sunnyvale, CA), filtered at 2 kHz and digitized at 10 kHz.

Intracellular Calcium Recording. Transfected tsA201 cells were replated onto poly-l-lysine-coated black-walled 96-well plates (Marathon Laboratories, London, UK) approximately 18 to 20 h post-transfection. Approximately 24 h later, cell medium was removed, and the cells incubated in 50 to 100 μl of 1 μM Fluo-4 acetylmethyl ester (Invitrogen) in Hanks’ balanced salt solution with 0.02% Pluronic F-127 (Invitrogen) for 30 to 60 min at room temperature. Cells were rinsed once with 160 μl of assay buffer (Hanks’ balanced salt solution supplemented with 18.8 mM CaCl₂, 8.8 mM sucrose, and 6.3 mM HEPES), and the cells were assayed using the fluorometric imaging plate reader (FLIPR) system (Molecular Devices, Winnersh, UK). Cells were excited by light of 488-nm wavelength from a 4-W argon-ion laser and the emitted fluorescence was passed through a 510 to 570 nm bandpass interference filter before detection with a cooled charge-coupled device camera (Princeton Instruments). Drug dilutions in assay buffer were prepared in a 200B amplifier. A single band of the size expected for PCR-amplified hRIC-3 transcripts (220 base pairs) was detected in SH-SY5Y cells, a human neuroblastoma cell line that expresses endogenous α7 nAChRs and in their ability to express functional recombinant α7 nAChRs (Quik et al., 1996; Cooper and Millar, 1998). A single PCR fragment of a size similar to that amplified from human SH-SY5Y cells was detected by RT-PCR amplification of mRNA isolated from GH4C1 and PC12-a cells, demonstrating expression of RIC-3 transcripts and indicating that the primers designed to the human RIC-3 nucleotide sequence are able to detect rat RIC-3 transcripts. In three separate preparations of mRNA isolated from PC12-b cells (in which endogenous [3H]MLA binding was not detected), no evidence of RIC-3 mRNA was detected by RT-PCR amplification. In all cases, a band of the size expected for PCR-amplified transcripts of the ubiquitously expressed α7 subunit was coexpressed with CeRIC-3 or hRIC-3.

Heterologous Coexpression of α7 and RIC-3. In agreement with previous studies (Eisele et al., 1993; Cooper and Millar, 1997, 1998), no specific binding of the α7-selective radioligand [125I]-a-BTX could be detected when either the human α7 subunit (hα7) or rat α7 subunit (rα7) was expressed by transient transfection in human kidney tsA201 cells (Fig. 1). In marked contrast, however, when either the hα7 or rα7 subunit was coexpressed with CeRIC-3 or hRIC-3, binding with 125I-a-BTX to the human and rat α7 nAChR subunit (hα7 and rα7) was detected in tsA201 cells cotransfected with CeRIC-3 or hRIC-3. Binding with 125I-a-BTX was performed on intact cells to examine levels of binding to cell surface receptors. Data are means of seven to eight independent experiments, each performed in triplicate. Binding has been presented as femtomoles per 10⁶ cells to provide an indication of the density of cell surface binding sites, but 10⁶ cells corresponds to ~1 to 2 mg of membrane protein.

Influence of RIC-3 upon radioligand binding to α7 nAChR. Specific binding of [125I]-a-BTX to the human and rat α7 nAChR subunit (hα7 and rα7) was detected in tsA201 cells cotransfected with CeRIC-3 or hRIC-3. Specific binding of [3H]MLA, an α7-selective nicotinic antagonist, PC12-a expressed specific [3H]MLA binding (230 ± 83 fmol/mg of protein; n = 4), whereas little or no specific binding of [3H]MLA could be detected in PC12-b cells. In addition, the rat pituitary GH4C1 cell line was examined. The GH4C1 cell line does not express endogenous α7 nAChRs but is a suitable host cell type in which to express functional recombinant α7 nAChRs (Quik et al., 1996; Cooper and Millar, 1998).
high levels of specific radioligand binding were detected (Fig. 1), findings that are consistent with previous studies (Williams et al., 2005).

Functional Expression of α7 nAChRs. To determine whether functional α7 nAChRs are formed in tsA201 cells after cotransfection with RIC-3, cells were examined by whole-cell patch-clamp recording. Rapidly desensitizing responses to brief applications of 200 μM acetylcholine (Fig. 2), characteristic of α7 nAChRs, were detected in cells transfected with all combinations of α7 and RIC-3 examined: α7+CeRIC-3 (six of seven cells), α7+CeRIC-3 (nine of 11 cells), α7+RIC-3 (eight of eight cells), and α7+α1MYC (13 of 17 cells). No significant differences were observed in the magnitude of whole-cell responses from cells transfected with α7 and RIC-3 cDNA combinations from different species (mean 119 ± 28 pA). We have been unable to detect functional responses from α7 expressed alone in transfected tsA201 cells by whole-cell electrophysiological recording (zero of 18 cells examined).

Coassembly of α7 with RIC-3. The ability of RIC-3 to coassemble with α7 was investigated by coimmunoprecipitation. To enable detection of the hRIC-3 protein, an eight-amino acid FLAG epitope was introduced into hRIC-3 to generate hRIC-3FLAG. Cells were transfected with combinations of ha7 and hRIC-3FLAG cDNAs and examined by immunoprecipitation with either the α7-specific antibody mAb319 or with mAbFLAG-M2, an antibody that recognizes the FLAG epitope. Specific bands corresponding to ha7 and hRIC-3FLAG were detected in cells transfected with these cDNAs alone and were absent from untransfected cells (Fig. 3A). Coprecipitation of ha7 with hRIC-3FLAG was observed in cells cotransfected with ha7 and hRIC-3FLAG using mAbFLAG-M2 (Fig. 3A, lane 3). Likewise, coprecipitation of hRIC-3FLAG with ha7 was observed in cells cotransfected with ha7 and hRIC-3FLAG using mAb319 (Fig. 3A, lane 7). The absence of cross-reactivity of mAbFLAG-M2 with ha7 and of mAb319 with hRIC-3FLAG was also confirmed (Fig. 3A, lanes 4 and 10). This provides strong evidence of coassembly of the ha7 and hRIC-3 proteins. To eliminate the possibility that the coimmunoprecipitation of α7 and RIC-3 was a consequence of nonspecific protein aggregation, a control experiment was performed in which ha7 and hRIC-3 were expressed separately by transfection of tsA201 cells. Transfected cells were metabolically labeled, disrupted by detergent solubilization, and the two cell extracts were mixed before immunoprecipitation. In contrast to the clear evidence for coprecipitation when ha7 and hRIC-3 were coexpressed, no coimmunoprecipitation was observed when proteins were mixed after having been expressed separately (data not shown).

Fig. 2. Functional expression of α7 coexpressed with RIC-3 in tsA201 cells. Functional expression of α7 nAChRs was detected by whole-cell patch-clamp recording when coexpressed in human tsA201 cells with CeRIC-3. Representative whole-cell recordings are shown of ha7 coexpressed with CeRIC-3 (A and B). Rapid application of 200 μM acetylcholine is indicated by a solid black line. Block of whole-cell responses by bath application of 100 nM MLA is indicated by a horizontal double line.

Fig. 3. Coprecipitation of the α7 subunit with RIC-3. Human kidney tsA201 cells were transfected with combinations of ha7 nAChR subunit and hRIC-3 cDNAs (A) or with the α1 GABAAR subunit and hRIC-3 (B). Proteins were immunoprecipitated from metabolically labeled cells and analyzed by SDS-PAGE, followed by autoradiography. The nAChR ha7 subunit was detected by mAb319, a mAb raised against an endogenous α7 epitope, hRIC-3 (tagged with a FLAG epitope; hRIC-3FLAG) was detected with mAbFLAG-M2 and the GABAAR α1 subunit (tagged with a myc epitope; α1MYC) was detected with mAb9E10. A, a band (apparent molecular mass ~58 kDa) corresponding to hRIC-3FLAG was detected in cells transfected with hRIC-3FLAG (lane 2) that was absent from untransfected cells (lane 1). A band of the size expected of ha7 (~50 kDa) was coprecipitated with hRIC-3FLAG from cells cotransfected with hRIC-3FLAG and ha7 (lane 3). The absence of cross-reactivity of mAbFLAG-M2 with ha7 was confirmed (lane 4). A band corresponding to ha7 (~50 kDa), which was absent from untransfected cells (lane 5), was detected in cells transfected with ha7 (lane 6). A band of ~58 kDa, corresponding to hRIC-3FLAG (lane 7), and of ~55 kDa, corresponding to hRIC-3 (lane 8), was coprecipitated with ha7. The absence of cross-reactivity of mAb9E10 with hRIC-3FLAG and hRIC-3 was confirmed (lanes 9 and 10). B, a band (apparent molecular mass ~58 kDa) corresponding to hRIC-3FLAG, which was absent from untransfected cells (lane 1), was detected in cells transfected with hRIC-3FLAG (lane 2). No evidence of a coprecipitated protein was observed in cells cotransfected with hRIC-3FLAG and α1MYC (lane 3). A band corresponding to α1MYC (~50 kDa) was detected in cells transfected with α1MYC (lane 6) and was absent from untransfected cells (lane 5). No evidence of a coprecipitated protein was observed in cells cotransfected with hRIC-3FLAG and α1MYC (lane 7). The position of molecular mass markers is shown.
To examine the specificity of this interaction, coimmunoprecipitation studies were performed with hRIC-3^{FLAG} and the GABA$_A$R α1 subunit, using a previously characterized GABA$_A$R α1 subunit tagged with a myc epitope (α1^{MYC}) that has been shown to be functionally silent (Connolly et al., 1996). Although both α1^{MYC} and hRIC-3^{FLAG} could be detected by immunoprecipitation (Fig. 3B, lanes 2 and 6), no evidence of coassembly between the GABA$_A$R subunit and hRIC-3^{FLAG} could be detected (Fig. 3B, lanes 3 and 7).

Influence of RIC-3 upon α8-, α9-, and α10-Containing nAChRs. Although the successful functional heterologous expression of many heteromeric nAChR subunit combinations has been reported in several mammalian cell expression systems, considerable problems have been encountered with the expression of homomeric nAChRs (such as α7) in cultured cell lines (Cooper and Millar, 1997; Kasner and Berg, 1997; Rangwala et al., 1997; Chen et al., 1998). Functional homomeric nAChRs have been reported for both α8 and α9 subunits expressed in X. laevis oocytes (Elgoyhen et al., 1994; Gerzanich et al., 1994; Gotti et al., 1994) but, as for α7, difficulties have been encountered in heterologous expression of homomeric α8 and α9 in cultured cell lines (Cooper and Millar, 1998; Baker et al., 2004). As might have been expected from the very close sequence similarity between α7 and α8 subunits, clear evidence of specific cell surface 125I-aBTX binding was also detected when the chick α8 nAChR subunit was coexpressed with either CeRIC-3 (53.0 ± 13.8 fmol/106 cells; n = 3) or hRIC-3 (24.0 ± 6.2 fmol/106 cells; n = 3). In contrast, no significant binding of 125I-aBTX was detected when the α8 subunit was expressed in the absence of RIC-3 (1.1 ± 1.7 fmol/106 cells; n = 3). Despite the ability of RIC-3 to facilitate binding of 125I-aBTX to homomeric α7 and α8 nAChRs, no evidence of specific nicotinic radioligand binding was detected when the rat α9 nAChR subunit was coexpressed with either CeRIC-3 or hRIC-3. Because there is strong evidence for coassembly of α9 and α10 subunits into heteromeric nAChRs (Elgoyhen et al., 2001; Baker et al., 2004), the influence of RIC-3 constructs upon coexpressed α9 and α10 subunits was examined, but no evidence of specific binding of nicotinic radioligands was detected when these subunits were coexpressed with either CeRIC-3 or hRIC-3.

Despite the well documented problems associated with efficient functional expression of α9 in transfected mammalian cells (Cooper and Millar, 1998), in three of 11 cells examined, whole-cell responses to acetylcholine (72 ± 26 pA) were observed. However, coexpression of α8 with hRIC-3 generated whole-cell responses to acetylcholine (124 ± 24 pA) in all cells examined (14 of 14 cells). The rapidly desensitizing whole-cell responses to acetylcholine were completely and reversibly blocked by d-tubocurarine (data not shown).

Influence of RIC-3 upon α3-, α4-, β2-, and β4-Containing nAChRs. Previous studies conducted in oocytes have reported that coexpression of RIC-3 causes a marked inhibition of functional responses with heteromeric α3β4 and α4β2 nAChRs (Halevi et al., 2003). We have examined the influence of hRIC-3 upon levels of radioligand binding to four nAChRs (α3β2, α3β4, α4β2, and α4β4) expressed in mammalian cells. Coexpression of hRIC-3 resulted in significantly enhanced levels of specific $[^{3}H]$epibatidine binding to all subunit combinations (Fig. 4). To examine the influence of RIC-3 upon levels of functional nAChRs, agonist-induced changes in intracellular calcium were examined by use of an auto-

![Fig. 4. Influence of hRIC-3 on specific $[^{3}H]$epibatidine binding to heteromeric nAChRs. Specific binding of $[^{3}H]$epibatidine was determined with membrane preparations of tsA201 cells transfected with α3β2, α3β4, α4β2, and α4β4 subunit combinations in the presence and absence of cotransfected hRIC-3. Data are means of three to seven independent experiments, each performed in triplicate. Significant differences, determined by two-tailed Student’s t test, are indicated (*, $p < 0.05$; **, $p < 0.02$; ***, $p < 0.002$).](image)
Discussion

The RIC-3 protein from C. elegans (CeRIC-3) and its human homolog (hRIC-3) have been shown to enhance levels of functional nAChRs when coexpressed with α7 in X. laevis oocytes (Halevi et al., 2002, 2003). A similar enhancement is seen with a C. elegans nAChR containing the DEG-3 and DES-2 subunits (Halevi et al., 2002, 2003). An enhancement of cell surface expression of the 5HT3 receptor subunit 5HT3A (a subunit that shows close sequence similarity to nAChR subunits) has also been reported in mammalian cells (Cheng et al., 2005). In contrast, RIC-3 does not seem to influence functional expression levels of GABA, glutamate, and glycine receptors (Halevi et al., 2002, 2003). Despite the enhancement of α7 nAChR responses caused by coexpression of RIC-3, a marked inhibition of functional responses to heteromeric nAChRs such as α3β4 and α4β2 has been reported on coexpression of hRIC-3 in oocytes (Halevi et al., 2003).

Despite the relative ease with which functional nAChRs can be generated by expression in X. laevis oocytes, considerable problems have been encountered in functional expression in transfected mammalian cells and are particularly pronounced for homomeric nAChRs such as α7 (Millar, 1999). When expressed in X. laevis oocytes, the nAChR α7 subunit forms functional ion channels that are blocked by the snake neurotoxin α-BTX (Couturier et al., 1990). Although there have been reports of the successful heterologous expression of functional α7 nAChRs in some cultured mammalian cell lines (Puchacz et al., 1994; Gopalakrishnan et al., 1995; Quik et al., 1996), considerable difficulties have been reported in the functional expression of homomeric α7 nAChRs in many other mammalian cell types (Cooper and Millar, 1997; Kassner and Berg, 1997; Rangwala et al., 1997; Chen et al., 1998).

Problems associated with heterologous expression of α7 in nonpermissive host cell types can be circumvented by the expression of subunit chimeras containing the extracellular domain of α7 fused to the transmembrane and C-terminal domain of the 5-hydroxytryptamine type 3 receptor subunit 5HT3A (Eiselé et al., 1993; Blumenthal et al., 1997; Rangwala et al., 1997; Cooper and Millar, 1998). This provides evidence that problems associated with the efficient formation of correctly assembled α7 nAChRs are due to sequences present in its C-terminal region, but it does not explain the reason for differences between host cell types.

Until recently (Williams et al., 2005), there have been no reports of the influence of RIC-3 upon nAChRs expressed in transfected mammalian cell lines. The recent study of Williams et al. (2005) and the work reported here, demonstrate that α7 is able to efficiently generate functional nAChRs in mammalian cell lines when coexpressed with either CeRIC-3 or hRIC-3. We have also demonstrated that coexpression of RIC-3 promotes functional expression of homomeric α8 (but not α9) nAChRs. An interesting aspect of the present study is the evidence that coexpression of RIC-3 enhances functional expression of heteromeric nAChRs such as α3β4, α3β4, α4β2, and α4β4 in transfected mammalian cells. This is in marked contrast to the report that coexpression of RIC-3 causes a marked inhibition of functional responses to α3β4 and α4β2 in oocytes (Halevi et al., 2003). It seems, therefore, that the influence of RIC-3 upon functional expression of nAChRs can be influenced by other host cell factors.

We have obtained clear evidence for the coprecipitation of RIC-3 with multiple nAChR subtypes (α3, α4, α7, β2, and β4). Our inability to detect coprecipitation of the GABAAR α1 subunit with RIC-3 indicates that the association with multiple nAChR subunits does not extend to all ligand-gated ion channel subunits and is consistent with evidence that func-

Fig. 5. Enhancement of functional expression of heteromeric nAChRs by RIC-3. A, functional expression of α3β2, α3β4, α4β2, and α4β4 nAChRs examined by agonist-induced changes in intracellular calcium in populations of transfected tsA201 cells. Cells loaded with the calcium-sensitive dye fluo-4 were plated in 96-well plates. Agonist-induced changes in fluorescence were recorded simultaneously in all wells of the 96-well plate using a FLUPR. Traces show representative paired experiments in which responses to different nAChR subunit combinations are compared in the absence (bottom trace) and presence of hRIC-3 (top trace). Data points, recorded at 1-s intervals, are means of four separate wells from a single 96-well plate. Error bars are shown for every 10th data point. B, influence of coexpression of hRIC-3 on functional responses measured as agonist-induced elevations in intracellular calcium is presented as a fold effect, normalized to paired responses for each subunit combination in the absence of hRIC-3. Data are means of three to five independent experiments, each performed in quadruplicate. Significant differences, determined by two-tailed Student’s t test, are indicated (*, p < 0.05).
Ric-3 Enhances Functional Expression of nAChRs

Fig. 6. Coprecipitation of α4 and β2 subunits with Ric-3. Coprecipitation of hRic-3 with the α4 and β2 nAChR subunits was examined by cotransfection in tsA201 cells. As shown previously (Fig. 3), proteins were immunoprecipitated from metabolically labeled cells and analyzed by SDS-PAGE, followed by autoradiography. To examine whether coprecipitation might be a consequence of nonspecific interaction or aggregation, experiments were performed in parallel in which hRic-3 and nAChR subunits were transfected into separate populations of cells (followed by solubilization and mixing before immunoprecipitation). A band (apparent molecular mass ~58 kDa) corresponding to hRic-3FLAG, which was absent from untransfected cells (lane 1), was detected in all cells transfected with hRic-3FLAG (lanes 2–7). Bands of the size expected for α4 or β2 were detected in cells in which these subunits were coexpressed alone (lanes 5 and 6) or together (lane 7). No evidence of coprecipitated α4 or β2 was observed when proteins were expressed alone and then mixed (lanes 2–4). Lane 1 shows the absence of cross-reactivity of α4 and β2 with mAbFLAG-M2. Experiments involving the mixing of proteins that were expressed separately is indicated by an asterisk. The position of molecular mass markers is shown.

References

The phenotype consequence of mutations in the gene encoding Ric-3 in C. elegans has been reported to be the intracellular accumulation of nAChR proteins (Halevi et al., 2002). This has led to the suggestion that CeRic-3 is involved in the maturation pathway of nAChRs (Halevi et al., 2002). The identification of a related protein in humans (Halevi et al., 2003), together with the results presented here, suggest that Ric-3 is an nAChR-associated protein that is required for efficient and accurate folding, assembly and functional expression of nAChRs in diverse species.

Many receptor-associated proteins have been identified in recent years, several of which seem to be important in assembly or intracellular trafficking. In comparison with several other neurotransmitter receptors, relatively few nAChR-associated proteins have been identified. A single protein (43K protein) is associated with nAChRs expressed at the neuromuscular junction and in the electric organ of such fish as Torpedo californica. Although rapsyn plays an important role in organization of nAChRs at the neuromuscular junction, expression studies reveal that it is not required for functional heterologous expression of muscle-type nAChRs (Phillips et al., 1991). Ric-3 is likely to be one of several proteins involved in the folding and assembly of nAChRs. Chaperone proteins such as Bip, calnexin, and 14-3-3γ have been shown to have an effect on the maturation of nAChRs (Blount and Merlie, 1991; Gelman et al., 1995; Jeanclos et al., 2001), but they are ubiquitously expressed and interact with a diverse group of proteins. The work reported here and previously (Halevi et al., 2002, 2003; Cheng et al., 2005; Williams et al., 2005) suggests that Ric-3 may play a role that is restricted to a narrower group of proteins, such as nAChRs and the closely related 5HT3 receptor.

In summary, we have obtained evidence for a correlation between the expression of endogenous Ric-3 transcripts and the ability of mammalian cell types to permit efficient folding and assembly of nAChR subunits such as α7. In mammalian cell lines that do not permit efficient folding and functional expression of α7 nAChRs, coexpression of Ric-3 facilitates both subunit assembly (assayed by nicotinic radioligand binding) and formation of functional nAChRs (assayed
by patch-clamp recording). In contrast to studies conducted in *X. laevis* oocytes, enhanced functional expression of several heteromeric nACHR subtypes (a3β2, a3β4, a4β2, and a4β4), when coexpressed with RIC-3, has also been demonstrated in transfected mammalian cells. We conclude that RIC-3 is a nACHR-associated protein that acts to enhance the efficient folding and assembly of multiple nACHR subunits into functional receptors.

Acknowledgments

We thank Jim Boulter, Belén Elgoyhen, Jon Lindstrom, Steve Moss, Jim Patrick, and Millet Treinin for generously providing cDNAs used in this study. We thank Sam Ranasinghe for assistance with PLIPR experiments.

References

Baker ER, Zwart R, Sher E, and Millar NS (2004) Pharmacological properties of cDNAs used in this study. We thank Sam Ranasinghe for assistance. Moss, Jim Patrick, and Millet Treinin for generously providing.

Lewis TM, Harkness PC, Sivilotti LG, Colquhoun D, and Millar NS (1997) The ion channel properties of a rat recombinant neuronal nicotinic receptor are dependent on the host cell type. *J Physiol (Lond)* **505**:299–306.

Address correspondence to: Dr. Neil Millar, Department of Pharmacology, University College London, Gower St., London, WC1E 6BT United Kingdom. E-mail: n.millar@ucl.ac.uk.