ACCELERATED COMMUNICATION

The Aryl Hydrocarbon Receptor Signaling Pathway Is Modified through Interactions with a Kelch Protein

Elizabeth E. Dunham, Emily A. Stevens, Edward Glover, and Christopher A. Bradfield

McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, Wisconsin

Received March 16, 2006; accepted March 31, 2006

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor with important roles in metabolic adaptation, dioxin toxicology, and vascular development. To understand the details of this signal transduction pathway, we have used the yeast two-hybrid system to identify proteins that physically interact with the AHR in a ligand-dependent manner. Using this strategy, we identified a novel modifier of the AHR signaling pathway that we named Ah-receptor associated protein 3 (ARA3). Coexpression of ARA3 with an AHR chimera in yeast and mammalian cells enhances signaling in response to agonists. The human full-length cDNA previously was described as influenza virus nonstructural protein-1 binding protein (NS1BP). This protein contains four apparent domains—a “broad complex/tramtrack/bric-a-brac” (BTB) domain, a “kelch” domain, a “BTB and C-terminal kelch” (BACK) domain, and an intervening region (IVR). The carboxyl terminus of the AHR “Per-ARNT-Sim” (periodicity/ARNT nuclear translocator/simple-minded) domain and the BACK/IVR domains of ARA3 mediate the AHR-ARA3 interaction. The BACK/IVR domains of ARA3 also are sufficient to modify AHR signaling in yeast and mammalian cells. In an effort to provide a preliminary model of NS1BP activity in AHR signaling, we demonstrate that NS1BP regulates the concentration of functional AHR in mammalian cells.

The aryl hydrocarbon receptor (AHR) is a member of the basic helix-loop-helix Per-Arnt-Sim (bHLH-PAS) superfamily. Upon binding ligands, the AHR mediates an adaptive metabolic response by up-regulating the transcription of a battery of xenobiotic metabolizing enzymes, including the cytochromes P450, CYP1A1, CYP1A2, and CYP1B1 (Schmidt and Bradfield, 1996). When stimulated by high-potency agonists, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the AHR mediates an additional toxic response that includes hepatocellular damage, thymic involution, teratogenesis, chloracne, and cancer (Pohjanvirta and Tuomisto, 1994; Fernandez-Salguero et al., 1996). It has been shown that the AHR also plays an important role in vascular development. In this regard, patent ductus venosus is observed in 100% of mice with a null allele at the Ahr locus (Lahvis et al., 2005). The presentation of vascular aberrations in AHR-mutant mice is consistent with the idea that the AHR is activated by an unknown endogenous ligand.

The AHR signaling pathway is understood at a basic level. In the absence of ligand, the AHR has a higher affinity for the cytosol, where it exists in a complex with the 90-kDa heat shock protein and the cochaperones ARA9 (also known as AIP1 or XAP2) and p23 (Wilhelmsson et al., 1990; Ma and Whitlock, 1997; Carver et al., 1998; Meyer et al., 1998; Kazauskas et al., 1999). Upon ligand binding, the AHR attains a higher affinity for the nuclear compartment, where it dimerizes with another bHLH-PAS protein known as the AHR nuclear translocator (ARNT) (Reyes et al., 1992). The transcriptional activity of the AHR-ARNT heterodimer is modulated through interactions with cofactors such as SRC-1 and RIP140 (Kumar et al., 1999; Beischlag et al., 2002). The this work was supported by National Institutes of Health grants R37-ES005703, T32-CA09135, and P30-CA014520.

ABBREVIATIONS: AHR, aryl hydrocarbon receptor; bHLH, basic helix-loop-helix; PAS, Per-Arnt-Sim (periodicity/Arnt/simple-minded); ARNT, aryl hydrocarbon receptor nuclear translocator; ARA3, aryl hydrocarbon receptor associated 3; ARA9, aryl hydrocarbon receptor associated 9; NS1BP, influenza virus nonstructural protein 1 binding protein; TAD, transcription activation domain; PCR, polymerase chain reaction; βNF, β-naphthoflavone; DOC, deoxycorticosterone; ANOVA, analysis of variance; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; MOPS, 3-(N-morpholino)propanesulfonic acid; BTB, broad complex/tramtrack/bric-a-brac; IVR, intervening region; AA, amino acid(s).
AHRI pathway can be attenuated by two mechanisms, proteasome-dependent degradation of the AHRI and the AHRI-mediated transcription of a dominant-negative bHLH-PAS protein known as the Ah receptor repressor (Davarinos and Pollenz, 1999; Mimura et al., 1999).

In previous studies, we have demonstrated that the yeast *Saccharomyces cerevisiae* is an excellent model of AHRI signal transduction (Carver et al., 1994; Yao et al., 2004). In an effort to identify unknown components of the AHRI signaling pathway, we have been employing a yeast-two-hybrid strategy to screen for proteins that interact with the AHRI in a ligand-dependent manner. This approach has led to the identification of ARA9, now a proven AHRI cochaperone (Ma and Whitlock, 1997; Bell and Poland, 2000; LaPres et al., 2000; Petrulis et al., 2000). As a result of this earlier success, we began characterizing the second clone identified in our yeast-two-hybrid assay [i.e., *Ah receptor associated 3* (ARA3)] (Carver and Bradfield, 1997). Herein, we characterize the AHRI-ARA3 interaction and its effect on AHRI signaling in yeast and mammalian cells.

Materials and Methods

Oligonucleotide sequences are shown in Table 1.

Strains and Plasmids. *Saccharomyces cerevisiae* strain LA0 (MATa, his3Δ200, trp1–901, leu2–3, 112, ade2, lys2::(lexAop)4-HIS3, URA3::(lexAop)2-lacZ, gal80) was used in both the yeast-two-hybrid assays and the pharmacology experiments (Vojtek et al., 1993). The plasmid *pBTM116* is a 2-μm TRP-marked yeast expression vector for making LexA DNA binding domain (LexA) fusion proteins under regulation of the ADH1 promoter (Bartel et al., 1993). The plasmid *pYX242* (Novagen, Madison, WI) is a 2-μm LEU-marked yeast expression vector under the regulation of the *TP1* promoter. The plasmid *pACT* (Clontech, Mountain View, CA) is a 2-μm LEU-marked vector used to make GAL4 transcription activation (TAD) fusion proteins. The plasmid *pSPORT AHRI* (PL65) was used as a template for any AHRI PCR amplifications and has been described previously (Dolwick et al., 1993). The plasmid *pYX AHRI* (PL1033) was constructed by PCR using OL1378 and OL1379 using PL65 as the template and was subcloned from *pGEMT* (Promega, Madison, WI) using XhoI and SalI into the SalI site of *pYX242*. The plasmid *pACT ARA3* (PL792) was isolated as described previously from a two-hybrid screen with a human B-cell library using *pBTM LexA-AHR2TAD* (PL739) as the bait construct (Carver and Bradfield, 1997). The plasmids *pBTM LexA-ARA3* (PL1416) and *pYX ARA3* (PL1468) were constructed by PCR amplification of PL792 using OL1469 and OL826, ligated into *pGEMT*, then subcloned into EcoRI and SalI of *pBTM116* or *pYX242*. The plasmids *pSGBCU ARNT* (PL574), *pBTM LexA-3bHLHAR* (PL703) and *pY2 N-LexA-C* (PL740) have been described previously (Carver et al., 1994; Hogenesch et al., 1997; LaPres et al., 2000).

Transformations and Library Screening. Transformations into *S. cerevisiae* strain L40 were performed by a modified lithium acetate method as described previously (Carver et al., 1994). The plates were incubated for 2 days at 30°C and then replica-plated onto media containing 100 μM of the vehicle dimethyl sulfoxide or 100 μM of various concentrations of the ligand β-naphthoflavone (βNF) or dexamethasone (Dex). After 2 days of growth, triplets groups of 6 to 10 colonies for each condition were resuspended in 500 μl of buffer Z (60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4 and 35 mM β-mercaptoethanol). The A600 was measured on a 1:10 dilution of this cell suspension to determine cell density, and β-galactosidase (lacZ) expression was determined on 150 μl of this cell suspension as described previously (Carver et al., 1998). Percentage of maximal response was plotted using the program Prism (GraphPad Software, San Diego, CA). Statistical significance also was determined with ANOVA followed by Tukey’s multiple comparison test in Prism.

Cloning 5′-End of Human ARA3. The 5′-end of human ARA3 cDNA was obtained by a 5′-rapid amplification of cDNA ends procedure using Marathon-Ready human heart cDNA library kit per the manufacturer’s protocol (Clontech). The OL1191 was used as the gene-specific primer along with the vector-specific primer AP1 to generate a 5′-end cDNA product. The resulting product was cloned into *pGEMT* and sequenced. To generate the full-length human ARA3 cDNA (FLARA3), the 5′-rapid amplification of cDNA ends EcoRI/XbaI fragment was cloned into PL1425 to generate *pGEMT-FL ARA3* (PL1424).

ARA3 Deletions. The T7-tagged ARA3 constructs were created by including the T7 epitope (MASMTGGQQMG) on the 5′-end of the sense oligonucleotide 1469 used to amplify products without the T7 tag to generate LexA fusions. All ARA3 deletions were created by PCR amplification of PL792 and sub cloned from *pGEMT* into *pYX242* and *pBTM116* using the restriction enzymes EcoRI and SalI. The following antisense oligonucleotides were used to delete the ARA3 kelch repeats are as follows: OL1886 to delete the last two kelch repeats, OL1887 to delete last four kelch repeats, and OL1888 to delete all six kelch repeats. The deleted kelch repeat constructs are as follows: *pYX, T7ARA3KR5–6* (PL1443), *pBTM, LexA-ARA3KR5–6* (PL1451), *pYX, T7ARA3KR3–6* (PL1444); *pBTM, LexA-ARA3KR3–6* (PL1452); *pYX, T7ARA3KR1–6* (PL1445); and *pBTM, LexA-ARA3KR1–6* (PL1453). The plasmid *pYX T7ARA3* (PL1417) was created by PCR amplification of the template PL792 with OL2006 and OL926. The T7FLARA3 construct was created by PCR amplification using OL1490 and OL926 of the template PL1424 and ligated into *pTarget* (Novagen). The FLARA3 insert was first subcloned into *pET17B* (Novagen) using EcoRI and SalI to create the

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Oligonucleotide sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>OL163</td>
<td>CCCAAGCTTACGCTCGAAGTCGAGTTCGTTGAGGCAAGATGATAGTTGAG</td>
</tr>
<tr>
<td>OL180</td>
<td>GGCCTGACAGTGACGACGGCGCGGCAACATACCC</td>
</tr>
<tr>
<td>OL258</td>
<td>GCGTCGACACGGCGCGCCGGAAAGCTTTGTTTTTG</td>
</tr>
<tr>
<td>OL392</td>
<td>CCGCTGACAGTGACGACGGCGCGGCAACATACCC</td>
</tr>
<tr>
<td>OL822</td>
<td>TATGATCCGACCTAGGG</td>
</tr>
<tr>
<td>OL926</td>
<td>GCTCGTGCCTGTTTGA</td>
</tr>
<tr>
<td>OL1191</td>
<td>CCTCCGTCGTCAGCAAGCAATACCTTGGTGAATGTC</td>
</tr>
<tr>
<td>OL1378</td>
<td>GATCCGTCGTCACCGAAGCAATACCTTGGTGAATGTC</td>
</tr>
<tr>
<td>OL1379</td>
<td>CCTCCGTCGTCACCGAAGCAATACCTTGGTGAATGTC</td>
</tr>
<tr>
<td>OL1469</td>
<td>GGGCAGAACTTACCATGATCGTGAATGAAAC</td>
</tr>
<tr>
<td>OL1490</td>
<td>GGGCAGAACTTACCATGATCGTGAATGAAAC</td>
</tr>
<tr>
<td>OL1886</td>
<td>CCTCATTCTCGTCGATTCACTTAC</td>
</tr>
<tr>
<td>OL1887</td>
<td>CCTCATTCTCGTCGATTCACTTAC</td>
</tr>
<tr>
<td>OL1888</td>
<td>CCGTCGACCTGTTGAGTACG</td>
</tr>
<tr>
<td>OL2006</td>
<td>CCGTCGACCTGTTGAGTACG</td>
</tr>
<tr>
<td>OL2372</td>
<td>CCGTCGACCTGTTGAGTACG</td>
</tr>
</tbody>
</table>

Percentage of maximal response was plotted using the program Prism (GraphPad Software, San Diego, CA). Statistical significance also was determined with ANOVA followed by Tukey’s multiple comparison test in Prism.
in-frame fusion with the amino terminus T7 tag. This T7FLARA3 construct was then PCR-amplified with OL822 and OL926 and cloned into pT7 (PL1430). The PL1430 was first digested with XhoI, and then the XhoI overhangs were filled in with the Klenow fragment. This T7FLARA3 insert was then subcloned into the EcoRV and SmaI sites of pYX242 to create pYX T7FLARA3 (PL1442). The LexA fusion of FLARA3 was constructed by subcloning the insert from pTarget FLARA3 (PL1430) using EcoR I and Sall into the EcoRISall sites of pBTM116 to create pBTM LexA-FLARA3 (PL1456). Expression of ARA3 and the amino and carboxyl-terminal deletions of ARA3 were confirmed by Western blot analysis on yeast cell extracts as described previously (Hogenesch et al., 1997).

Hydroxylamine Mutagenesis. Hydroxylamine mutagenesis was performed as described previously (Garabedian, 1993). A 1 M solution of hydroxylamine was prepared immediately before use in 50 mM EDTA. Equal volumes of 1 M hydroxylamine solution and 1 M potassium phosphate buffer were mixed together with 2 µg of purified plasmid DNA pYX T7ARA3 (PL1417) or the control plasmid plBluescript II ± (Invitrogen). The hydroxylamine/DNA mixture was incubated at 25°C for 48 h. The DNA was purified over a G50 column (Roche, Basel, Switzerland) and transformed into JM109 bacteria. Plasmid DNA from the bacteria was purified on a maxiprep column (QIAGEN, Valencia, CA). The mutagenized PL1417 was then transformed into PL703 into the L40 strain of S. cerevisiae by modified lithium acetate method as described above. The wild-type PL1417 and the empty vector pYX242 were also transformed with PL703 to serve as controls for the experiment. All of the yeast transformations were replica- plated onto media containing 10 µM 2µ. Activation of the lac2 reporter was determined. Any mutant white colonies after 1 h were picked and rescued into HB101 bacteria. All rescued plasmids were retransformed into L40 yeast along with PL703 to confirm the expression. Any mutants expressed at wild-type levels were then sequenced to identify the mutation. The mutants, pYX T7ARA3V198M (PL1448) and pYX T7ARA3E288K (PL1449) were PCR-amplified using OL1469 and OL926, TA-cloned into pGEMT, and subcloned into pBTM116 to create pBTM ARA3 V198M (PL1457) and pBTM ARA3 E288K (PL1458).

AHR Deletions. The plasmid pSPORT AHRΔ313 (PL145) has been described previously (Dolwick et al., 1993). The plasmid pBTM LexA-ΔHLHLHAR3TAD (PL1297) was created by deleting the EcoRI fragment from pBTM LexA-AHRΔ3TAD (PL739). The AHR deletions pBTM LexA-AHRΔ425 (PL1301) and pBTM LexA- AHRΔ420 (PL1377) were constructed by PCR amplification of the template PL65 using ORL392 as the sense primer and OL163 and OL2372, respectively. All were cloned into pGEMT and subcloned into pBTM116 to create pBTM ARA3 V198M (PL1457) and pBTM ARA3 E288K (PL1458).

AHR Deletions. The plasmid pSPORT AHRΔ313 (PL145) has been described previously (Dolwick et al., 1993). The plasmid pBTM LexA-ΔHLHLHAR3TAD (PL1297) was created by deleting the EcoRI fragment from pBTM LexA-AHRΔ3TAD (PL739). The AHR deletions pBTM LexA-AHRΔ425 (PL1301) and pBTM LexA- AHRΔ420 (PL1377) were constructed by PCR amplification of the template PL65 using ORL392 as the sense primer and OL163 and OL2372, respectively. All were cloned into pGEMT and subcloned into the Sall site of pBTM116 with XhoI and Sall. The plasmid pBTM LexA-ΔHLHLHAR3Δ420 (PL1324) was created by deleting the EcoRI fragment from pBTM LexA-AHRΔ420. The plasmid pBTM LexA-AHRΔ313 (PL1300) was constructed by PCR amplification using OL1378 and OL822 of the template PL145, and the insert was subcloned from pGEMT into the Sall site of pBTM116 with XhoI and Sall. The plasmid pBTM LexA-AHRΔ516 (PL1322) was generated by PCR amplification using OL180 and OL258 of the template PL65 and the insert was subcloned from pGEMT using Sall into the Sall site of pGAD424 (Clontech, Palo Alto, CA). The pGAD AHRΔ516 (PL718) construct was digested with XmaI, and the PstI and the AHR insert was subcloned into the SmaI and PstI sites of pBTM116.

Mammalian Cell-Culture Assays. The plasmid pSG Gal4-ΔHLHLHAR (PL118) has been described previously (Jain et al., 1994). The pTarget T7ARA3 (PL1797) and pTarget T7ARA3Δkelch (PL1429) constructs were generated by PCR amplification of PL792 using OL206/OL926 and OL206/OL1888. PL1430 is described above. The plasmid pG5 Luciferase (Promega) is a luciferase reporter plasmid that contains the firefly luciferase gene under the control of a viral promoter. The luciferase gene can be transcribed in mammalian cells and the resulting luciferase activity can be measured using a bioluminescence reporter system.

Results and Discussion. We previously reported a modified yeast two-hybrid assay to screen for proteins that interact with the AHR in a ligand-sensitive manner. The ARA3 yeast two hybrid clones originally identified in our screen encoded a 531 AA protein. There was no Kozak consensus initiation site present. Therefore, the human full-length ARA3 (FLARA3) was cloned from a human heart cDNA library and sequenced. FLARA3 is 642 AA long, whereas the original ARA3 clone was missing the first 111 AA. Similarity searches identified FLARA3 as a protein originally called NS1BP. The NS1BP/FLARA3 protein contains a BTB domain from AA 22 to 129, a BACK domain from AA 134 to 233, and a kelch domain consisting of six imperfect 50 AA kelch repeats from AA 357 to 635 (http://www.sanger.ac.uk). A low homology region exists between the BACK and IVR domains. The ARA3 yeast two hybrid clones originally identified in our screen encoded a 531 AA protein. There was no Kozak consensus initiation site present. Therefore, the human full-length ARA3 (FLARA3) was cloned from a human heart cDNA library and sequenced. FLARA3 is 642 AA long, whereas the original ARA3 clone was missing the first 111 AA. Similarity searches identified FLARA3 as a protein originally called NS1BP. The NS1BP/FLARA3 protein contains a BTB domain from AA 22 to 129, a BACK domain from AA 134 to 233, and a kelch domain consisting of six imperfect 50 AA kelch repeats from AA 357 to 635 (http://www.sanger.ac.uk). A low homology region exists between the BACK and kelch domains that we refer to as the IVR.
dependent manner. This screen of more than 700,000 human cDNAs yielded 10 positive clones (Carver and Bradfield, 1997). Sequence analysis revealed that five of these clones represented a unique cDNA that was designated ARA9. The other five clones represented a second distinct cDNA that we designated ARA3. Given that the importance of ARA9 in AHR signaling has been demonstrated repeatedly since this initial report, we returned to characterize the function of ARA3 (Ma and Whitlock, 1997; Bell and Poland, 2000; LaPres et al., 2000; Petrulis et al., 2000).

Analysis of the ARA3 cDNA. Sequence analysis of the five ARA3 cDNAs indicated that they were identical and encoded a large open reading frame of 531 amino acids. Given that a consensus initiation ATG codon was not identified in the original cDNA, the 5′ end was amplified by PCR of a human heart library (Clontech). As the result of this experiment, the full-length open reading frame of ARA3 (FLARA3) was found to be 642 amino acids in length and contained a consensus initiation ATG codon with an upstream, in-frame stop codon (Kozak, 1987) (Fig. 1). Comparison of FLARA3 with other proteins in the GenBank database revealed a preliminary domain map. At the N terminus of FLARA3 is a broad complex/tramtrack/bric-a-brac (BTB) domain found in several transcriptional regulators and non–DNA-binding proteins (Zollman et al., 1994; Collins et al., 2001). In addition to mediating hetero/homodimerization, the BTB domain has been shown to recruit corepressors and histone deacetylases (Melnick et al., 2002). At its C terminus, ARA3 harbors a “kelch” domain, consisting of six imperfect repeats of approximately 50 amino acids. This domain has been shown to have the potential to form a β-propeller structure (Adams et al., 2000). Like many other BTB-kelch proteins, FLARA3 also harbors a motif referred to as a “BTB and C-terminal kelch” homology domain (BACK) (Stogios and Prive, 2004). In some BTB-kelch proteins, the BACK domain aids in the interaction of the BTB domain with ubiquitin-ligase complexes (Stogios and Prive, 2004; Furukawa and Xiong, 2005). A fourth region with no significant amino acid sequence homology exists between the BACK and kelch domains. We designate this domain as the “intervening region” (IVR).

Since the time of our initial report of ARA3, the human and mouse cDNAs have been reported by other laboratories. The human cDNA was first reported as an influenza virus NS1 binding protein (Zollman et al., 1994; Collins et al., 2001). In addition to mediating hetero/homodimerization, the BTB domain has been shown to recruit corepressors and histone deacetylases (Melnick et al., 2002). At its C terminus, ARA3 harbors a “kelch” domain, consisting of six imperfect repeats of approximately 50 amino acids. This domain has been shown to have the potential to form a β-propeller structure (Adams et al., 2000). Like many other BTB-kelch proteins, FLARA3 also harbors a motif referred to as a “BTB and C-terminal kelch” homology domain (BACK) (Stogios and Prive, 2004). In some BTB-kelch proteins, the BACK domain aids in the interaction of the BTB domain with ubiquitin-ligase complexes (Stogios and Prive, 2004; Furukawa and Xiong, 2005). A fourth region with no significant amino acid sequence homology exists between the BACK and kelch domains. We designate this domain as the “intervening region” (IVR).

Since the time of our initial report of ARA3, the human and mouse cDNAs have been reported by other laboratories. The human cDNA was first reported as an influenza virus NS1 binding protein (NS1BP) (Wolff et al., 1998). The murine NS1BP ortholog, designated Nd1, and a splice variant also were cloned in a screen for cDNAs differentially expressed in conditions related to NS1BP expression.
neurons of Ncx-deficient mice that stabilize actin filaments (Sasagawa et al., 2002). Given this provenance, we now refer to FLARA3 as NS1BP and use the ARA3 designation to refer to the clone obtained from the original two-hybrid screen (Fig. 1). Murine NS1BP transcripts were previously found in all tissues examined with the highest expression in the heart, kidney, and intestines (Sasagawa et al., 2002). By Northern blot analysis on murine tissue, we also detected NS1BP mRNA in the heart and kidney, as well as muscle, lung, testis, and brain (data not shown).

AHR and ARA3 Proteins Interact. To confirm the ligand-dependent nature of the AHR-ARA3 interaction, plasmids harboring a LexA-AHR fusion (LexA-AHR*TAD) and a TAD ARA3 fusion (TAD-ARA3) were transformed into the L40 reporter strain. The separation of the LexA DNA-binding domain and the TAD on two proteins requires that the two proteins interact for reporter activation. A 21-fold increase in β-galactosidase (LacZ) reporter activity was observed when the cotransformed yeast were exposed to the AHR agonist βNF (Fig. 2A). To determine whether this interaction was context-dependent, the reverse-two hybrid experiment was performed. To this end, a LexA-ARA3 fusion (LexA-ARA3) was screened against the full-length AHR containing its cognate TAD (AHR). Again, an 18.5-fold increase in LacZ reporter activity was seen when these constructs were coexpressed in the presence of βNF (Fig. 2B).

Ahr Signaling Is Enhanced in the Presence of ARA3. We have previously shown that an AHR chimera harboring its cognate TAD, LexA-ΔbHLHLAHR, displays a pharmacological response to βNF in yeast similar to that of the AHR/ARNT heterodimer in mammalian cells (Carver et al., 1994). By removing the bHLH domain of AHR, the dependence of AHR on ARNT is removed. To determine the effect of ARA3 on AHR signaling, L40 yeast were transformed with LexA-ΔbHLHLAHR along with ARA3 cDNA or control vector. When grown in the presence of increasing concentrations of βNF, we observed that coexpression of ARA3 influenced the shape of the dose-response curve significantly. In the presence of ARA3, the EC₅₀ decreased from 1 × 10⁻⁴ to 6 × 10⁻⁵ and the maximal response increased approximately 5-fold. This change in dose-response is consistent with the idea that ARA3 increases the concentration of AHR available to bind ligand and activate transcription (Fig. 2C) (Bourne and von Zastrow, 2001). To determine whether the effect of ARA3 was specific to AHR signaling, a similar pharmacology experiment was performed with a LexA fusion of the glucocorticoid receptor ((GR)N-LexA-CGR) with its ligand DOC. Coexpression of ARA3 did not influence GR signaling in this assay (Fig. 2D).

The BACK/IVR Domains of NS1BP/FLARA3 Modify AHR Signaling. We first mapped the functional domains of NS1BP/FLARA3 by examining specific deletions for their effect on AHR signaling in yeast. The deletions were constructed with a T7-epitope tag to monitor protein expression levels. In this system, LexA-ΔbHLHLAHR was cotransformed with each NS1BP/FLARA3 deletion. We observed that NS1BP/FLARA3 increased the signaling of the AHR chimera by 2-fold (P < 0.01), whereas the original ARA3 cDNA, with the BTB domain deleted, increased AHR signaling by approximately 10-fold (P < 0.001). This suggests that the BTB...
domain inhibits the effect of ARA3 on AHR signaling. Deletion of the entire kelch domain resulted in only a modest (25%) reduction in signaling. An “all-or-nothing” effect was observed, with deletions of individual kelch repeats disrupting ARA3 function. This observation suggests that the kelch domain must be expressed in its entirety for normal folding and stability and that the kelch domain of ARA3 does not play an essential role in modifying AHR signaling (Fig. 3A).

To address potential effects on protein stability and folding caused by large deletions, we next used hydroxyamine to induce random mutations in ARA3 (Garabedian, 1993). To this end, a library of point mutants was cotransformed with LexA-ΔbHLHAHR in L40 yeast and plated onto media containing 10 μM βNF. Expression levels and size of the mutants were confirmed by Western blot analysis using a T7 antibody. All full-length mutants were sequenced, and two single point mutations were identified. One mutation resulted in a valine-to-methionine substitution at amino acid 198 (V198M) within the BACK domain, and the second resulted in a glutamate-to-lysine substitution at amino acid 288 (E288K) within the IVR (Fig. 3B). A dose-response analysis revealed that both mutations yielded partial loss-of-function phenotypes, decreasing the maximal response by 35% and decreasing the effect on the EC_{50} by 50% (Fig. 3C). The point mutants further confirmed that the BACK/IVR domains of ARA3 represent the minimal effector domain.

The BACK/IVR Domains of NS1BP/FLARA3 Also Mediate the Interaction with AHR. We also mapped the NS1BP/FLARA3 domains that interact with AHR. In this series of experiments, we cloned the ARA3 deletions described above into the vector pBTM116 to generate LexA fusions. These deletion constructs were then cotransformed with the AHR in yeast. In this assay, reporter induction occurs when the LexA ARA3 fusions physically interact with the AHR. As in Fig. 2B, LexA-ARA3 interacts with AHR in a ligand-dependent manner. In a manner similar to the pharmacology experiments in Fig. 3C, subdeletions of the kelch domain significantly disrupt the AHR-ARA3 interaction, whereas complete removal of the kelch domain reveals a mutant with near wild-type interaction activity (comparing LexA-ARA3Δ KR5–6 and 3–6 with LexA-ARA3Δ KR1–6). In addition, as in the pharmacology experiments in Fig. 3C, the two point mutations significantly inhibited the AHR-ARA3 interaction by 70% (Fig. 4A). We were unable to determine the role of the BTB domain of NS1BP on the interaction with AHR or whether NS1BP interacted with AHR at all, because LexA-NS1BP/FLARA3 activated the reporter independent of its interaction with AHR or the presence of ligand (Fig. 4B). The fact that expression of LexA-NS1BP led to reporter induction in the absence of ligand- or TAD-containing constructs suggests that the BTB domain might allow NS1BP to heterodimerize with other transcription factors containing TADs. In summary, Figs. 3 and 4 demonstrate that the BACK/IVR domains of NS1BP/ARA3 are sufficient for the AHR-ARA3 interaction, as well as the ability of ARA3 to modify AHR signaling.

The C Terminus of the AHR PAS Domain Interacts with ARA3. We used a series of AHR deletions to determine those regions important for its interaction with ARA3. We compared the AHR-ARA3 interaction to the interaction of AHR with its known dimerization partner ARNT. We observed that the C terminus of the AHR PAS domain, specifically AA 289 to 403, is essential for the AHR-ARA3 interaction. In contrast, a distinct region, AA 380 to 492, is required for the AHR-ARNT interaction in this system. The bHLH of AHR also is necessary for the AHR-ARNT interaction, but its role in the AHR-ARA3 interaction is less clear. The bHLH inhibits the interaction of ARA3 with LexA-AHRΔTAD but is necessary for ARA3 to interact with LexA-AHRΔ402 (Fig. 5). We have demonstrated previously that AA 130 to 491 of AHR mediate the AHR-ARA9 interaction (Carver et al., 1998). Taken in sum, these data suggest that the AHR uses overlapping but distinct domains for interactions with ARA3, ARA9, and ARNT.

ARA3 Increases Signaling of an Ahr Chimera in Mammalian Cells. The influence of NS1BP/FLARA3 on signaling by a Gal4-AHR fusion first was investigated in Cos-1 cells by transfections of a luciferase reporter gene driven by the Gal4 promoter. In these experiments, the
\(\Delta bHLHAHR \) was fused to the DNA binding domain of Gal4 (Gal4-\(\Delta bHLHAHR \)) and cotransfected with T7ARA3, T7NS1BP/FLARA3, T7ARA3AKR1–6, or vector control. The addition of NS1BP/FLARA3 increased signaling of the AHR chimera in response to TCDD by more than 2-fold \((P < 0.001)\). In agreement with the results of the LexA-AHR chimera in yeast, removal of the BTB domain increased the modifier activity of ARA3 even further. That is, addition of the original ARA3 cDNA increased signaling of the AHR chimera in mammalian cells by almost 5-fold \((P < 0.001)\) (Fig. 6A). The fact that NS1BP was significantly less effective on AHR chimera signaling than ARA3 provides further evidence that the BTB domain of ARA3 plays a negative role in AHR signaling.

The yeast pharmacology experiments depicted in Fig. 2C are consistent with the idea that ARA3 increases the concentration functional AHR in cells. An increase in AHR could account for the modifier activity of ARA3. Given that the BACK/IVR domains of NS1BP are sufficient to mediate the AHR-ARA3 interaction and represent the minimal effector domain of NS1BP, we tested the hypothesis that this region increases the concentration of functional AHR in mammalian cells. To this end, we transfected Cos-1 cells with the Gal4-AHR chimera in the presence of the NS1BP BACK/IVR domains or an empty vector and measured the amount of AHR with a radioactive ligand. That is, with a saturating concentration of ligand, we observed a 2.5-fold increase in the concentration of the AHR chimera in the presence of the NS1BP BACK/IVR \((P < 0.05)\) (Fig. 6B). These results demonstrate that the BACK/IVR domains of NS1BP do increase the functional concentration of AHR in the cytosol.

We have demonstrated that ARA3 binds AHR in a highly specific yeast-two-hybrid assay and enhances AHR signaling in yeast as well as mammalian cells. The dose-response analysis suggested that ARA3 increases the concentration of functional AHR. We have cloned full-length ARA3 and determined that it is the previously identified NS1BP without the BTB domain. Through a series of deletions and mutants, we have shown that the BACK/IVR of NS1BP is sufficient for its interaction with AHR and its effect on AHR signaling. In addition, we determined that the BACK/IVR domains in isolation increase the concentration of functional AHR in cells. It is noteworthy that deletion of the BTB domain significantly enhances the modifier activity of NS1BP.

Fig. 5. The C terminus of AHR’s PAS domain is necessary for the interaction with ARA3. The L40 yeast, expressing an integrated \(\beta \)-galactosidase (\(\beta \)-gal) reporter, were transformed with full-length ARNT or TAD-ARA3 and LexA fusions of a AHR deletion series. The yeast were exposed to 1 mM \(\beta \)-galactosidase or vehicle. \(\beta \)-Gal activity was determined and normalized to the number of cells. Values are the average of three replicates and represent at least two independent experiments. The regions of AHR important for its interaction with ARA3 and ARNT were compared.

Fig. 6. ARA3 modifies signaling of an AHR chimera in mammalian cells. A. Cos-1 cells were transiently transfected with \(\Delta bHLHAHR \) fused to the GAL4 DNA binding domain (Gal4-\(\Delta bHLHAHR \)), a luciferase reporter, and a \(\beta \)-galactosidase transfection control vector. In addition, NS1BP/FLARA3, ARA3, ARA3AKR1–6, or an empty vector was transfected into the Cos-1 cells. The cells were treated with 10 nM TCDD or vehicle, and Luciferase and LacZ activity were determined. Luciferase activity was normalized to LacZ activity. Values are the average of two replicates and represent at least two independent experiments. Statistical significance was determined with ANOVA followed by Tukey’s multiple comparison test in PRISM. The same subscript depicts values that are statistically the same \((P > 0.05)\). Different subscripts designate a statistical difference in the values \((P < 0.001)\). B. Cos-1 cells were transiently transfected with the Gal4-AHR chimera in the presence of ARA3AKR1–6 or an empty vector. Cytosolic protein was labeled with the photoaffinity AHR ligand and the samples were run on a 7.5% SDS-polyacrylamide gel electrophoresis gel. Gels were analyzed by autoradiography and appropriate bands were cut out and counted on a Minaxi gamma counter. Statistical significance was determined with a Student’s \(t \) test \((P < 0.05)\).
Model. Based upon the domain maps described above and what is known about other BTB-kelch proteins, a model of NS1BP in AHR signaling can be proposed. The data presented here are consistent with the idea that NS1BP/FLARA3 influences the cytosolic concentration of AHR by two mechanisms. First, NS1BP may tether AHR to the actin cytoskeleton. In this regard, it has been shown that NS1BP colocalizes with actin and can bind actin filaments through its kelch domain (Sasagawa et al., 2002). Second, the BTB domain of NS1BP may direct the proteosomal degradation of AHR. The BTB domain in some kelch proteins interacts with Cullin3, a member of the E3 ubiquitin-ligase complex (Stogios and Prive, 2004; Furukawa and Xiong, 2005). In agreement with this model is the observation that, in both yeast and mammalian cells, the NS1BP construct with a deletion of the BTB domain (i.e., ARA3) significantly increased AHR signaling compared with full-length NS1BP. That is, ARA3, without the BTB domain, may behave in a dominant-negative manner by competing with NS1BP. Likewise, the BACK/IVR domains of NS1BP alone also may function in a dominant-negative manner, albeit less effectively than ARA3 with the kelch domain that links it to the cytoplasm. In fact, we have shown that the BACK/IVR domains of NS1BP alone increase the concentration of functional AHR. In summary, NS1BP modifies AHR signaling by both positively and negatively influencing the concentration of AHR through the kelch and BTB domains, respectively.

References

Address correspondence to: Christopher A. Bradfield, McCarrd Laboratory for Cancer Research, 1400 University Avenue, Madison, WI 53706-1599. E-mail: Bradfield@mdanderson.edu