Interaction Studies of Multiple Binding Sites on M₄ Muscarinic Acetylcholine Receptors

Alfred A. Lanzafrance, Patrick M. Sexton, and Arthur Christopoulos

Drug Discovery Biology Laboratory, Department of Pharmacology, Monash University, Victoria, Australia (A.C., P.M.S.); and Department of Pharmacology, University of Melbourne, Victoria, Australia (A.A.L.)

Received March 20, 2006; accepted May 18, 2006

ABSTRACT

This study investigated the reciprocal cross-interactions between two distinct allosteric sites on the M₄ muscarinic acetylcholine receptor (mAChR) in the absence or presence of different orthosteric ligands. Initial studies revealed that two novel benzimidazole allosteric modulators, 17-β-hydroxy-17-α-ethyl nyl-delta(4)-androstano[3,2-β]pyrimido[1,2-a]benzimidazole (WIN 62,577) and 17-β-hydroxy-17-α-ethynyl-5-α-androstano[3,2-b]pyrimido[1,2-a]benzimidazole (WIN 51,708), exhibited different degrees of positive, negative, or close-to-neutral cooperativity with the orthosteric site on M₁ or M₄ mAChRs, depending on the chemical nature of the orthosteric radioligand that was used [(³H]N-methylscopolamine [(³H]NMS) versus [(³H]quinuclidinylbenzilate [(³H]QNB)]. The largest window for observing an effect (negative cooperativity) was noted for the combination of WIN 62,577 and [(³H]QNB at the M₄ mAChR. Experiments involving the combination of these two ligands with unlabeled agonists [acetylcholine, 4-(m-chlorophenylcarbamoyloxy)-2-butynyltrimethylammonium (McN-A-343), or xanomeline] revealed low degrees of negative cooperativity between WIN 62,577 and each agonist, whereas stronger negative cooperativity was observed against atropine. It is interesting that when these experiments were repeated using the prototypical modulators heptane-1,7-bis-(dimethyl-3′-phthalimidopropyl)-ammonium bromide (C₇-3-phth), alcuronium, or brucine (which act at a separate allosteric site), WIN 62,577 exhibited negative cooperativity with each modulator when the orthosteric site was unoccupied, but this switched to neutral cooperativity when the receptor was occupied by [(³H]QNB. Dissociation kinetic experiments using [(³H]NMS and combination of C₇-3-phth with WIN 62,577 also provided evidence for neutral cooperativity between the two allosteric sites when the orthosteric site is occupied. Together, these results provide insight into the nature of the interaction between two distinct allosteric sites on the M₄ mAChR and how this interaction is perturbed upon occupancy of the orthosteric site.

Muscarinic acetylcholine receptors (mAChRs) are prototypical members of the family A G protein-coupled receptor superfamily and mediate the majority of the actions of acetylcholine (ACh) in both the peripheral and the central nervous systems. Although these receptors are a focus of intense research as potential therapeutic targets, a significant challenge is the issue of high sequence conservation within the orthosteric domain across all five mAChR subtypes (Hulme et al., 1990; Wess, 1990). Such sequence conservation can account for the current paucity of orthosteric mAChR agonists and antagonists that display high selectivity for one mAChR subtype to the relative exclusion of all others. This problem is particularly pertinent to studies of the central nervous system, which is known to express all five subtypes of mAChR (Ehler et al., 1995). Recent studies using mAChR knockout mice have highlighted the role of specific mAChRs in central disorders such as cognitive dysfunction, schizophrenia, and a variety of pain states (Gomez et al., 2001; Hamilton et al., 2001; Wess et al., 2003), and thus, the ability to better target drugs to each of the mAChRs is of ongoing therapeutic relevance.
One potential avenue for achieving appropriate selectivity between mAChR subtypes is to target allosteric sites on these receptors, which are topographically distinct from the orthosteric site (Christopoulos et al., 1998). A number of studies have already revealed that there is at least one allosteric binding site common to structurally diverse small-molecule mAChR modulators, such as gallamine (Clark and Mitchelson, 1976; Ellis and Seidenberg, 1989, 1992; Leppik et al., 1994), alcuronium (Tuček et al., 1990; Proška and Tuček, 1994; Jakubík et al., 1995) (Fig. 1), and heptane-1,7-bis(dimethyl-3-phthalimidopropyl)-ammonium bromide (C7/3-phth) (Choo and Mitchelson, 1989; Christopoulos et al., 1993, 1999; Christopoulos and Mitchelson, 1994; LanzaFame et al., 1997) (Fig. 1). It is noteworthy that the effects of these prototypical mAChR allosteric ligands are all consistent with a simple ternary complex model (TCM) of allosterism (Fig. 2A), which describes allosteric interactions in terms of ligand affinities for the free receptor and binding cooperativity between occupied orthosteric and allosteric sites (Ehlert, 1988; Lazareno and Birdsall, 1995; Christopoulos, 2002). The ability to describe mAChR allosteric interactions according to these mechanistic parameters means that useful quantitative measures can be derived for use in structure-activity studies of allosteric ligands.

Lazareno et al. (2002) reported that the benzimidazoles 17-β-hydroxy-17-α-ethyl-5-α-androstano[3,2-b]pyrimido[1,2-a]benzimidazole (WIN 51,708) and 17-β-hydroxy-17-α-ethyl-5-α-androstano[3,2-b]pyrimido[1,2-a]benzimidazole (WIN 62,577) (Fig. 1) and a series of related derivatives also act allosterically at mAChRs according to the TCM by exhibiting positive, negative, or neutral cooperativity with \(^{[3]}\)H]NMS and ACh, depending on the mAChR subtype and orthosteric ligand bound to the receptor. However, it was revealed that these modulators do not seem to bind to the “common” allosteric site used by compounds such as gallamine, alcuronium, and C7/3-phth but rather interact with a second allosteric site on mAChRs that also binds atypical modulators such as staurosporine and KT5720 (Lazareno et al., 2000, 2002).

Fig. 1. Structures of allosteric modulators used in this study.

Fig. 2. Allosteric models investigated in this study. A, a simple TCM of allosteric interaction. B, an extended TCM for the interaction of two orthosteric ligands and one allosteric modulator on the same receptor. C, a QCM for the interaction of two allosteric modulators (each binding to a different allosteric site) and one orthosteric ligand on the same receptor. In these models, \(R\) represents the receptor, \(A\) represents orthosteric radioligand, \(B\) and \(C\) represent allosteric modulators, \(I\) represents an unlabeled orthosteric ligand, \(K_A, K_B, K_C\), and \(K_I\) represent equilibrium dissociation constants for the binding of ligands \(A, B, C\) and \(I\), respectively. \(\alpha\) represents the cooperativity factor for the allosteric interaction between ligands \(A\) and \(B\), \(\alpha'\) represents the cooperativity factor for the interaction between ligands \(A\) and \(C\), and \(\gamma\) and \(\delta\) represent the cooperativity factors for the interaction between ligands \(B\) and \(C\) when ligand \(A\) is absent or present, respectively. When \(\gamma = \delta = 0\), the allosteric modulators bind to same site (“infinite” negative cooperativity); when \(\gamma = \delta = 1\), the allosteric modulators bind to separate sites and there is no interaction (neutral cooperativity).
The presence of a second allosteric site on mAChRs raises a number of important questions. For example, it is currently unknown where the second allosteric site is located relative to the “common” allosteric site and the orthosteric site. In addition, the nature and extent of possible interactions between the two allosteric sites and the orthosteric site are largely unexplored. This is particularly relevant for combination drug therapies, because allosteric modulators have the potential to “engender” selectivity in otherwise nonspecific ligands by virtue of their cooperative effects (Birdsall et al., 2001; Christopoulos, 2002; Christopoulos and Kenakin, 2002). Therefore, and given that the novel benzimidazole modulators are known to be centrally active (Lazareno et al., 2002), the present study investigated the interaction of these compounds with the M₁ and M₄ mAChRs, which represent the most abundant mAChR subtypes in the central nervous system and have been implicated as important targets for the pharmacotherapy of cognitive dysfunction associated with Alzheimer’s disease (Whitehouse et al., 1982), schizophrenia, and pain (Felder et al., 2000). In particular, the interaction between WIN 62,577 and a variety of orthosteric ligands and prototypical allosteric modulators was investigated in detail to gain additional insights into the nature of multisite interactions on the M₄ mAChR.

Materials and Methods

Materials. Drugs and chemicals were obtained from the following sources: (−)-[3H]1-quinuclidinyl benzilate ([3H]QNB) and [3H(NMethylscopolamine methyl chloride ([3H]NMS) were from PerkinElmer Life and Analytical Sciences (Boston, MA); Dulbecco’s modified eagle’s medium (DMEM) and Genetecin (G418) were from Invitrogen (Carlsbad, CA); and fetal bovine serum was from Thermoflase (Melbourne, VIC, Australia). C₇/₃-phth was synthesized by the Institute for Drug Technology (Boronia, VIC, Australia), alcuronium (1 nM to 10 mM), brucine (10 nM to 10 mM), or C₇/₃-phth (1 nM to 10 mM) on the binding of [3H]QNB (0.1, 0.5, or 1 nM) in M₄ CHO membranes for 1 h at 37°C. Binding combination experiments were also conducted using M₄ CHO membranes (20 µg/assay tube in a total volume of 1 ml), and we investigated the effects of WIN 62,577 (10 nM to 0.1 mM) on the binding of [3H]QNB (0.1 nM) in the absence or presence of the agonists ACh (3 or 10 µM), 4-(m-chlorophenylamino)benzoxol)-2-butylylimidammonium (MeN-A-343; 3 or 10 µM), or oxanalone (0.1 or 0.3 µM); the orthosteric antagonist, atropine (3 or 6 nM); or the allosteric modulators, alcuronium (10, 30, 100, or 300 µM), brucine (10, 30, 100, or 300 µM), or C₇/₃-phth (1, 3, 10, or 30 µM). To minimize the effect of G protein coupling on agonist binding, 5'-guanylylimidodiphosphate (Gpp[NH]p; 0.1 mM) was included in assay tubes for all agonist combination experiments. In all instances, incubation was for 1 h at 37°C. All other details were as above.

[3H]QNB Binding Assays. Initial experiments were performed in HEPES buffer using M₁ or M₄ CHO cell membrane homogenates (10 µg/assay tube in a total volume of 1 ml) incubated with [3H]QNB (0.05 or 0.1 nM) and various concentrations of WIN 51,708 (1 nM to 37°C. The reaction was terminated by rapid filtration through Whatman GF/B filters using a Brandel cell harvester. Nonspecific binding was determined using 10 µM atropine. Filters were washed three times with 4-ml aliquots of ice-cold saline and dried before radioactivity (disintegrations per minute) was measured using liquid scintillation counting.

[3H]QNB Binding Assays. Initial experiments were performed in HEPES buffer using M₁ or M₄ CHO cell membrane homogenates (10 µg/assay tube in a total volume of 1 ml) incubated with [3H]QNB (0.05 or 0.1 nM) and various concentrations of WIN 51,708 (1 nM to 0.1 mM) or WIN 62,577 (1 nM to 0.1 mM) for 1 h at 37°C. Subsequent experiments investigated the effects of the prototypical modulators, alcuronium (1 nM to 10 mM), brucine (10 nM to 10 mM), or C₇/₃-phth (1 nM to 10 mM) on the binding of [3H]QNB (0.1, 0.5, or 1 nM) in M₄ CHO membranes for 1 h at 37°C. Combination binding experiments were also conducted using M₄ CHO membranes (20 µg/assay tube in a total volume of 1 ml), and we investigated the effects of WIN 62,577 (10 nM to 0.1 mM) on the binding of [3H]QNB (0.1 nM) in the absence or presence of the agonists ACh (3 or 10 µM), 4-(m-chlorophenyleph-
interaction between radioligand and modulator. This factor is a thermodynamic measure of the strength of allosteric interaction between two sites on the same G protein-coupled receptor and is defined as the ratio of affinity of one ligand for the free receptor to its affinity for the receptor when the latter is occupied by the other ligand. Values of $\alpha > 1$ denote positive cooperativity (allosteric enhancement), values of $\alpha < 1$ denote negative cooperativity (allosteric inhibition), and values of $\alpha = 1$ denote neutral cooperativity.

Where necessary, a kinetic TCM was used instead for nonequilibrium binding data. For this latter analysis, the equations are as derived by Lazareno and Birdsell (1995), with the only modification being that the affinity constants in the original equations were recast as equilibrium dissociation constants (Avlani et al., 2004):

$$B_i = B_{AB} \times [1 - e^{-k_{offB} \times t}]$$

(3)

where

$$k_{offB} = k_{eff} \times \frac{[B]}{[G_f/(\alpha)]}$$

(4)

$$k_{eff} = \frac{1 + [B]}{[K_g/(\alpha)]}$$

(5)

and

$$B_{AB} = \frac{[A]}{K_{app}} \times \frac{K_{app}}{1 + [A]/[K_{app}]}$$

(6)

In these equations, B_{AB} denotes the fractional binding of the radioligand in the presence of modulator at equilibrium, k_{offB} denotes the apparent association rate constant for the radioligand, k_{eff} denotes the radioligand dissociation rate constant when the receptor is not occupied by modulator, k_{app} denotes the radioligand dissociation rate constant for the modulator-occupied receptor, and all other parameters are as defined for eqs. 1 and 2. Equations 3 through 6 assume that the binding kinetics of each modulator are rapid relative to the radioligand and that the modulator rapidly achieves equilibrium with the allosteric site as is generally found for prototypical modulators of the mAChRs (Lazareno and Birdsell, 1995; Trankle et al., 2003).

Combination radioligand binding curves for WIN 62,577 versus $[^3H]$QNB in the absence and presence of various orthosteric ligands were analyzed according to the following equations (Lazareno and Birdsell, 1995; Christopoulos, 2000), based on an extended equilibrium TCM (Fig. 2B):

$$Y = \frac{100 \times ([A] + K_A)}{[A] + K_{app}}$$

(7)

and

$$K_{app} = \frac{K_A K_B}{\alpha} \times \frac{[1]}{[B]} + \frac{K_B}{[K_f]} \times \left[\frac{1}{1 + \frac{[B]}{[K_i]}} + \frac{K_i}{[K_f] + \frac{[B]}{[K_f]}} \right]$$

(8)

where Y denotes the percentage of specific binding, A denotes the radioligand, B denotes the allosteric modulator, I denotes the orthosteric inhibitor, K_A, K_B, and K_I denote their equilibrium dissociation constants, respectively, α denotes the cooperativity factor for the interaction between the allosteric modulator and the radioligand, α' denotes the cooperativity factor for the interaction between the modulator and the unlabeled orthosteric ligand, and s denotes an empirical slope factor. In all instances, this factor was not significantly different from unity and was constrained as such.

For the radioligand binding experiments involving the combination of WIN 62,577 with a prototypical allosteric modulator versus $[^3H]$QNB, a quaternary complex model (QCM) was used (Fig. 2C), which assumes that WIN 62,577 and either of the prototypical modulators bind to separate and distinct allosteric sites on the M4 mAChR (Lazareno et al., 2002). Because of the profound effects of all modulators on radioligand kinetics, the data were obtained under pseudoequilibrium conditions and were thus analyzed according to a kinetic version of the QCM (Lazareno et al., 2002) using the following equations:

$$B_i = B_{ABC} \times [1 - e^{-k_{offBC} \times t}]$$

(9)

$$k_{offBC} = k_{effBC} \times \left[1 + \left(\frac{[B] \times k_{off} + [C] (\alpha + \beta) \times k_{offBC} \times \frac{[B]}{[K_g/(\alpha + \beta)]} \right)}{1 + [B]} \right]$$

(10)

$$k_{effBC} = \frac{k_{onBC}/K_{effBC} + \frac{[C] (\alpha + \beta) \times k_{effBC} \times \frac{[B]}{[K_g/(\alpha + \beta)]} \right)}{1 + [B]}$$

(11)

$$K_{effBC} = K_A \times \frac{1 + ([B] \times K_B) + ([C] \times [C] \times [C] \times K_B)}{1 + \alpha([B] \times K_B) + \beta([C] \times K_C) + [C] \times K_C \times \delta[B]/[K_B]}$$

(12)

$$B_{ABC} = \frac{B_{max} \times [A]}{K_{app} + \frac{[A]}{K_{app}}}$$

(13)

where B_{ABC} denotes the specific binding of the radioligand A in the presence of both modulators (B and C) at equilibrium, k_{offBC} denotes the apparent association rate constant for the radioligand, k_{effBC} denotes the radioligand dissociation rate constant when the receptor is not occupied by any modulator, k_{onBC} denotes the radioligand dissociation rate constant for the receptor when it is occupied by modulator B, k_{offBC} denotes the radioligand dissociation rate constant for the receptor when it is occupied by modulator C, k_{effBC} denotes the radioligand dissociation rate constant for the receptor when it is occupied by both modulators, α represents the cooperativity factor for the interaction between ligands A and B, β represents the cooperativity factor for the interaction between ligands A and C, and γ and δ represent the cooperativity factors for interaction between ligands B and C when ligand A is either absent or present, respectively. K_A, K_B, and K_C represent equilibrium dissociation constants for the binding of ligands A, B, and C, respectively. For this analysis, it was assumed that all modulators tested could completely prevent the dissociation of $[^3H]$QNB from the receptor, and thus the parameters k_{off}, k_{offBC}, and k_{effBC} were constrained to a value of 0 min^{-1} in eq. 11.

In all cases, potency, affinity, and cooperativity factors were estimated as logarithms (Christopoulos et al., 1998). For curve-fitting, global nonlinear regression was performed whenever possible, whereby model parameters were constrained to be shared across multiple data sets. Comparisons between mean values were performed by unpaired t tests, as appropriate. Unless otherwise stated, values of $p < 0.05$ were taken as statistically significant.

Results

Binding Properties of Benzimidazole Modulators at the M4 Muscarinic Receptors

Initial inhibition binding studies used the tropate $[^3H]$NMS as the orthosteric probe to characterize the interactions of each benzimidazole modulator at the M1 or M4 mAChRs. Both WIN 51,708 and WIN 62,577 inhibited the binding of $[^3H]$NMS at M1 mAChRs in a-
concentration-dependent manner but displayed an inability to fully abolish the specific binding of the radioligand (Fig. 3A), indicative of low negative cooperativity (Table 1). An even weaker negative cooperative interaction was noted for WIN 62,577 against \[^{3}H\]NMS (Table 1), although the curve could not be fully determined because of the low affinity of the modulator for the receptor. It is interesting that when experiments were performed with WIN 51,708 at the M4 mAChR, an enhancement of \[^{3}H\]NMS binding was observed with low concentrations of modulator, indicating positive cooperativity (Fig. 3B). The subsequent inhibition seen with the highest concentrations of the modulator probably reflect a nonequilibrium state, as has been noted previously (Lazareno et al., 2002).

Because the magnitude and direction of cooperative interactions are dependent on the nature of the orthosteric probe and the receptor subtype, subsequent experiments were undertaken using the benzilate \[^{3}H\]QNB as the radioligand. As with the \[^{3}H\]NMS experiments, both modulators inhibited \[^{3}H\]QNB binding at the M1 mAChR but with very weak negative cooperativity (Fig. 4A and Table 1). Greater inhibition of \[^{3}H\]QNB binding was apparent at M4 mAChRs; the interaction with WIN 62,577 exhibited the highest degree of negative cooperativity noted in this study (Fig. 4B and Table 1). In contrast to its positively cooperative interaction with \[^{3}H\]NMS, WIN 51,708 exhibited weak negative cooperativity with \[^{3}H\]QNB at the M4 mAChR.

A comparison of the binding parameters for both modulators shown in Table 1 indicated that WIN 51,708 had a significantly higher affinity for the allosteric site on both M4 and M1 mAChRs than did WIN 62,577, with a preference for binding to the M4 mAChR. It is noteworthy that there was no significant difference between affinity estimates obtained at a particular subtype using either radioligand as probe (\(p > 0.05\)).

TABLE 1

Inhibition binding parameters for benzimidazole allosteric modulators using \[^{3}H\]NMS or \[^{3}H\]QNB at M1 or M4 mAChRs in CHO cell membranes

<table>
<thead>
<tr>
<th>Ligand</th>
<th>[^{3}H]NMS</th>
<th>[^{3}H]QNB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(^{M1}) mAChR</td>
<td>(^{M4}) mAChR</td>
</tr>
<tr>
<td>WIN 51,708</td>
<td>(-6.01 \pm 0.12)</td>
<td>(-6.34 \pm 0.21^*)</td>
</tr>
<tr>
<td>WIN 62,577</td>
<td>(-5.38 \pm 0.35)</td>
<td>(-5.41 \pm 0.31^*)</td>
</tr>
</tbody>
</table>

* Student's \(t\) test found a significant \((p < 0.05)\) difference between WIN 51,708 and WIN 62,577 parameters.

† Student's \(t\) test found a significant \((p < 0.05)\) difference between \(^{M1}\) and \(^{M4}\) mAChR groups.
Interaction between WIN 62,577 and Various Orthosteric Ligands at the M₄ mAChR. Although the interactions between either benzimidazole modulator and [³H]NMS or [³H]QNB were characterized by low levels of cooperativity, the combination of WIN 62,577 and [³H]QNB nevertheless resulted in a sufficient effect range at the M₄ mAChR (approximately 50% maximal inhibition) such that additional experiments could be undertaken in the presence of unlabeled orthosteric ligands, which on their own would also be expected to further reduce levels of specific radioligand binding.

As shown in Figs. 5 and 6 and summarized in Table 2, the interaction between WIN 62,577 and each orthosteric ligand was characterized by low degrees of negative cooperativity for the partial agonists McN-A-343 and xanomeline and the antagonist atropine, whereas slightly stronger negative cooperativity was noted for combination with the full agonist ACh.

Interaction between WIN 62,577 and Prototypical Allosteric Modulators at the M₄ mAChR. The interaction between WIN 62,577 and [³H]QNB at the M₄ mAChR was also monitored in the absence and presence of various prototypical allosteric modulators. Because of the large number of parameters required to quantify these combination experiments according to the QCM (Fig. 2C), initial experiments investigated the interaction between each of the prototypical modulators alone against various concentrations of [³H]QNB to obtain measures of K_C and β that could then be used in the QCM fit of the combination data. It is interesting that both the C₇/3-phth (Fig. 7A) and, in particular, alcuronium (Fig. 8A) binding data were characterized by biphasic inhibition binding curves. Because multiphasic binding is not predicted by the simple equilibrium TCM, this finding suggested that the highest concentrations of each modulator were affecting the kinetics of [³H]QNB binding to the M₄ mAChR to such an extent that equilibrium was not achieved. As a consequence, the data were fitted to a kinetic TCM (eqs. 3–6) rather than an equilibrium TCM to derive the estimates of $\log K_C$ and $\log \beta$ shown in Table 3. In these equations, it was assumed that the modulators could completely prevent the dissociation of [³H]QNB from the receptors, as has been shown previously for their effects on [³H]NMS (Trankle et al., 1997; Lazareno et al., 1998; Christopoulos et al., 1999). Although the interaction between brucine and [³H]QNB was also inhibitory, the curves were monophasic and resulted in complete inhibition of specific radioligand binding for all concentrations of [³H]QNB tested (Fig. 9A). This finding suggests that the interaction between brucine and [³H]QNB is either competitive or highly negatively cooperative. Analysis of the brucine/[³H]QNB data according to either the equilibrium TCM (eqs. 1 and 2) or the kinetic TCM (eqs. 3–6) yielded essentially identical parameters (data not shown), and thus, the values from the (simpler) equilibrium TCM are reported in Table 3, in which it can be seen that the nonlinear regression algorithm yielded a value of β that was indistinguishable from a value close to 0.
Subsequent combination experiments with WIN 62,577 and each of the prototypical modulators against [3H]QNB yielded the curves shown in Figs. 7B to 9B. Because these experiments used a higher concentration of WIN 62,577 than the assays described in the preceding section, kinetic effects of WIN 62,577 on the equilibrium binding of the radioligand became evident; in each instance, the highest concentration of WIN 62,577 resulted in a profound decrease in specific binding and yielded biphase inhibition curves. The data were therefore globally fitted to a kinetic version of the QCM (eqs. 9–13) to derive modulator cooperativity factors for interaction on the [3H]QNB-free receptor (γ) and the [3H]QNB-occupied receptor (δ). The results of this analysis are shown in Table 3, in which it can be seen that the interaction between modulators on the free receptor was characterized by different degrees of negative cooperativity; constraining the value of γ to either 0 (competitive interaction) or 1 (neutral cooperativity) did not provide a statistically better fit (p > 0.05; F test). In contrast, the interaction between modulators on the radioligand-occupied receptor was found to be not significantly different from neutral cooperativity (δ = 1), and this value was constrained as such when estimating the final parameter values shown in Table 3.

[3H]NMS Dissociation Kinetic Binding Studies at the M4 mAChR. Computer-assisted analysis of the interaction experiments described in the preceding section suggested that occupancy of the orthosteric site can change the interaction between two modulators occupying distinct allosteric sites on the M4 mAChR from negatively cooperative to neutrally cooperative. Another experimental approach that can be used to independently verify this finding is to directly quantify the effects of one modulator on orthosteric radioligand dissociation kinetics in the absence or presence of the second modulator; by their very nature, dissociation kinetic experiments quantify interactions on a radioligand-occupied receptor and thus provide direct information on the value of δ in the QCM. Unfortunately, the modest-to-high negative cooperativity between [3H]QNB and each of the modulators tested at the M4 mAChR made it practically difficult to establish dissociation kinetic concentration-effect curves for any modulator on the [3H]QNB-occupied receptor, and so [3H]NMS was used instead.

As shown in Fig. 10A, 30 μM WIN 62,577 was able to retard the observed dissociation rate constant of [3H]NMS at the M4 mAChR from 0.188 ± 0.006 min⁻¹ to 0.106 ± 0.005 min⁻¹ (n = 5). Because the dissociation of radioligand in the absence and presence of modulator remained monophasic, subsequent experiments using a range of WIN 62,577 concentrations used a “two-point” kinetic experimental design (see Materials and Methods). Figure 10B shows the results of these experiments, in which it can be seen that WIN 62,577 was able to concentration-dependently retard the dissociation of [3H]NMS to 30 ± 3% (n = 4) of the control radioligand koff value determined in the absence of modulator. The Hill slope of the curve was not significantly different from unity (p > 0.05; F test) and was constrained as such. According to the TCM, the logEC50 of the concentration-effect curve determined under these conditions represents the value of log(KH/α) for the modulator, which was determined to be −5.53 ± 0.10 (n = 4).

It is noteworthy that when these experiments were repeated in the presence of increasing concentrations of C5-3-phth, the only effect noted was a reduction in the response range of WIN 62,577, with no significant alteration in the concentration-effect curve location parameter (p > 0.05; F test). The reduction in the WIN 62,577 response window in the presence of C5-3-phth is consistent with the ability of C5-3-phth to reduce [3H]NMS dissociation kinetics via an

TABLE 2

Inhibition binding parameters for WIN 62,577 against [3H]QNB in combination with a range of orthosteric ligands at M4 mAChRs in CHO cell membranes

Parameters derived from nonlinear regression analysis are presented as the mean ± S.E.M. (n = 5). LogKd is the logarithm of each ligand’s equilibrium dissociation constant based on the extended TCM reaction scheme shown in Fig. 2. LogKc is the logarithm of the cooperativity factor for the interaction between WIN 62,577 and [3H]QNB. Antilogarithm (geometric mean) is shown in parentheses. LogKd is the logarithm of the cooperativity factor for the interaction between WIN 62,577 and the indicated unlabeled orthosteric ligand. Antilogarithm (geometric mean) is shown in parentheses.

<table>
<thead>
<tr>
<th>Ligand</th>
<th>LogKd</th>
<th>LogKc</th>
<th>LogKd</th>
<th>LogKc</th>
</tr>
</thead>
<tbody>
<tr>
<td>QNB</td>
<td>−10.2 ± 0.05</td>
<td>−6.60 ± 0.01 (0.25)</td>
<td>−5.47 ± 0.04</td>
<td></td>
</tr>
<tr>
<td>Atropine</td>
<td>−8.73 ± 0.04</td>
<td>−6.08 ± 0.01 (0.54)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACh</td>
<td>−5.32 ± 0.02</td>
<td>−5.92 ± 0.01 (0.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McN-A-343</td>
<td>−6.20 ± 0.02</td>
<td>−5.92 ± 0.01 (0.54)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xanomeline</td>
<td>−7.50 ± 0.04</td>
<td>−5.92 ± 0.01 (0.54)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIN 62,577</td>
<td>−5.47 ± 0.04</td>
<td>−5.92 ± 0.01 (0.54)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
allosteric action in its own right; the lack of effect of C-/3-phth on WIN 62,577 potency, however, can only be accommodated by assuming a lack of interaction between the two modulators (i.e., \(\delta = 1 \) on the \([3H]NMS\)-occupied receptor).

Discussion

This study has identified negative cooperativity between WIN 62,577 and prototypical modulators such as C-/3-phth, alcuronium, or gallamine, indicating distinct cross-interactions between two separate allosteric sites on the orthosteric ligand-free M\(_4\) mAChR. It is interesting to note that the interactions exhibit neutral cooperativity when the orthosteric site on the M\(_4\) mAChR is occupied by either \([3H]QNB\) or \([3H]NMS\). These findings have important implications for combination drug therapies targeting disorders such as schizophrenia and pain, which are suggested to involve a significant M\(_4\) mAChR component (Felder et al., 2000).

Fig. 8. A, inhibition binding of alcuronium against 0.1 (■), 0.5 (▲), or 1 nM (▼) \([3H]QNB\). B, inhibition binding of WIN 62,577 against \([3H]QNB\) in the absence (■) and presence of 10 (▲), 30 (▼), 100 (●), or 300 μM (○) alcuronium. All experiments were performed using CHO cell membranes expressing the M\(_4\) mAChR. Data points represent the mean \pm S.E.M. of three to five experiments conducted in duplicate. All other details as for Fig. 3.

Table 3

Radioligand binding parameters for the interaction between \([3H]QNB\), WIN 62,577, and C-/3-phth, alcuronium, or brucine at the M\(_4\) mAChR

<table>
<thead>
<tr>
<th>Allosteric Modulator</th>
<th>(\log K_\delta)</th>
<th>(\log \alpha)</th>
<th>(\log \beta)</th>
<th>(\log g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-/3-phth</td>
<td>–5.81 ± 0.22</td>
<td>–2.69 ± 0.03 (0.002)</td>
<td>–1.02 ± 0.04 (0.096)</td>
<td>0 (1)</td>
</tr>
<tr>
<td>Alcuronium</td>
<td>–4.50 ± 0.06</td>
<td>–1.49 ± 0.04 (0.032)</td>
<td>–0.60 ± 0.03 (0.25)</td>
<td>0 (1)</td>
</tr>
<tr>
<td>Brucine</td>
<td>–4.64 ± 0.03</td>
<td>–100* (–0)</td>
<td>–0.31 ± 0.06 (0.49)</td>
<td>0 (1)</td>
</tr>
<tr>
<td>WIN 62,577</td>
<td>–5.32 ± 0.07</td>
<td>–0.79 ± 0.01 (0.16)</td>
<td>–</td>
<td>0 (1)</td>
</tr>
</tbody>
</table>

*Irrespective of initial values, the nonlinear regression algorithm always converged to the arbitrarily assigned boundary value of \(\log \beta = –100 \), indicating that the degree of negative cooperativity between brucine and \([3H]QNB\) was so high that it could not be distinguished from competition (\(\beta = 0 \)).
tivity, based on cooperativity rather than affinity, by manipulating the structure of WIN 62,577.

In addition to the original identification of WIN 51,708 and WIN 62,577 as novel, centrally acting mAChR modulators, another important finding by Lazareno et al. (2002) was that these compounds bound to a second allosteric site distinct from that recognized by prototypical modulators. Evidence supporting the notion of multiple allosteric sites on mAChRs was originally proposed in studies of tacrine (Potter and Ferrendelli, 1989) and Duo3 (Trankle and Mohr, 1997) on M1 and M2 mAChRs, but it was not until more recently that studies of staurosporine and related compounds demonstrated a clear potential for reciprocal cross-reactions between more than one allosteric site on M1 to M4 mAChRs (Lazareno et al., 2000). These findings raise the exciting possibility that additional receptor binding domains exist that can provide greater receptor subtype selectivity, but also that the potential exists for combination therapies using allosteric ligands.

A major component of our study focused on quantifying the interaction between WIN 62,577 and either C7/3-phth, alcuronium, or brucine. This required the extension of the TCM to a QCM, and the increased number of parameters meant that greater degrees of freedom were required to allow for a reliable fit of the model to the data. Initial experiments, therefore, were designed to obtain individual cooperativity factors for each modulator against [3H]QNB. It is interesting to note that the studies involving C7/3-phth or alcuronium were best fitted using a kinetic TCM, because these compounds yielded biphasic inhibition curves that were not in accord with the simple equilibrium TCM but were consistent with the ability of these compounds to slow radioligand kinetics. In addition, the interaction between brucine and [3H]QNB was indistinguishable from simple competition and indicates either high negative cooperativity or truly mutually exclusive binding.

For the allosteric modulator combination experiments, a kinetic version of the QCM was again required because of the profound effects of the highest concentrations of WIN 62,577 on [3H]QNB kinetics, which explains the biphasic binding curves in Figs. 7B to 9B. From this analysis, we found that the curve fit was best resolved if the parameter, γ, was significantly different from either 1 or 0. This implies that the interaction between WIN 62,577 and either of the prototypical modulators was significantly different from neutral or mutually exclusive, respectively. For combination with C7/3-phth, the interaction on the free receptor was characterized by reasonably strong negative cooperativity, whereas for alcuronium or brucine, the negative cooperativity was weak. Thus, the two allosteric sites on the M4 mAChR have a definite potential for interaction. Furthermore, occupancy of the orthosteric site by [3H]QNB resulted in the cooperativity between WIN 62,577 and either of the prototypical modulators becoming neutral ($\delta = 1$), suggesting that on the orthosteric site-occupied receptor, the interaction between the two allosteric sites can be dramatically modified. If neutral coop-

![Fig. 9](http://www.molpharm.aspetjournals.org)

Fig. 9. A, inhibition binding of brucine against 0.1 (), 0.5 (), or 1 () [3H]QNB. B, inhibition binding of WIN 62,577 against [3H]QNB in the absence () and presence of 10 (), 30 (), 100 (), or 300 μM () brucine. All experiments were performed using CHO cell membranes expressing the M4 mAChR. Data points represent the mean ± S.E.M. of three to five experiments conducted in duplicate. All other details as for Fig. 3.

![Fig. 10](http://www.molpharm.aspetjournals.org)

Fig. 10. A, effect of WIN 62,577 on the dissociation rate of [3H]NMS in CHO membranes expressing the M4 mAChR. Membranes were incubated with 0.5 nM [3H]NMS at 37°C for 1 h in HEPES buffer, pH 7.4, before dissociation was revealed by the addition of 1 μM atropine alone () or in combination with 30 μM WIN 62,577 () or ethanol vehicle (). B, concentration-dependent effects of WIN 62,577 on the [3H]NMS-occupied receptor in the absence () and presence of 10 (), 30 (), or 100 μM () C7/3-phth. The dissociation rate constant of [3H]NMS from M4 mAChRs was measured using a two time-point kinetic protocol and expressed as a percentage of control. Data points represent the mean ± S.E.M. of three to five experiments conducted in duplicate.
Allosteric Cross-Interactions at M4 Muscarinic Receptors

Acknowledgments

We thank Elizabeth Guida for excellent technical assistance.

References

Lee NH and El-Fakahany EE (1988) Influence of ligand choice on the apparent binding profile of gallamine to cardiac muscarinic receptors. Identification of three

Address correspondence to: Dr. Arthur Christopoulos, Drug Discovery Biology Laboratory, Department of Pharmacology, Building 13E, Monash University, Clayton, 3800, Victoria, Australia. E-mail: arthur.christopoulos@med.monash.edu.au