T-Type Calcium Channels Are Inhibited by Fluoxetine and Its Metabolite Norfluoxetine

Achraf Traboulsi, Jean Chemin, Elodie Kupfer, Joël Nargeot, and Philippe Lory

Département de Physiologie, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5203, Institut National de la Santé et de la Recherche Médicale U661, Universités de Montpellier I & II, Montpellier, France

Received November 15, 2005; accepted March 1, 2006

ABSTRACT

Fluoxetine, a widely used antidepressant that primarily acts as a selective serotonin reuptake inhibitor, also inhibits various neuronal ion channels. Using the whole-cell patch-clamp technique, we have examined the effects of fluoxetine and norfluoxetine, its major active metabolite, on cloned low-voltage-activated T-type calcium channels (T channels) expressed in tsA 201 cells. Fluoxetine inhibited the three T channels CaV3.1, CaV3.2, and CaV3.3 in a concentration-dependent manner (IC50 = 14, 16, and 30 μM, respectively). Norfluoxetine was a more potent inhibitor than fluoxetine, especially on the CaV3.3 T current (IC50 = 5 μM). The fluoxetine block of T channels was voltage-dependent because it was significantly enhanced for T channels in the inactivated state. Fluoxetine caused a hyperpolarizing shift in steady-state inactivation, with a slower rate of recovery from the inactivated state. These results indicated a tighter binding of fluoxetine to the inactivated state than to the resting state of T channels, suggesting a more potent inhibition of T channels at physiological resting membrane potential. Indeed, fluoxetine and norfluoxetine at 1 μM strongly inhibited cloned T currents (−50 and −75%, respectively) in action potential clamp experiments performed with firing activities of thalamocortical relay neurons. Altogether, these data demonstrate that clinically relevant concentrations of fluoxetine exert a voltage-dependent block of T channels that may contribute to this antidepressant’s pharmacological effects.

Fluoxetine (Prozac; Eli Lilly & Co., Indianapolis, IN) is a psychoactive drug widely prescribed in many psychiatric disorders, including depression, obsessive-compulsive disorder and bulimia nervosa. Like most antidepressants, fluoxetine causes side effects including nausea, gastrointestinal complaints, headaches, anxiety, insomnia, drowsiness, and loss of appetite (Cookson and Duffett, 1998). Fluoxetine is metabolized via the cytochrome P450 enzyme system (Stark et al., 1985; Wong et al., 1995) into multiple metabolites, including norfluoxetine, the major active metabolite, with pharmacological properties that are similar to or more potent than those of the parent drug (Hiemke and Hartter, 2000). The therapeutic action of fluoxetine primarily results from the inhibition of serotonin reuptake (Stark et al., 1985; Wong et al., 1995), thus enhancing serotonergic neurotransmission. Besides this mechanism, fluoxetine has several other modulatory effects, such as inhibition of G protein-coupled receptors (Stanton et al., 1993; Palvimäki et al., 1996), blockade of monoamine oxidases (Mukherjee and Yang, 1999), and modulation of several ionic channels. Indeed, it has been reported that fluoxetine is a potent blocker of K+ channels (Thomas et al., 2002; Choi et al., 2003; Kobayashi et al., 2003; Kennard et al., 2005), Na+ channels (Pancrazio et al., 1998), and Ca2+ channels (Deak et al., 2000).

T-type Ca2+ channels, a subgroup of voltage-gated Ca2+ channels, are the target of many antipsychotic drugs, including penfluridol, clozapine, fluspirilene, haloperidol, and pimozide (Enyeart et al., 1992; Santi et al., 2002; Yunker, 2003). After the study by Deak et al. (2000) reporting that fluoxetine inhibits T-type Ca2+ currents in rat hippocampal pyramidal cells, it is of importance to characterize fluoxetine’s action on the three T-type Ca2+ channel subtypes (CaV3.1 or α1G, CaV3.2 or α1H, and CaV3.3 or α1I) that have been characterized recently by molecular cloning and patch-clamp techniques (Cribbs et al., 1998; Perez-Reyes et al., 1998; Klugbauer et al., 1999; Lee et al., 1999; Monteil et al., 2000a,b). In this article, we report the first electrophysiological study of the inhibitory effects of fluoxetine and norfluoxetine on the recombinant T-type Ca2+ channels. Because T-type Ca2+
channels are broadly involved in physiology, including cardiac pacemaker, hormone secretion, fertilization, neuronal firing, epilepsy, cardiac hypertrophy (Huguenard, 1996), sleep (Anderson et al., 2005), and pain (Todorovic et al., 2001; Bourinet et al., 2005), their inhibition by fluoxetine should be investigated for a better understanding of this antidepressant’s therapeutic action and side effects.

Materials and Methods

Cell Culture and Transfection Protocols. The tsA 201 cell line was cultivated in Dulbecco’s modified Eagle’s medium supplemented with glutamax and 10% fetal bovine serum (Invitrogen, Cergy-Pontoise, France). Transfection was performed using jet-polycationic (Qiagen, Illkirch, France) with a DNA mix containing 10% of a green fluorescent protein plasmid and 90% of either one of the pCDNA3 plasmid constructs that codes for human CaV3.1 (Cribbs et al., 1998; Perez-Reyes et al., 1998; Klugbauer et al., 1999; Lee et al., 1999; Monteil et al., 2000a,b) CaV3.2 (Cribbs et al., 1998) and CaV3.3 (Gomora et al., 2002). Electrophysiological recordings were performed 2 to 4 days after transfection. A Chinese hamster ovary cell line stably expressing Cav3.1, isoform “bc” (Cribbs et al., 1998; Perez-Reyes et al., 1998; Klugbauer et al., 1999; Lee et al., 1999; Monteil et al., 2000a,b; Chemin et al., 2001), was used in some experiments, and no difference was observed in fluoxetine sensitivity between the two recipient cell models. The mouse neuroblastoma/rat glioma hybrid cell line NG 10-15 was cultured in Dulbecco’s modified Eagle’s medium supplemented with glutamax, 10% fetal bovine serum, and 2% hypoxanthine/aminopterine/thymidine (Invitrogen), as reported elsewhere (Chemin et al., 2002b).

Electrophysiology and Calcium Current Analysis. Whole-cell Ca2+ currents were recorded at room temperature. Extracellular solution contained 2 mM CaCl2, 10 mM HEPES, pH 7.4 with tetrathylammonium-OH, and 10 mM HEPES, pH 7.2 with CaSOH. The sampling frequency for acquisition was 10 kHz, and data were filtered at 2 kHz. For action potential clamp studies (Fig. 5), a thalamocortical relay cell firing activity was generated using NEURON (Hines and Carnevale, 1997). This simulation environment (available at http://www.neuron.yale.edu/neuron/about/what.html) allows simulation of neuronal activities that can be used as waveforms in voltage-clamp experiments on CaV-transfected cells (Chemin et al., 2002a). The Ca2+ current data were analyzed as described previously (Chemin et al., 2001). Current-voltage relationships were fitted using a combined Boltzmann and linear ohmic relationships, where $I = G_{\text{max}} \times \left(V_{m} - V_{\text{rev}} \right) \left(1 + e^{\frac{V_{m} - V_{1/2}}{\text{Hill slope}}} \right)$. The steady-state inactivation curves were fitted using $I/I_{\text{max}} = 1 - (1 + e^{V_{1/2} - V_{\text{inact}}})$. Kinetics of the recovery from inactivation were calculated with a double-exponential expression: $\% I = A_1 \left(1 - e^{-V_{m}/t_1} \right) + A_2 \left(1 - e^{-V_{m}/t_2} \right)$, where A_1 and A_2 are the relative amplitudes of each exponential and t_1 and t_2 their respective time constants. To better evaluate the role of fluoxetine on the recovery process, we defined the global recovery (t_g) as $A_1 t_1 + A_2 t_2$. The dose-response curves were fitted using a sigmoidal Hill function, $I = I_1 \left(1 + e^{IC50 - V_{m}/\text{Hill slope}} \right)$. Student’s t tests were used to compare the different values and were considered significant at $P < 0.05$. Results are presented as the mean ± S.E.M., and n is the number of cells used.

Pharmacological Agents. Fluoxetine and norfluoxetine were purchased from Sigma-Aldrich (Lyon, France). The drugs were dissolved in water at 10 mM as a stock solution and keep at −20°C. Drugs were applied to cells by a gravity-driven perfusion device controlled by solenoid valves.

Results

Fluoxetine Inhibition of Recombinant T-Type Ca2+ Channels. Figure 1 shows typical trace recordings of CaV3 currents expressed in the tsA 201 cells. Application of fluoxetine (10–20 μM) inhibits the three cloned T-type Ca2+ channels (Fig. 1, A–C, left). A similar inhibition was obtained at every potential, as observed on the corresponding current-voltage curves for CaV3.1, CaV3.2, and CaV3.3 currents (Fig. 1, A–C, right). The fluoxetine block reached its maximum after ~40 s and was totally reversible upon washout, as illustrated for CaV3.3 currents (Fig. 1D). The average current inhibition induced by 10 μM fluoxetine was 42% (UI/Ctrl = 0.58 ± 0.02, n = 12) for CaV3.1 currents, 43% (UI/Ctrl = 0.57 ± 0.01, n = 7) for CaV3.2 currents, and 27% (UI/Ctrl = 0.73 ± 0.02, n = 9) for CaV3.3 currents (Fig. 1E). Likewise, in proliferative NG 10-15 cells that display native T-type Ca2+ channels related to CaV3.2 channels (Chemin et al., 2002b),...
10 μM fluoxetine inhibited T currents by 43% \((H_{\text{con}} = 0.57 \pm 0.06, n = 5; \text{Fig. } 1E)\).

Ca\textsubscript{v,3} Current Inhibition by Fluoxetine and Norfluoxetine Is Concentration-Dependent. Increasing concentrations of fluoxetine and norfluoxetine were then applied to tsa201 cells expressing the various T-type Ca2+ channels (Fig. 2). The T-current inhibition was concentration-dependent for Ca\textsubscript{v,3.1}, Ca\textsubscript{v,3.2}, and Ca\textsubscript{v,3.3} currents (Fig. 2, A and B). Analysis of the dose-response curves of fluoxetine revealed IC\textsubscript{50} values of 14.5 ± 1.2 μM \((n = 6)\) for Ca\textsubscript{v,3.1} currents, 15.9 ± 1.3 μM \((n = 7)\) for Ca\textsubscript{v,3.2} currents, and 31.1 ± 3.5 μM \((n = 7)\) for Ca\textsubscript{v,3.3} currents (Fig. 2B). Hill slope factors were 0.9 ± 0.1, 0.8 ± 0.1, and 0.6 ± 0.1, for Ca\textsubscript{v,3.1}, Ca\textsubscript{v,3.2}, and Ca\textsubscript{v,3.3} currents, respectively (Fig. 2B). Norfluoxetine, the active metabolite of fluoxetine, was more potent than the parent molecule in blocking Ca\textsubscript{v,3} currents, as illustrated for Ca\textsubscript{v,3.3} currents (Fig. 2, C and D). As for fluoxetine, norfluoxetine produced a concentration-dependent block of the recombinant T-type Ca2+ channels (Fig. 2, E and F). The IC\textsubscript{50} values obtained with norfluoxetine were 13.8 ± 0.1 μM \((n = 5)\), 7.01 ± 0.03 μM \((n = 3)\), and 5.5 ± 0.2 μM \((n = 3)\) for Ca\textsubscript{v,3.1}, Ca\textsubscript{v,3.2}, and Ca\textsubscript{v,3.3} currents, respectively, whereas the Hill slope factors were 1.35 ± 0.03, 1.58 ± 0.03, and 2.93 ± 0.02 for Ca\textsubscript{v,3.1}, Ca\textsubscript{v,3.2}, and Ca\textsubscript{v,3.3} currents, respectively (Fig. 2F).

Effects of Fluoxetine on the Steady-State Inactivation of Ca\textsubscript{v,3} Currents. Next, we investigated whether the effects of fluoxetine on T-type Ca2+ currents would be state-dependent. A double-pulse protocol was used to assess whether fluoxetine affects the voltage dependence of the steady-state inactivation of Ca\textsubscript{v,3} channels. A family of Ca\textsubscript{v,3.1} currents evoked by this protocol is depicted in Fig. 3A before (top traces) and during application of 10 μM fluoxetine (bottom traces). Fluoxetine significantly shifted the steady-state inactivation curves of Ca\textsubscript{v,3.1} currents toward hyperpolarized potentials from \(-75.7 ± 0.6\) mV in control condition to \(-86.7 ± 1\) mV (10 μM fluoxetine, \(n = 9\); Fig. 3B). A slight shift (2 mV), but not statistically significant, was observed in the steady-state activation curve (Fig. 3B). Neither activation nor inactivation kinetics were changed after fluoxetine treatment for Ca\textsubscript{v,3.1} currents or for Ca\textsubscript{v,3.2} and Ca\textsubscript{v,3.3} currents (data not shown). As a consequence of the steady-state inactivation shift, the window current (or steady-state current) generated by the Ca\textsubscript{v,3.1} subunit was markedly decreased (Fig. 3B). Similar results were obtained with the Ca\textsubscript{v,3.2} and Ca\textsubscript{v,3.3} subunits (Fig. 3C). In the presence of 10

Fig. 2. Concentration-dependent inhibition of Ca\textsubscript{v,3} currents by fluoxetine and norfluoxetine. A, effect of increasing concentrations of fluoxetine (fluox.) on Ca2+ currents generated by the Ca\textsubscript{v,3.2} subunit. B, dose-response curves for fluoxetine inhibition of Ca\textsubscript{v,3.1} \((\square)\), Ca\textsubscript{v,3.2} \((\bullet)\), and Ca\textsubscript{v,3.3} currents \((\Delta)\). Dose-response curves were established by fitting the normalized currents with a sigmoidal Hill equation (see Materials and Methods). C, time course and inhibitory effects of 10 μM fluoxetine and 10 μM norfluoxetine (norfluo.) on Ca\textsubscript{v,3.3} currents. D, examples of Ca\textsubscript{v,3.3} current traces obtained after the consecutive application of 10 μM fluoxetine and 10 μM norfluoxetine. E, effect of increasing concentrations of norfluoxetine on Ca\textsubscript{v,3.3} currents. F, dose-response curves for norfluoxetine inhibition of Ca\textsubscript{v,3.1} \((\square)\), Ca\textsubscript{v,3.2} \((\bullet)\), and Ca\textsubscript{v,3.3} currents \((\Delta)\).
μM fluoxetine, the half-potential \(V_{0.5} \) of steady-state inactivation was shifted approximately 10 mV toward the hyperpolarized potential for the three T-type Ca\(^{2+} \) channel subunits (Fig. 3C), whereas no significant change was observed for the corresponding slope factors for CaV3.1, CaV3.2, and CaV3.3 subunits. Such an effect on the voltage dependence of inactivation suggests that fluoxetine interacts with the inactivated state of the channels. A direct method to evaluate fluoxetine binding onto inactivated T channels was to measure current inhibition at various holding potentials (HPs). The inhibition of CaV3.1 currents by 10 μM fluoxetine was examined for HPs of −100 and −80 mV (Fig. 3D). As expected, 10 μM fluoxetine strongly blocked CaV3.1 currents at HP = −80 mV (by 85 ± 1%, \(n = 5 \)), whereas at HP = −100 mV, fluoxetine reduced CaV3.1 currents by 41 ± 2% (\(n = 5 \)).

Fluoxetine Slows the Recovery from Inactivation of CaV3 Currents. To determine whether the channel is maintained as blocked in the inactivated state by fluoxetine, we investigated the recovery from short inactivation using a two paired-pulse protocol (Fig. 4). Figure 4A shows typical examples of current traces recorded for different values of interpulse intervals for CaV3.1 currents in the absence (top traces) and presence of 10 μM fluoxetine (bottom traces). The time course of the recovery process was then plotted (Fig. 4B), showing that fluoxetine significantly slowed the time constant, the global recovery from short inactivation, by a factor of approximately 2 for CaV3.1 (188 ± 21 and 391 ± 20 ms before and after fluoxetine application, respectively; \(n = 7 \)) and CaV3.2 (381 ± 28 and 706 ± 45 ms before and after fluoxetine application, respectively; \(n = 5 \)) currents, whereas these effects were not significant for CaV3.3 currents at this holding potential (250 ± 49 and 390 ± 68 ms, before and after fluoxetine application, respectively; \(n = 10 \); Fig. 4, B and C).

Enhanced Fluoxetine Inhibition of CaV3 Currents in Action Potential Clamp Experiments. Both the slowing in the recovery kinetics and the decrease in the window current component in the presence of fluoxetine strongly suggested that this drug would be a potent inhibitor of CaV3 currents involved in neuronal firing activities. To appreciate better the physiological impact of the fluoxetine block of T currents, we performed voltage-clamp experiments on transfected cells using a thalamocortical relay cell-firing activity generated with the NEURON model as waveform (Fig. 5A, see Materials and Methods). As observed previously (Kozlov et al., 1999; Chemin et al., 2002a), the CaV3.3 currents strongly participate in the Ca\(^{2+} \) entry during sustained neuronal activities (Fig. 5B). Fluoxetine application (1 and 10 μM) strongly decreased the amplitude of CaV3.3 currents and accelerated the decay of Ca\(^{2+} \) entry through CaV3.3 channels (Fig. 5, C and D). To quantify these effects, we measured the integral of the inward Ca\(^{2+} \) currents before (Ctrl) and after application of fluoxetine (1 and 10 μM) and norfluoxetine (1 μM). Application of 1 μM fluoxetine and norfluoxetine on CaV3.3 currents resulted in 47% of inhibition (\(I/I_{\text{Ctrl}} = 0.53 \pm 0.11, n = 6 \)) and 74% of inhibition (\(I/I_{\text{Ctrl}} = 0.26 \pm 0.09, n = 5 \)), respectively (Fig. 5, C and E). The average current inhibition induced by 10 μM fluoxetine was 82% for CaV3.3 currents (\(I/I_{\text{Ctrl}} = 0.18 \pm 0.02, n = 8 \)) and 93% for CaV3.1 currents (\(I/I_{\text{Ctrl}} = 0.07 \pm 0.01, n = 7 \)), and 86% for CaV3.2 currents (\(I/I_{\text{Ctrl}} = 0.14 \pm 0.02, n = 9 \)) (Fig. 5E). Considering the significant block of micromolar concentrations of both fluoxetine and norfluoxetine in action potential clamp experiments, the data strongly suggest that fluoxetine inhibition of CaV3.3 currents during thalamic relay cell-like activities. A, firing activity typical of those recorded on thalamic relay neurons was used as waveform (action potential clamp) to induce Ca\(^{2+} \) currents in a cell expressing CaV3.3 channels (B). C and D, fluoxetine strongly blocked CaV3.3 current during thalamic relay cell-like activities at 1 μM (C) and 10 μM (D). Traces presented in B, C, and D were obtained on the same cell. E, normalized integral of the total current generated by the three CaV3 subunits during thalamic relay cell-like activities in the presence of 1 μM fluoxetine (\(n = 6 \)), 1 μM norfluoxetine (\(n = 5 \)), and 10 μM fluoxetine (\(n = 7 \) for CaV3.1, \(n = 9 \) for CaV3.2, and \(n = 8 \) for CaV3.3).

Fig. 4. Fluoxetine slows the recovery from inactivation of CaV3 currents. A and B, effects of 10 μM fluoxetine (fluo.) on the time course of recovery from short inactivation for CaV3.1 currents at a HP of −100 mV. Recovery from short inactivation was measured using a double pulse at −30 mV (lasting 100 ms) with an interpulse at −100 mV of increasing duration. C, effects of 10 μM fluoxetine on the \(\tau \) of recovery for the three CaV3 subunits. The \(\tau \) of recovery was deduced from the curves presented in B (see Materials and Methods).

Fig. 5. Fluoxetine strongly blocked CaV3.3 currents during thalamic relay cell-like activities. A, firing activity typical of those recorded on thalamic relay neurons was used as waveform (action potential clamp) to induce Ca\(^{2+} \) currents in a cell expressing CaV3.3 channels (B). C and D, fluoxetine strongly blocked CaV3.3 current during thalamic relay cell-like activities at 1 μM (C) and 10 μM (D). Traces presented in B, C, and D were obtained on the same cell. E, normalized integral of the total current generated by the three CaV3 subunits during thalamic relay cell-like activities in the presence of 1 μM fluoxetine (\(n = 6 \)), 1 μM norfluoxetine (\(n = 5 \)), and 10 μM fluoxetine (\(n = 7 \) for CaV3.1, \(n = 9 \) for CaV3.2, and \(n = 8 \) for CaV3.3).
neuronal T-type Ca\(^{2+}\) currents could significantly affect neuronal activities.

Discussion

The main finding of the present study is that fluoxetine inhibits the three Ca\(_{v}\)3 T-type Ca\(^{2+}\) channel isoatypes as expressed in human embryonic kidney 293/tsA 201 cells. We describe that fluoxetine preferentially binds to inactivated T-type Ca\(^{2+}\) channels and stabilizes them in their inactivated state. We also provide evidence that fluoxetine can strongly inhibit T-type Ca\(^{2+}\) channels during neuronal firing activities. Altogether, our data significantly extend a previous electrophysiological study, the first to our knowledge, describing that fluoxetine inhibits voltage-gated calcium channels, including T-type Ca\(^{2+}\) channels, in rat hippocampal pyramidal cells (Deak et al., 2000). Moreover, we report that norfluoxetine, the major active metabolite of fluoxetine, is even more potent that the parent molecule in blocking T-type Ca\(^{2+}\) channels.

Recombinant Ca\(_{v}\)3 channels are efficiently inhibited by micromolar concentrations of fluoxetine and norfluoxetine. It is noteworthy that the use of neuronal activities clearly shows that a 1 \(\mu\)M concentration of both fluoxetine and norfluoxetine significantly inhibited neuronal T-type Ca\(^{2+}\) channels (47 and 74% inhibition, respectively, for Ca\(_{v}\)3.3 current; Fig. 5). The therapeutically plasma concentration of fluoxetine is estimated between 0.15 and 1.5 \(\mu\)M (Orsulak et al., 1998; Altamura et al., 1994). Under steady-state conditions, the plasma concentrations of norfluoxetine are higher than those of fluoxetine (Altamura et al., 1994), and for both compounds, it was shown that brain concentration can reach much higher levels during long-term fluoxetine treatment (Karson et al., 1993). In addition, in elderly patients, decreased elimination increases the plasma concentration of fluoxetine (Pato et al., 1991; Borys et al., 1992). For all of these reasons, the fluoxetine concentrations that block T-type Ca\(^{2+}\) channels are within the range of those observed clinically after oral administration of the drug, and a significant reduction of these channels may occur in patients who receive long-term treatment with fluoxetine.

The IC\(_{50}\) values obtained with fluoxetine for blocking T-type Ca\(^{2+}\) channels are similar to those obtained for the inhibition of other neuronal channels in different preparations. For example, the IC\(_{50}\) values of fluoxetine block of cloned shaker potassium channel (Kv1.3 and Kv1.4) and voltage-activated potassium channel (hsK1-3) range between 3 and 33 \(\mu\)M (Choi et al., 1999, 2003; Terstappen et al., 2003). We show that norfluoxetine is more potent than fluoxetine in inhibiting Ca\(_{v}\)3 channels, especially Ca\(_{v}\)3.3 currents. Likewise, it has been reported that norfluoxetine is a more potent and more selective 5-hydroxytryptamine reuptake inhibitor than fluoxetine (Hiemke and Hartter, 2000) and produced a stronger inhibitory effect than fluoxetine on Kv1.3 currents (Choi et al., 1999).

Inhibition of recombinant T-type Ca\(^{2+}\) channels is highly dependent on their inactivation state. Indeed, fluoxetine induces an approximately -10 mV shift of the steady-state inactivation curves for each T-channel isoatype without having a statistically significant effect on the activation curves. Therefore, fluoxetine block is more potent at a physiological holding potential for which T-channels are inactivated (Huguenard, 1996). These results and the fact that fluoxetine slows the recovery kinetics from inactivation indicate that this drug interacts with inactivated T channels and maintains the channels in the inactivated state. These findings contrast with mechanistic studies on other ionic conductances showing that fluoxetine opens the open state of cloned nicotinic acetylcholine receptor and Kv1.4 channels (Garcia-Colunga et al., 1997). Binding to the inactivated T-type Ca\(^{2+}\) channels is an important feature of the fluoxetine block, because this property could also contribute to tissue selectivity of the fluoxetine effects. For example, dihydropyridines that bind preferentially to the inactivated state of L-type Ca\(^{2+}\) channels are useful as antihypertensive drugs by acting on vascular smooth muscle while having little effect on the heart (Triggle, 1992).

By stimulating tsA 201 cells overexpressing Ca\(_{v}\)3 channels with firing activities typical of thalamocortical relay neurons, we demonstrate that fluoxetine block of T currents is more potent during physiological stimulations. This suggests that fluoxetine could be an important regulator of firing activities dependent on T-type Ca\(^{2+}\) channels (Destexhe et al., 1998).

For example, the mechanism of T-type Ca\(^{2+}\) channels inhibition by fluoxetine (binding to and stabilization of the inactivated T-type Ca\(^{2+}\) channels) suggests that this drug could impair low-threshold spikes related to T channels in the thalamus (Huguenard and Prince, 1992; Huguenard, 1996; Destexhe et al., 1998). Thalamic T channels are involved in slow-wave sleep (Anderson et al., 2005), and fluoxetine block of T-type Ca\(^{2+}\) channels may explain insomnia, a side effect of this drug (Gram, 1994). T-type Ca\(^{2+}\) channels of the thalamus are also involved in the pathogenesis of epilepsy (Tsakiridou et al., 1995). In animal models of epilepsy, fluoxetine decreases the probability of audiogenic convulsions in genetically seizure-prone rodents and hippocampal seizures in rat (Prendiville and Gale, 1993; Wada et al., 1995). The anticonvulsant action of fluoxetine has been observed both in animal and human studies. Again, anticonvulsive properties of fluoxetine (Leander, 1992; Prendiville and Gale, 1993; Wada et al., 1995) could be related to the block of thalamic T-type Ca\(^{2+}\) channels. In addition, fluoxetine enhances the effects of various conventional anticonvulsants in mice, such as phenytoin (Leander, 1992), which also inhibits T currents (Todorovic et al., 2000). Fluoxetine may also affect non-neuronal T-type Ca\(^{2+}\) channels. Indeed, cardiac T-type Ca\(^{2+}\) channels participate in the control of the pacemaker activity (Lei and Kohl, 1998), and their inhibition by fluoxetine may explain the bradycardia induced by this drug (Pacher et al., 2000). In addition, we observed a net decrease in the window current component of cloned T-type Ca\(^{2+}\) channels. This effect on window current may explain the relaxation induced by fluoxetine on vascular smooth muscles (Farrugia, 1996) by decreasing intracellular calcium levels.

In summary, the data presented here show that fluoxetine (Prozac) potently inhibits the three T-type Ca\(^{2+}\) channel isoatypes. Fluoxetine preferentially blocks inactivated T-type Ca\(^{2+}\) channels, which corresponds to their status in physiological conditions. Indeed, inhibition of T-type Ca\(^{2+}\) channels represents a novel mechanism by which fluoxetine is pharmacologically active and could account for some of the clinical effects in treated patients. Fluoxetine inhibition of T-type Ca\(^{2+}\) channels should therefore be taken into account in
further studies investigating the pharmacological properties of this widely prescribed antidepressant.

Acknowledgments

We are grateful to Christian Barrère for technical support. We thank Drs. Janet Munro and Philippe Marin for their constructive comments on the manuscript.

References

Address correspondence to: Dr. Philippe Lory, Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U861, Université de Montpellier I and II, 14 rue de la Cardonille, 34094 Montpellier cedex 05, France. E-mail: philippe.lory@igf.cnrs.fr