Block of Peripheral Nerve Sodium Channels Selectively Inhibits Features of Neuropathic Pain in Rats

Received August 16, 2005; accepted November 16, 2005

ABSTRACT

Several sodium channel blockers are used clinically to treat neuropathic pain. However, many patients fail to achieve adequate pain relief from these highly brain-penetrant drugs because of dose-limiting central nervous system side effects. Here, we describe the functional properties of CDA54, a peripherally acting sodium channel blocker. In whole-cell electrophysiological assays, CDA54 blocked the inactivated states of hNaV1.7 and hNaV1.8, two channels of the peripheral nervous system implicated in nociceptive transmission, with affinities of 0.25 and 0.18 μM, respectively. CDA54 displayed similar affinities for the tetrodotoxin-resistant Na current in small-diameter mouse dorsal root ganglion neurons. Peripheral nerve injury causes spontaneous electrical activity in normally silent sensory neurons. CDA54 inhibited these injury-induced spontaneous action potentials at concentrations 10-fold lower than those required to block normal A- and C-fiber conduction. Consistent with the selective inhibition of injury-induced firing, CDA54 (10 mg/kg p.o.) significantly reduced behavioral signs of neuropathic pain in two nerve injury models, whereas the same dose of CDA54 did not affect acute nociception or motor coordination. In anesthetized dogs, CDA54, at plasma concentrations of 6.7 μM, had no effect on cardiac electrophysiological parameters including conduction. Thus, the peripheral nerve sodium channel blocker CDA54 selectively inhibits sensory nerve signaling associated with neuropathic pain.

The anticonvulsants carbamazepine and lamotrigine and the antiarrhythmics lidocaine and mexiletine are used clinically to treat neuropathic pain. They are state-dependent sodium channel blockers, binding primarily to the open and inactivated states of the channel (Hille, 1977; Hondeghem and Katzung, 1977). As channels accumulate in the drug-bound inactivated state, fewer channels are available to open upon membrane depolarization, leading to slowing and eventually to the block of action potential conduction. Because of the voltage dependence of inactivation, this form of state-dependent block results in preferential inhibition of action potentials in rapidly firing or partially depolarized cells, contributing to the therapeutic index of anticonvulsants and antiarrhythmics (Clare et al., 2000).

In animal models of neuropathic pain, damage to primary afferent sensory neurons can lead to spontaneous action potential firing in normally silent sensory neurons, and these ectopic discharges are believed to contribute to the generation and maintenance of neuropathic pain (Kajander and Bennett, 1992). In rat models of peripheral nerve injury, the onset of ectopic action potential firing in the injured nerve corresponds to the onset of behavioral signs of pain, such as mechanical allodynia (Liu et al., 2000). In these models, the anticonvulsants carbamazepine and lamotrigine and the antiarrhythmics lidocaine and mexiletine are used clinically to treat neuropathic pain. They are state-dependent sodium channel blockers, binding primarily to the open and inactivated states of the channel (Hille, 1977; Hondeghem and Katzung, 1977). As channels accumulate in the drug-bound inactivated state, fewer channels are available to open upon membrane depolarization, leading to slowing and eventually to the block of action potential conduction. Because of the voltage dependence of inactivation, this form of state-dependent block results in preferential inhibition of action potentials in rapidly firing or partially depolarized cells, contributing to the therapeutic index of anticonvulsants and antiarrhythmics (Clare et al., 2000).

In animal models of neuropathic pain, damage to primary afferent sensory neurons can lead to spontaneous action potential firing in normally silent sensory neurons, and these ectopic discharges are believed to contribute to the generation and maintenance of neuropathic pain (Kajander and Bennett, 1992). In rat models of peripheral nerve injury, the onset of ectopic action potential firing in the injured nerve corresponds to the onset of behavioral signs of pain, such as mechanical allodynia (Liu et al., 2000). In these models, the anticonvulsants carbamazepine and lamotrigine and the antiarrhythmics lidocaine and mexiletine are used clinically to treat neuropathic pain. They are state-dependent sodium channel blockers, binding primarily to the open and inactivated states of the channel (Hille, 1977; Hondeghem and Katzung, 1977). As channels accumulate in the drug-bound inactivated state, fewer channels are available to open upon membrane depolarization, leading to slowing and eventually to the block of action potential conduction. Because of the voltage dependence of inactivation, this form of state-dependent block results in preferential inhibition of action potentials in rapidly firing or partially depolarized cells, contributing to the therapeutic index of anticonvulsants and antiarrhythmics (Clare et al., 2000).
intravenous application of lidocaine, at clinically relevant doses, suppresses the ectopic discharges and reverses mechanical allodynia without affecting general behavior and motor function (Chaplan et al., 1995). These results suggest that a sodium channel blocker with the appropriate properties may be able to selectively inhibit sensory nerve action potentials associated with an injury-induced sensitized state. Indeed, systemically administered lidocaine has been shown to be effective in the treatment of several neuropathic pain disorders at doses that do not produce anesthesia or slow cardiac conduction (Tanelian and Brose, 1991). More recently, lidocaine has been formulated as a dermal patch (Lidoderm, Endo Pharmaceuticals, Chadds Ford, PA), and this formulation has been approved by the Food and Drug Administration for the treatment of postherpetic neuralgia (Devers and Galer, 2000). Although lidocaine is highly brain-penetrant (Nakazono et al., 1991), the low systemic concentrations achieved by transdermal lidocaine application suggest that efficacy is achieved via block of peripheral rather than central nervous system sodium channels.

Several NaV1 subtypes are expressed in the peripheral nervous system, and the preferential expression of NaV1.7, NaV1.8, and NaV1.9 in nociceptive neurons suggests a role of these subtypes in pain transmission. Mutations in NaV1.7 have been linked to primary erythromalgia, a human heritable disease associated with episodes of burning pain (Yang et al., 2004), and phenotyping of mice carrying a nociceptor-specific deletion of the NaV1.7 gene has provided evidence for a role of this sodium channel subtype in mediating inflammatory pain signaling (Nassar et al., 2004). NaV1.8 is responsible for the majority of the inward current during action potentials in small-diameter neurons (Renganathan et al., 2004), and evidence from experiments in rats using antisense oligonucleotides indicates a role of this channel in neuropathic (Lai et al., 2002), inflammatory (Khasar et al., 1998), and visceral (Yoshimura et al., 2001) pain. Despite a compensatory up-regulation of tetrodotoxin-sensitive sodium current, NaV1.8 null mutant mice displayed reduced sensitivity to inflammatory hyperalgesia (Akopian et al., 1999; Laird et al., 2002). Finally, NaV1.9 null mutant mice provide evidence that the NaV1.9 subtype also contributes to inflammatory pain signaling (Priest et al., 2005).

Here, we examine the in vitro mechanism of action, the effect on sensory nerve firing, and the analgesic properties of trans-N-[[2-[(aminosulfonyl)biphenyl-4-yl](methyl)-N-methyl-N'-[4-(trifluoromethoxy)benzyl]cyclopentane-1,2-dicarboxamide (CD5A4) (Shao et al., 2005), an orally active sodium channel blocker with an assumed peripheral site of action.

Materials and Methods

Animals. All procedures involving animals were carried out in accordance with the United Kingdom Animals (Scientific Procedures) Act of 1986 or the National Institutes of Health guidelines for the use of live animals and were approved by the Merck Research Laboratories Institutional Animal Care and Use Committee. Rats were maintained in a temperature-controlled (23°C) facility with a 12-h light/dark cycle and had ad libitum access to water and regular rodent chow.

Plasma and Brain Concentrations. Plasma and brain concentrations of CD5A4 were determined by liquid chromatography-mass spectrometry/mass spectrometry using an API 3000 mass spectrometer (Applied Biosystems/MDS Sciex, Foster City, CA) operated in positive ion atmospheric pressure chemical ionization mode with multiple-reaction monitoring. Plasma was prepared for analysis by solid-phase extraction using Oasis HLB extraction plates (30 mg; Waters Corporation, Milford, MA), and brain homogenate (1:3 tissue/water) was prepared by protein precipitation with acetonitrile. Extracts were chromatographed using a DuPont Zorbax SB-C18 column (50 x 2 mm, 5 μm; DuPont, Wilmington, DE) and eluted at 0.2 ml/min under isocratic conditions with acetonitrile/water (85:15) containing 5 mM ammonium formate/0.1% formic acid. Under these conditions, CD5A4 eluted at 3.5 min.

Dorsal Root Ganglion Preparation. Dorsal root ganglia (DRGs) were dissected from BKTO mice after cervical dislocation. Ganglia from all levels were placed into Hanks' solution containing 45 units/ml papain and 0.4 mg/ml l-cysteine for 15 min at 37°C, followed by 2 mg/ml collagenase (type I) in Hanks' solution for 15 to 18 min at 37°C. The ganglia were washed once with growth media (F14, 10% horse serum, penicillin/streptomycin (5000 IU/500 μg), 120 mg NaHCO₃, and 100 ng/ml nerve growth factor) and triturated with a fire-polished pipette to obtain a single cell suspension that was plated onto poly-l-ornithine-coated glass coverslips. All recordings were made within 2 to 8 h of ganglia isolation.

Electrophysiology. Sodium currents were examined by whole-cell voltage clamp (Hamill et al., 1981) using either an EPC-9 amplifier and Pulse software (HEKA Electronics, Lambrecht/Pfalz, Germany) or an Axopatch 200B amplifier and pClamp7 software (Molecular Devices, Sunnyvale, CA). Electrodes were fire-polished to resistances of 1.5 to 4 MΩ. Voltage errors were minimized by series resistance compensation (75–85%), and the capacitance artifact was canceled using the amplifier's built-in circuitry. Data were acquired at 10 to 50 kHz and filtered at 5 to 10 kHz. For recombinant channels expressed in HEK cells, the bath solution typically consisted of 40 mM NaCl, 120 mM N-methyl-d-glucamine chloride, 1 mM KCl, 2.7 mM CaCl₂, 0.5 mM MgCl₂, and 10 mM N-methyl-d-glucamine HEPES, pH 7.4, and the internal (pipette) solution contained 110 mM, cesium methanesulfonate, 5 mM NaCl, 20 mM CsCl, 10 mM CsF, 10 mM BAPTA (tetraeasium salt), and 10 mM cesium-HEPES, pH 7.4. In some cases, N-methyl-d-glucamine chloride in the bath solution was replaced by NaCl to increase current amplitudes. To isolate tetrodotoxin-resistant Na⁺ current in DRG neurons, the bath solution contained 40 mM NaCl, 50 mM tetraethylammonium chloride, 40 mM choline chloride, 0.1 mM CaCl₂, 3.9 mM MgCl₂, 10 mM tetraethylammonium-HEPES, 11 mM glucose, and 300 mM tetrodoxin, pH 7.4, and the internal solution contained 115 mM CsF, 10 mM NaCl, 3.9 mM MgCl₂, 10 mM BAPTA (tetracesium salt), and 10 mM cesium-HEPES, pH 7.3, adjusted to 300 mM with sucrose. Liquid junction potentials were less than 4 mV and were not corrected for. Unless otherwise stated, the holding potential was −90 mV.

Data Analysis. All averaged data are presented as mean ± S.E. Statistical comparisons were made using Student’s t test, and differences were considered significant at p < 0.05.

Chronic Constriction Injury. Neuropathic pain behavior was assessed using the chronic constriction injury (CCI) model as described by Bennett and Xie (1988). Male Sprague-Dawley rats (150–200 g) were anesthetized with halothane, and the sciatic nerve was exposed at mid-thigh level and loosely tied with four chromic catgut sutures spaced approximately 3 mm apart. The incision was sutured, and the rats were allowed to recover. After 2 weeks, the rats were either tested for mechanical hyperalgesia or euthanized by cervical dislocation after a rising concentration of carbon dioxide for in vitro electrophysiological recordings of the injured sciatic nerve. Mechanical hyperalgesia was assessed using a Ugo Basile apparatus (Stoelting Company, Wood Dale, IL). Paw pressure, applied to the injured (ipsilateral) or uninjured (contralateral) hindpaw, was increased linearly until the animal vocalized, withdrew the paw, or struggled. Two baseline measures were taken (1 h apart) before drug treatment. Rats rested for 3 h before drug treatment, and hyperalgesia was again evaluated 1 h after compound dose for mexiletine and 2 h
Peripheral Sodium Channel Blocker with Analgesic Properties

David M. Kurz, Donald E. Kieffer, Gregory E. Doenitz, James P. Crean, Lian Yu, Dafeng Wang, James D. MC Manus, Rucong Yang, John Busch, Shao Li, Sathya K. Ranganathan, Kobina Ocran, michelle Chen, Xiaowei Liu, Zhiguo Su, Jiping Li, Nicholas J. Goodyear, Jee Leem, Alla A. Onnen, Andrew M. R. Murphy, Yang Gao, Wei Cao, Xinghua Li, Shichen Li, Xiaoyu Wu, Xue-Zhi Li, Pan Rong, Stephen G. Whitfield, Michael D. Brimacombe, and Richard W. Sutherland

Peripheral Sodium Channel Blocker with Analgesic Properties

A high-throughput screening campaign discovered the novel sodium channel blocker N-[[(2′-<aminosulfonyl)bi-phenyl-4-yl]methyl]-N′-[(2,2′-bithien-5-ylmethyl)succinamide had efficacy in an animal model of tonic pain, but its poor pharmacokinetic profile prohibited further in vivo characterization. A medicinal chemistry effort yielded CDA54 (5-cyclopentane dicarboxamide; Shao et al., 2005), shown in Fig. 1A. Dosed orally in rats, CDA54 was 44% bioavailable. A dose of 2 mg/kg produced maximal plasma concentrations of 0.93 ± 0.11 μM 1 h after dose and a half-life of approximately 1 h (Fig. 1B). Plasma concentrations of CDA54 were dose-proportional between 0.3 and 10 mg/kg p.o., and brain concentrations were 33-fold lower than plasma concentrations (Fig. 1C). The brain-to-plasma ratio produced by CDA54 was 0.03 ± 0.01, n = 8 and 3.5 h after the fifth dose of 10 mg/kg twice-daily dosing (0.03 ± 0.01, n = 8). In contrast, mexiletine was highly brain-penetrant, producing brain-to-plasma ratios in rats of 25 and 14, 0.25 h and 4 h after 1 mg/kg i.v. dosing, respectively (data not shown), similar to published brain-to-plasma ratios of 23 (Igwemezie et al., 1992).

Block of Recombinant NaV1.7 Channels by CDA54. Block of NaV1.7 channels by CDA54 was examined by whole-
cell electrophysiology in stably transfected HEK-293 cells. Figure 2A shows the peak current evoked by 6-ms depolarizations to 0 mV from either −100 or −70 mV. At a holding potential of −70 mV, where 25% of NaV1.7 channels were inactivated, as evidenced by the reduced current in comparison to the holding potential of −100 mV, bath application of 1 μM CDA54 blocked approximately 40% of the current. After returning the holding potential to −100 mV, NaV1.7 channels apparently recovered from block by CDA54, as the current slowly returned to 85% of its amplitude before the addition of CDA54. After returning the holding potential to −70 mV, block redeveloped over a time course of several minutes (τ = 110 s). Traces shown below the time course represent the current in response to a 6-ms depolarizing pulse in control and after equilibration with 1 μM CDA54 from holding potentials of −70 mV on the left and −100 mV on the right. Figure 2B shows the average fractional block of NaV1.7 current by CDA54 when the compound was applied at −100 or −70 mV (n = 3–8 for each data point). Fitting the data to the Hill equation with a Hill coefficient of 1 yielded IC50 values of 11.4 and 0.73 μM for holding potentials of −100 and −70 mV, respectively. CDA54 is not charged, and the dependence of block on holding potential is consistent with preferential block of channels in the inactivated state. According to the modulated receptor hypothesis (Hille, 1977), the overall affinity of CDA54 for hNaV1.7 at a given membrane potential can be treated as a weighted average of the affinity of the compound for the resting and inactivated states of the channel: $K_{app} = 1/[h/K_r + (1 - h)/K_i]$, where h is the fraction of channels residing in the resting state, and K_r and K_i are the dissociation constants for the resting and inactivated channels, respectively (Kuo and Bean, 1994). At −100 mV, essentially all hNaV1.7 channels reside in the resting state, and the IC50 value for CDA54 at this potential is assumed to reflect binding to resting channels ($K_r = 11.4 \mu M$). Under the experimental conditions used, the midpoint of steady-state inactivation of hNaV1.7 channels was −67.8 ± 0.4 mV (n = 107), and at −70 mV, an average of 59% of channels were in the resting state. Assuming that the more potent block of hNaV1.7 channels at −70 mV reflects preferential binding to inactivated channels, the affinity of CDA54 for inactivated channels (K_i) can then be calculated from the K_{app} at −70 mV. The data shown in Fig. 2B yielded an IC50 or K_{app} value of 0.73 μM at −70 mV, resulting in a K_i of 0.30 μM. When K_i was calculated separately for each experiment, the average value was 0.25 ± 0.02 μM (n = 17). In comparison, the K_i for mexiletine under the same conditions was 10.8 ± 1.7 μM (n = 3).

A consequence of high-affinity binding to inactivated channels compared with resting channels should be a drug-dependent shift in the voltage-dependence of steady-state inactivation to more hyperpolarized potentials. This was indeed the case for CDA54 block of NaV1.7, as shown in Fig. 2C. The maximum current available on depolarization from negative holding potentials was reduced by 12% in the presence of 3 μM CDA54, yielding a K_r value of 22 μM for the experiment shown. To accurately measure drug-induced shifts in inactivation requires that the compound equilibrates at each conditioning potential. As seen in Fig. 2A, in the continued presence of CDA54, binding equilibrates with a time constant of 110 s/μM after a step from −100 to −70 mV. Availability curves in control and in 3 μM CDA54 were therefore constructed using 1-min conditioning pulses. Under these conditions, 3 μM CDA54 shifted the midpoint of the steady-state availability curve (V_i) by −10.9 mV. This shift in the voltage-dependence of inactivation was concentration-dependent (Fig. 2D). Application of 1 and 10 μM CDA54 resulted in shifts of −7.5 and −15.6 mV, respectively. Assuming a simple two-state model in which drug can bind with different affinities to either the resting (K_r) or inactivated state (K_i) of the channel, the concentration-dependence of the shift in V_i is described by the equation $\Delta V_i = k \times \ln\left[1 + (\text{drug}/K_i)\right] / \left[1 + (\text{drug}/K_r)\right]$, where k is the slope of the Boltzmann equation describing the availability curve (Bean et al., 1983). The line in Fig. 2D represents the fit of the data to this equation for $k = -6.3$ mV, the average slope of control availability curves, and $K_i = 11.4 \mu M$, yielding $K_r = 0.46 \mu M$. This value of K_i is slightly greater than that determined from the experiments in Fig. 2B, presumably because of the slow association kinetics, resulting in an underestimate of the shift in V_i at the lower concentrations.

CDA54 did not affect the kinetics of channel activation or inactivation. When the current remaining in the presence of 10 μM CDA54 (11% of control at −70 mV) was scaled (gray trace) to match the amplitude of the current in the absence of compound (black trace), the two traces showed a nearly identical time course (Fig. 2E).

State-Dependence of Block by CDA54. CDA54 displayed use-dependent block of NaV1.7, as shown in Fig. 3A. During 10-Hz stimulation from a holding potential of −100 mV, 3 μM CDA54 caused 83% use-dependent block. Use-dependent or phasic block developed with a time constant of 15 s and was fit well by a single exponential. In another experiment, 3 μM CDA54 yielded 79% block at 10 Hz,
whereas 50 and 91% block were seen with 1 and 10 μM, respectively. Assuming that CDA54 binds equally well to open and inactivated channels during the 6-ms depolarizations and that compound binding and unbinding is slow compared with channel conformational changes, the block observed during 10-Hz stimulation would suggest an affinity for the open and inactivated states of approximately 50 nM, 5-fold more potent than what was observed in the protocols shown in Fig. 2 that favor the inactivated state over the open state. In addition, block developed significantly faster during 10-Hz stimulation, although on average, channels are only open or inactivated 6% of the time compared with 41% of channels residing in the inactivated state during compound application at −70 mV. These data suggest that CDA54 can efficiently bind to inactivated channels in the absence of channel opening, we took advantage of the slow recovery from inactivated state block. Channels were held at 0 mV, a potential at which all channels were inactivated, for 2 min during which 3 μM CDA54 was bath applied. Figure 3B shows the kinetics of recovery from inactivation after 2 min at 0 mV in control (■) and in 3 μM CDA54 (○). The recovery from inactivation after holding at −60 mV and stimulating at 0.5 Hz is represented by □. When CDA54 was applied to channels in the inactivated state, it produced the characteristic slow recovery, suggesting that block of NaV1.7 by CDA54 does not require channel opening. Taken together, these data suggest that CDA54 binds to channels in the inactivated state with an affinity of 0.25 μM and a slow time course and binds faster and with higher affinity to open channels.

Block of Native and Recombinant NaV1.8 Channels.

Block of recombinant NaV1.8 channels stably expressed in HEK-293 cells by CDA54 was both concentration- and voltage-dependent (Fig. 4A). The current evoked by 6-ms depolarizations to 20 mV from −90 mV was blocked 0, 24, and 65% by 1, 3, and 10 μM CDA54, respectively (left), whereas the current evoked by the same test pulse from a holding potential of −60 mV was blocked by 70, 93, and 100% (right). These results are similar to those obtained with NaV1.7, yielding average values of 4.5 ± 0.9 and 0.18 ± 0.02 μM for K_i and K_r, respectively (n = 4).

Figure 4B shows the voltage-dependence of steady-state inactivation in control (squares) and in 10 μM CDA54 (triangles) for hNaV1.8 channels expressed in HEK293 cells. The data were fitted to the modified Goldman-Hodgkin-Katz equation with the following: control, $I_{max} = 1.40$ nA, $V_h = −68.1$ mV, $k = 4.9$ mV, and 3 μM CDA54, $I_{max} = 3.61$ nA, $V_h = −79.0$ mV, $k = 5.2$ mV. D, CDA54-induced shift in the midpoint of availability curves as a function of CDA54 concentration. $\Delta V_h = 6.3$ mV $\times \ln[1 + (\text{CDA54}/11.4 \mu M)/(1 + (10 \mu M)/K_i)]$ best described the data when $K_i = 0.46$ μM. E, current traces elicited by a step to 0 mV from −70 mV in control (black trace) and in the presence of 10 μM CDA54 in gray trace. Current in CDA54 is scaled to match the amplitude of the control current.

Fig. 2. Block of hNaV1.7 by CDA54. Block of hNaV1.7 channels stably expressed in HEK293 cells was examined by whole-cell voltage clamp. A, peak current elicited by steps to 0 from −100 or −70 mV (as indicated below the trace) in control and in the presence of 1 μM CDA54. Representative current traces in control and in the presence of 1 μM CDA54 are shown below for −70 mV on the left and −100 mV on the right. B, peak current elicited by steps to 0 mV from −100 mV or −70 mV (●) was measured in the presence of increasing concentrations of CDA54 and was normalized to the current in the absence of CDA54 (n = 3–8). Fitting the Hill equation ($n_H = 1$) to the data yielded K_{eq} values of 1.14 and 0.73 μM for holding potentials of −100 and −70 mV, respectively. C, peak current elicited by pulses to 0 mV as a function of prepulse potential in control (■) and in 3 μM CDA54 (○). Data were best fit by the Boltzmann equation with the following: control, $I_{max} = −4.09$ nA, $V_h = −68.1$ mV, $k = 4.9$ mV, and 3 μM CDA54, $I_{max} = 3.61$ nA, $V_h = −79.0$ mV, $k = 5.2$ mV. D, CDA54-induced shift in the midpoint of availability curves as a function of CDA54 concentration. $\Delta V_h = 6.3$ mV $\times \ln[1 + (\text{CDA54}/11.4 \mu M)/(1 + (10 \mu M)/K_i)]$ best described the data when $K_i = 0.46$ μM. E, current traces elicited by a step to 0 mV from −70 mV in control (black trace) and in the presence of 10 μM CDA54 (gray trace). Current in CDA54 is scaled to match the amplitude of the control current.

Fig. 3. State-dependence of hNaV1.7 block. A, use-dependent block of hNaV1.7 during 10-Hz stimulation with 6-ms pulses to 0 mV from −100 mV in control (gray trace) and in 3 μM CDA54 (black trace). B, recovery from inactivation upon return to −100 mV after a 2-min period at 0 mV in control (■) or in the presence of 3 μM CDA54 applied at 0 mV (○) or after wash-on of 3 μM CDA54 at −60 mV (△). All symbols represent the peak current during pulses to 0 mV normalized to the current at 10 s. Time constants are 36 s for CDA54 applied at 0 mV and 44 s for CDA54 applied at −60 mV.
angles). In the experiment shown, the maximum current available on depolarization from negative holding potentials was reduced by 40%, and the midpoint of the steady-state availability curve \(V_{1/2} \) was shifted by −27.9 mV, yielding \(K_r \) and \(K_i \) values of 15 and 0.40 μM, respectively. In this experiment, availability was determined with 1-s conditioning pulses; thus, \(K_i \) may be an underestimate.

Small-diameter DRG neurons express two tetrodotoxin-resistant sodium channel subtypes, Na\(_{v}\),1.8 and Na\(_{v}\),1.9, that can easily be distinguished by the voltage-dependence and kinetics of activation and inactivation. To examine the block of native Na\(_{v}\),1.8 channels, dorsal root ganglia from BKTO mice were dissociated, and whole-cell recordings were conducted within 24 to 36 h on small-diameter neurons (10–25 μm) using solutions designed to isolate tetrodotoxin-resistant sodium currents. Under the experimental conditions used, the contribution of Na\(_{v}\),1.9 to the peak current was minimal, and Fig. 4C shows representative current traces activated by 40-ms pulses to −10 mV from holding potentials of −60 and −45 mV in the absence and presence of 1 μM CDA54.

Availability curves generated after bath equilibration with 1 μM CDA54 show a reduction in the maximum current activated by pulses to −10 mV from hyperpolarized holding potentials (Fig. 4D), yielding a \(K_r \) value of 6.3 ± 1.3 μM \((n = 3)\). Inhibition was more pronounced when currents were activated from more depolarized holding potentials, resulting in an average shift in the steady-state availability curve of −12.4 ± 1.8 mV and an average \(K_i \) of 0.09 ± 0.04 μM \((n = 3)\). Because availability was determined with 1-s conditioning pulses, this \(K_i \) value may be an underestimate of the true affinity for the inactivated state.

Selectivity of CDA54 for Na\(_{v}\),1 Channels. The selectivity of CDA54 for block of Na\(_{v}\),1.7 and Na\(_{v}\),1.8 sodium channels was examined by testing effects on Na\(_{v}\),1.2 and Na\(_{v}\),1.5 channels, using the same protocol described for Na\(_{v}\),1.7 channels. CDA54 potently blocked all Na\(_{v}\),1 subtypes tested, and results are summarized in Table 1.

Because voltage-gated sodium and calcium channels are structurally related, and N-type calcium channels are involved in nociception, we tested CDA54 on recombinant Ca\(_{v}\),2.2 \((a_{1\beta}, a_{2\delta}, b_{3\alpha})\) channels. In whole-cell voltage-clamp experiments, using a standard protocol (15-ms test pulses to 20 mV applied at 0.2 Hz from a holding potential of −90 mV), 3, 10, and 30 μM CDA54 blocked Ca\(_{v}\),2.2 by 35% \((n = 1)\), 61 ± 5% \((n = 4)\), and 88 ± 4% \((n = 3)\), respectively, yielding an IC\(_{50}\) value of 5.7 μM. The protocol used in these experiments favors the resting state of the channel. Because CDA54 blocked the inactivated state of sodium channels more potently than the resting state, we examined the block of Ca\(_{v}\),2.2 at a holding potential of −50 mV, at which 25 to 30% of channels reside in the inactivated state. Under these conditions, the IC\(_{50}\) value for block by CDA54 was 3.7 ± 0.2 μM \((n = 4)\), suggesting only a slight preference for block of inactivated Ca\(_{v}\),2.2 channels and significant selectivity for Na\(_{v}\),1.7 and Na\(_{v}\),1.8 over Ca\(_{v}\),2.2 channels.

Effects of CDA54 on Nerve Injury-Induced Spontaneous Activity and A- and C-Fiber Conduction. Injury of the sciatic nerve elicits spontaneous action potentials in C-fibers, which can be recorded in vitro (Tal and Devor, 1992).

Fig. 4. Block of recombinant and native Na\(_{v}\),1.8 channels. A, block of hNa\(_{v}\),1.8 channels stably expressed in HEK cells. Current traces elicited by 6-ms pulses to 20 mV: left, in control and in 3 and 10 μM CDA54 from a holding potential of −90 mV; right, in control and in 1, 3, and 10 μM CDA54 from a holding potential of −60 mV. B, peak hNa\(_{v}\),1.8 current elicited by pulses to 20 mV as a function of prepulse potential in control (■) and in 10 μM CDA54 (▲). The Boltzmann equation was fit to the data and yielded the following values: in control, \(I_{\text{max}} = −0.83 \text{nA}, V_h = −40.7 \text{mV}, k = 10.3 \text{mV}; \) and in 10 μM CDA54, \(I_{\text{max}} = −0.50 \text{nA}, V_h = −68.5 \text{mV}, k = 6.8 \text{mV}. \) C, block of tetrodotoxin-resistant sodium current in dissociated small-diameter mouse DRGs. Current traces elicited by 40-ms pulses to −10 mV from holding potentials of −60 to −45 mV in control and in 1 μM CDA54. D, peak current elicited by pulses to −10 mV as a function of prepulse potential in control (■) and in 1 μM CDA54 (▲). The Boltzmann equation was fit to the data, yielding the following values: in control, \(I_{\text{max}} = −3.35 \text{nA}, V_h = −39.0 \text{mV}, k = 4.2 \text{mV}; \) and in 1 μM CDA54, \(I_{\text{max}} = −2.53 \text{nA}, V_h = −53.0 \text{mV}, k = 4.3 \text{mV}. \)
To examine the effect of CDA54 on this injury-induced spontaneous action potential firing, the sciatic nerves from four rats were isolated 2 to 4 weeks after nerve injury and placed into a three-chambered perfusion bath. Using standard teased-fiber recording techniques, C-fibers with regular spontaneous activity were identified. Levels of spontaneous activity remained stable during the 15-min baseline period and during vehicle application. As illustrated in Fig. 5, application of 3 μM CDA54 reduced injury-induced spontaneous activity in 14 C-fibers from 6 animals to 13 ± 11% of baseline activity, compared with 114 ± 35% during vehicle application (p < 0.01). In the same fibers, in the presence of 3 μM CDA54, electrical stimulation evoked action potentials of the same amplitude as the spontaneous activity during vehicle application. In contrast to the effects on spontaneous activity, 3- to 10-fold higher concentrations of CDA54 were required to inhibit A- and C-fiber electrically evoked responses (Fig. 5). The magnitude of the C-fiber response was reduced by 10 μM (p < 0.05) and the A-fiber response by 30 μM CDA54 (p < 0.01).

Efficacy in Rat Models of Neuropathic Pain. The original disclosure of CDA54 demonstrated analgesic efficacy of this compound in the formalin test, a rat model of inflammatory pain (Shao et al., 2005). Here, CDA54 was examined for antiallodynic efficacy in the spinal nerve ligation (SNL) and CCI models of neuropathic pain. Two weeks after the SNL injury, mechanical allodynia of the injured hindpaw was assessed by determining withdrawal thresholds in response to stimulation with von Frey filaments. CDA54 produced a dose-dependent reversal of mechanical allodynia (Fig. 6A). A single 3 mg/kg p.o. dose completely reversed mechanical allodynia in one rat but was without effect in most animals, resulting in an average reversal of 19% (n = 8), which was not significant. CDA54 at 10 and 30 mg/kg (n = 8 each) reversed mechanical allodynia by 44 and 50%, respectively, and increased the percentage of animals responding to the treatment. Treatment with mexiletine, at 100 mg/kg p.o. (n = 8), reversed mechanical allodynia by 44% but failed to reach significance because of the number of nonresponders. In the CCI model of neuropathic pain, mechanical hyperalgesia was assessed 2 weeks after injury by determining withdrawal thresholds in response to pressure on the injured (ipsilateral) hindpaw, relative to the uninjured (contralateral) hindpaw. As shown in Fig. 6B, CDA54, administered orally at 10 mg/kg, attenuated the injury-induced mechanical hyperalgesia by 67% (n = 10) at 2 h postdose (p < 0.05). At 2.5 h postdose, plasma concentrations of CDA54 were 1.69 ± 0.34 μM. For comparison, mexiletine, at 100 mg/kg p.o. (n = 11), did not significantly reverse mechanical hyperalgesia.

Effects on Motor-Coordination and Acute Nociception. Consistent with its low brain penetration, CDA54, at 10 and 30 mg/kg p.o., did not affect motor coordination in rats as judged by the rotorod test (Fig. 6C). In contrast, mexiletine, at the subeffective dose of 100 mg/kg p.o., significantly reduced walking time on the rotorod. CDA54 was tested in rats for adverse effects on acute nociception. A 10 mg/kg p.o. dose of CDA54 did not alter acute thermal nociception, measured in the hot plate test. Before and 1 h after dosing with CDA54, rats exhibited latencies on a 52.5°C hot plate of 10.5 ± 0.7 and 9.3 ± 1.0 s (n = 6), respectively.

Effects on Cardiac Electrophysiological Parameters. In the presence of CDA54, channels recover slowly from the inactivated state block after return to hyperpolarized membrane potentials (Fig. 2A). We therefore examined CDA54 for electrocardiographic and cardiac electrophysiological effects in anesthetized dogs, compared with matched vehicle controls (Table 2). Sequential intravenous infusions of 0.25 and 2.5 mg/kg CDA54 yielded plasma levels of 1.31 ± 0.04 and 6.7 ± 1.5 μM, respectively, at the time of postdose electrocardiogram and cardiac electrophysiological assessment. At these plasma levels, CDA54 produced no significant effects on heart rate or electrocardiogram intervals, including QRS interval, an index of ventricular conduction, AH interval, a measure of AV nodal conduction, and HV interval, a measure of His-Purkinje ventricular conduction. Likewise, at these plasma levels, CDA54 produced no significant change in atrial or ventricular refractory periods, compared with matched vehicle controls. In contrast, intravenous infusion of

Table 1

<table>
<thead>
<tr>
<th>Channel</th>
<th>K_v (μM)</th>
<th>n</th>
<th>K_i (μM)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na_{v1.2}</td>
<td>20.0 ± 6.4</td>
<td>5</td>
<td>0.43 ± 0.03</td>
<td>7</td>
</tr>
<tr>
<td>Na_{v1.5}</td>
<td>8.2 ± 3.2</td>
<td>4</td>
<td>0.15 ± 0.01</td>
<td>5</td>
</tr>
<tr>
<td>Na_{v1.7}</td>
<td>11.4 ± 1.2</td>
<td>17</td>
<td>0.25 ± 0.02</td>
<td>17</td>
</tr>
<tr>
<td>Na_{v1.8}</td>
<td>4.47 ± 0.88</td>
<td>4</td>
<td>0.18 ± 0.02</td>
<td>3</td>
</tr>
</tbody>
</table>

Fig. 5. Block of spontaneous and evoked electrical activity in an isolated nerve after chronic constriction injury. A, injury-induced spontaneous C-fiber action potential firing. Inset, action potential shape is shown. The spontaneous activity was unaffected by vehicle but was completely abolished by 3 μM CDA54. B, CDA54 significantly reduced spontaneous C-fiber action potential firing (SA) at concentrations of 3 μM (p < 0.01; n = 14 C-fibers), whereas A- and C-fiber electrically evoked conduction was only affected by concentrations of 10 to 30 μM (p < 0.05; n = 6 nerves). All data are normalized to the baseline response.
Discussion

Here we describe in vitro and in vivo properties of CDA54, a potent sodium channel blocker that selectively inhibits injury-induced nerve signaling and behavioral signs of neuropathic pain. CDA54 inhibited all Na\textsubscript{v}1 channels tested (Na\textsubscript{v}1.2, Na\textsubscript{v}1.5, Na\textsubscript{v}1.7, and Na\textsubscript{v}1.8) in a state- and frequency-dependent manner, and was selective for Na\textsubscript{v}1 channels over N-type calcium channels. The compound displayed a low brain-to-plasma ratio of 0.03, suggesting that CDA54 acts peripherally. In vivo, CDA54 displayed efficacy in the rat spinal nerve ligation and chronic constriction injury models of neuropathic pain at doses and plasma concentrations that did not affect motor coordination, acute nociception, or cardiac conduction. In contrast, at doses that disrupt motor coordination, mexiletine failed to significantly reduce neuropathic pain behavior.

CDA54 seems to bind predominantly to channels in open and inactivated states, similar to local anesthetics, such as lidocaine and tetracaine. Binding to the inactivated state of Na\textsubscript{v}1.7 is approximately 30-fold more potent than binding to the resting state, and data comparing different pulse protocols suggest that binding to the open state may be even more potent. This type of state-dependence allows channels to open normally during brief depolarizations from the resting membrane potential, suggesting minimal impact on normal nerve conduction. Damage to peripheral nerves can induce a physiological state in which spontaneous action potential firing occurs in normally silent sensory neurons. This abnormal peripheral nerve activity is believed to contribute to the perception of neuropathic pain. Sodium channels clearly play a key role in the initiation and propagation of this spontaneous activity. In vitro, CDA54 inhibits this spontaneous firing at lower concentrations that those required to block normal A- and C-fiber conduction, similar to what has been observed for systemic administration of lidocaine in vivo (Devor et al., 1992). What makes the injury-induced spontaneous firing more sensitive to inhibition by sodium channel blockers is unclear. It is possible that spontaneous firing in DRGs is dependent on a persistent, subthreshold sodium current. In large-diameter neurons, late sodium current has been shown to be more sensitive to block by local anesthetics than the peak current (Baker, 2000). For this late current to be involved in ectopic impulse generation, sodium channels would have to remain open at the resting membrane potential. Because open channels are highly sensitive to block by CDA54, ectopic impulses initiated by subthreshold sodium current should be readily blocked by CDA54. Second, the membrane potential in injured neurons may be more depolarized than in uninjured neurons, favoring inactivation and thus favoring block by CDA54. A more depolarized membrane potential in injured dissociated neurons has been found by some groups (Kim et al., 1998) but not by others (Study and Kral, 1996; Zhang et al., 1997; Abdulla and Smith, 2001). However, a caveat of these studies is that the electrical properties of the cell body may not reflect those at

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>0.25 mg/kg i.v.</th>
<th>2.5 mg/kg i.v.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinsa heart rate (bpm)</td>
<td>107 ± 2</td>
<td>105 ± 0</td>
<td>102 ± 2</td>
</tr>
<tr>
<td>PR interval (ms)</td>
<td>95 ± 7</td>
<td>98 ± 7</td>
<td>101 ± 4</td>
</tr>
<tr>
<td>QRS interval (ms)</td>
<td>53 ± 2</td>
<td>53 ± 2</td>
<td>54 ± 3</td>
</tr>
<tr>
<td>QTc interval (ms/\text{s})</td>
<td>393 ± 29</td>
<td>397 ± 28</td>
<td>395 ± 30</td>
</tr>
<tr>
<td>AH interval (ms)</td>
<td>85 ± 5</td>
<td>86 ± 6</td>
<td>91 ± 6</td>
</tr>
<tr>
<td>HV interval (ms)</td>
<td>22 ± 2</td>
<td>22 ± 2</td>
<td>22 ± 2</td>
</tr>
<tr>
<td>Atrial RRP (ms)</td>
<td>139 ± 9</td>
<td>141 ± 8</td>
<td>147 ± 9</td>
</tr>
<tr>
<td>Ventricular RRP (ms)</td>
<td>173 ± 9</td>
<td>173 ± 7</td>
<td>173 ± 6</td>
</tr>
</tbody>
</table>

bpm, beats per minute.
the site of injury. Finally, slight disturbances in the balance between depolarizing sodium currents and hyperpolarizing potassium currents may lead to spontaneous firing and require only a small reduction in available sodium current to restore the preinjury balance. Indeed, potassium channel blockers such as 4-amino pyridine can induce spontaneous firing in vitro (Koeesis et al., 1983). In this scenario, one might expect non-state-dependent blockers to be as effective as state-dependent ones. Spontaneous activity (in vitro) of Aβ- and Aδ-fibers after spinal nerve ligation was significantly inhibited by 6.3 nM tetrodotoxin, whereas 500 nM tetrodotoxin was required for conduction block (Liu et al., 2001). In the same study, effective doses of lidocaine ranged from 9.3 to 18.5 μM, with 2 to 7 mM required for conduction block. A similar study, using in vivo recording and systemic application of tetrodotoxin after sciatic nerve transaction, found that the ectopic activity originating from the neuroma was approximately 50-fold more sensitive to tetrodotoxin than activity of dorsal horn neurons (Omana-Zapata et al., 1997). However, interpretation of these studies is complicated by the fact that different Nav1 subtypes have vastly different sensitivities to block by tetrodotoxin.

Currently used agents are highly brain-penetrant. Whereas block of central nervous system sodium channels by these drugs certainly contributes to their dose-limiting side effects, include ataxia, somnolence, and sedation, it is not clear whether it also contributes to their analgesic efficacy. CDA54 is only weakly brain penetrant, with a brain-to-plasma ratio of 0.03, suggesting that, at least in a rat model of neuropathic pain, block of sodium channel of the peripheral nervous system alone is sufficient for analgesic efficacy. Although none of the clinically used sodium channel blockers are subtype-selective, in randomized trials of systemically administered sodium channel blockers for prolonged pain, no cardiac side effects were noted. The sparing of cardiac conduction is at least in part caused by a high safety factor, defined as the ratio of the available sodium current to that required to sustain action potential propagation. Despite this safety factor, class Ic antirhythmicns such as flecainide or propafenone have the potential to induce arrhythmias, especially in patients with prior myocardial infarction (Pratt and Moye, 1990). CDA54 possesses slow kinetics of recovery from inactivated state block, similar to class Ic agents. Based on these findings, CDA54 would be expected to affect cardiac conduction and cause bradycardia. However, in an instrumented cardiovascular dog model, CDA54 was without effect at plasma concentrations of 6.7 μM; concentrations that are approximately 25-fold greater than the Ki for block of Nav1.7 and in the range of therapeutic concentrations in the SNL and CCI models of neuropathic pain. In contrast, mexiletine caused mild bradycardia and increases in PR and QRS intervals at plasma concentrations of 25 μM; approximately 2.5-fold greater than the Ki value for block of Nav1.7 and 2-fold greater than the subefficacious concentrations reached approximately 100 min after a single 100 mg/kg oral dose (11.8 ± 2.6 μM).

In summary, CDA54 seems to block peripheral nerve sodium channels by a mechanism similar to that of clinically used anticonvulsants and antirhythmicns but approximately 2 orders of magnitude more potent. In vitro, CDA54 blocks all Nav1 subtypes with similar potency; however, in isolated nerve studies, CDA54 selectively inhibits injury-induced action potential firing. CDA54 also displays functional selectivity in vivo: the same dose of CDA54 that was effective in rat models of neuropathic pain did not affect acute noiception. In addition, no effects on cardiac conduction were observed at plasma concentrations approximately 45-fold greater than the Ki value for block of NaV1.5.

Acknowledgments

We thank Franz Hofmann for the hNaV1.7 cDNA and Hali Hartmann for the CDNA and HEK cells expressing hNaV1.5. We are grateful to Martin Kohler and Chou Liu for use of the cell lines expressing hNaV1.2 and hNaV1.8. Furthermore, we thank Alan Upthagrove for analysis of plasma concentrations, Elizabeth Ash for help with the teased-fiber recordings, and Keith Wafford and helpful references.

References

Tanclan DL and Brose WG (1991) Neuropathic pain can be relieved by drugs that are use-dependent sodium channel blockers: lidocaine, carbamazepine and mexiletine. *Anesthesiology* **74:**49–51.

Address correspondence to: Dr. Birgit Priest, Merck and Co, Inc., 126 E. Lincoln Ave, RY80N-C31, P.O. Box 2000, Rahway, NJ 07065-0900. E-mail: birgit_priest@merck.com