Boswellic Acids Stimulate Arachidonic Acid Release and 12-Lipoxygenase Activity in Human Platelets Independent of Ca2+ and Differentially Interact with Platelet-Type 12-Lipoxygenase

Daniel Poeckel, Lars Tausch, Nicole Kather, Johann Jauch, and Oliver Werz

Department of Pharmaceutical Analytics, Institute of Pharmacy, Eberhard-Karls-University Tubingen, Tubingen, Germany (D.P., O.W.); Institute of Pharmaceutical Chemistry, University of Frankfurt, Frankfurt, Germany (L.T.); and Institute of Organic Chemistry, University of Saarland, Saarbruecken, Germany (N.K., J.J.)

Received March 22, 2006; accepted June 20, 2006

ABSTRACT

Boswellic acids inhibit the transformation of arachidonic acid to leukotrienes via 5-lipoxygenase but can also enhance the liberation of arachidonic acid in human leukocytes and platelets. Using human platelets, we explored the molecular mechanisms underlying the boswellic acid-induced release of arachidonic acid and the subsequent metabolism by platelet-type 12-lipoxygenase (p12-LO). Both β-boswellic acid and 3-O-acetyl-11-keto-boswellic acid (AKBA) markedly enhanced the release of arachidonic acid via cytosolic phospholipase A\textsubscript{2} (cPLA\textsubscript{2}), whereas for generation of 12-hydro(pero)xyeicosatetraenoic acid [12-H(P)ETE], AKBA was less potent than 3-O-acetyl-β-boswellic acid and was without effect at higher concentrations (≥30 μM). In contrast to thrombin, β-boswellic acid-induced release of arachidonic acid and formation of 12-H(P)ETE was more rapid and occurred in the absence of Ca2+. The Ca2+-independent release of arachidonic acid and 12-H(P)ETE production elicited by β-boswellic acid was not affected by pharmacological inhibitors of signaling molecules relevant for agonist-induced arachidonic acid liberation and metabolism. It is noteworthy that in cell-free assays, β-boswellic acid increased p12-LO catalysis approximately 2-fold in the absence but not in the presence of Ca2+, whereas AKBA inhibited p12-LO activity. No direct modulatory effects of boswellic acids on cPLA\textsubscript{2} activity in cell-free assays were evident. Therefore, immobilized KBA (linked to Sepharose beads) selectively precipitated p12-LO from platelet lysates but failed to bind cPLA\textsubscript{2}. Taken together, we show that boswellic acids induce the release of arachidonic acid and the synthesis of 12-H(P)ETE in human platelets by unique Ca2+-independent routes, and we identified p12-LO as a selective molecular target of boswellic acids.

The pentacyclic triterpenes boswellic acids (Fig. 1) are regarded as the active pharmacological principles of ethanolic extracts of *Boswellia serrata*, and there is accumulating evidence for an anti-inflammatory and antitumorigenic potential of boswellic acids based on experimental cellular and animal models (Safayhi et al., 1992; Winking et al., 2000; Syrovets et al., 2005a,b; Anthoni et al., 2006; Poeckel et al., 2006). Attempts to identify the responsible molecular mechanisms and/or receptors revealed a number of proteins that may be targeted by boswellic acids, including 5-lipoxygenase, human leukocyte elastase, topoisomerasases, and IκB kinases (Safayhi et al., 1995, 1997; Syrovets et al., 2000, 2005b). Interaction with these targets may indeed provide a molecular basis for the pharmacological effects observed in animals and human subjects. In particular, suppression of leukotriene biosynthesis from arachidonic acid by inhibition of 5-lipoxygenase is generally re-

The pentacyclic triterpenes boswellic acids (Fig. 1) are regarded as the active pharmacological principles of ethanolic extracts of *Boswellia serrata*, and there is accumulating evidence for an anti-inflammatory and antitumorigenic potential of boswellic acids based on experimental cellular and animal models (Safayhi et al., 1992; Winking et al., 2000; Syrovets et al., 2005a,b; Anthoni et al., 2006; Poeckel et al., 2006). Attempts to identify the responsible molecular mechanisms and/or receptors revealed a number of proteins that may be targeted by boswellic acids, including 5-lipoxygenase, human leukocyte elastase, topoisomerasases, and IκB kinases (Safayhi et al., 1995, 1997; Syrovets et al., 2000, 2005b). Interaction with these targets may indeed provide a molecular basis for the pharmacological effects observed in animals and human subjects. In particular, suppression of leukotriene biosynthesis from arachidonic acid by inhibition of 5-lipoxygenase is generally re-

This study was supported by the Deutsche Forschungsgemeinschaft (WE 2280/4-1 and GRK 757).

Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.
doi:10.1124/mol.106.024836.1

ABBREVIATIONS: cPLA\textsubscript{2}, cytosolic phospholipase A\textsubscript{2}; Aβ-BA, 3-O-acetyl-boswellic acid; AKBA, 3-O-acetyl-11-keto-boswellic acid; CDC, cinnamyl-3,4-dihydroxy-α-cyanocinnamate; 12-H(P)ETE, 12-hydro(pero)xyeicosatetraenoic acid; KBA, 11-keto-boswellic acid; MAFP, methyl-arachidonyl-fluorophosphonate; MAPK, mitogen-activated protein kinase; p12-LO, platelet-type 12-lipoxygenase; PG buffer, phosphate-buffered saline and glucose; PI3K, phosphatidylinositol 3-kinase; PIP\textsubscript{2}, phosphatidylinositol-4,5-bisphosphate; PMNL, polymorphonuclear leukocytes; SDS-b, 2 × SDS-polyacrylamide gel electrophoresis sample loading buffer; PAGE, polyacrylamide gel electrophoresis; DMSO, dimethyl sulfoxide; PBS, phosphate-buffered saline; BAPTA, 1,2-bis(2-amino phenoxycylethane-N,N,N’,N’-tetraacetic acid; AM, acetoxymethyl ester; Seph, Sepharose beads without ligand; Seph-KBA, Sepharose beads linked with 11-keto-boswellic acid; SB203580, 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-1H-imidazole; SU6656, 2-oxo-3-(4,5,6,7-tetrahydro-1H-indol-2-ylmethylene)-2,3-dihydro-1H-indole-5-sulfonic acid dimethylamide; U0126, 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene; A23187, calcimycin; PP2, 4-amino-5-(4-chlorophenyl)-7-[butyryl]pyrazolo[3,4-d]pyrimidine; PP3, 4-amino-7-phenylpyrazolo[3,4-d]pyrimidine.
garded as the most important pharmacological action of boswellic acids accounting for their anti-inflammatory properties (Safayhi et al., 1995, 1997).

Many cell types are able to release arachidonic acid from phospholipids within cellular membranes by the action of specific phospholipases A2 (Six and Dennis, 2000). Arachidonic acid is an important precursor for a number of highly bioactive metabolites formed by various oxygenases, including cyclooxygenases, lipoxygenases, and monoxygenases of the cytochrome P450 family. The 85-kDa cytosolic PLA2 (cPLA2) has been accounted as a responsible enzyme providing free arachidonic acid as substrate for cyclooxygenases and lipoxygenases in leukocytes and platelets (Leslie, 2004). This soluble enzyme is distributed within the cytosol of resting cells and associates with membranes upon elevation of intracellular Ca2+ and/or serum phosphorylations by members of the mitogen-activated protein kinase (MAPK) family (Gijon and Leslie, 1999), occurring in response to a number of agonists. In addition, binding to phosphatidylinositol-4,5-bisphosphate (PIP2) (Balsinde et al., 2000) or ceramide(1-phosphate) (Huwiler et al., 2001; Pettus et al., 2004; Subramanian et al., 2005) via specific binding-site(s) may promote cPLA2 catalysis. Exposure of leukocytes or platelets to boswellic acids differentially affects signaling pathways and functional responses including Ca2+ mobilization, MAPK activation, formation of reactive oxygen species, release of arachidonic acid, and stimulation of 5-lipoxygenase product formation. Thus, stimulating properties (Safayhi et al., 2000; Altmann et al., 2002, 2004; Pocek et al., 2005) and inhibitory effects (Safayhi et al., 1992, 1995; Werz et al., 1998; Pocek et al., 2006) of boswellic acids have been reported for these functions, depending on the cell type and the respective experimental settings. For example, for inhibition of 5-lipoxygenase by AKBA, IC50 values in the range of 1.5 μM (Safayhi et al., 1995) up to 50 μM (Werz et al., 1997, 1998) were determined, but also 5-lipoxygenase stimulatory effects in this concentration range were described previously (Safayhi et al., 2000; Altmann et al., 2004).

We observed recently that boswellic acids are capable of elevating the release of arachidonic acid in human isolated polymorphonuclear leukocytes (PMNL) (Altmann et al., 2004) and platelets (Pocek et al., 2005). Platelets do not express 5-lipoxygenase but contain the closely related p12-LO that converts arachidonic acid to 12-hydroxyeicosatetraenoic acid [12-H(1)E(T)E] (Yoshimoto and Takahashi, 2002). Here we characterized the liberation of arachidonic acid by boswellic acids and the subsequent conversion by p12-LO, and we investigated the underlying molecular mechanisms.

![Chemical structures of β-boswellic acid and AKBA. AKBA lacking the 3-O-acetyl group yields KBA; 3-O-acetylation of β-boswellic acid results in Aβ-BA.](image)

Materials and Methods

Materials. Boswellic acids were synthesized and prepared as described previously (Jauch and Bergmann, 2003). Antibodies against human p12-LO were kindly provided by Dr. Colin D. Funk (Queen’s University, Kingston, ON, Canada); SB203580, PP2, PP3, SU6656, methyl-aráchidonoyl-époxidephosphate (MAPP), bromoelactone, the cPLA2α inhibitor, and U0126 were from Calbiochem (Bad Soden, Germany); BAPTA/AM and Fura-2/AM were from Alexis (Grüningen, Germany); wortmannin was from Biotrend (Köln, Germany); cinnamyl-3,4-dihydroxy-o-cyanocinnamate (CDC) was from BIOMOL Research Laboratories (Plymouth Meeting, PA); EA-H Sepharose 4B was from GE Healthcare (Freiburg, Germany); and all other chemicals were obtained from Sigma (Deisenhofen, Germany).

Cells. Platelets were freshly isolated from human venous blood of healthy adult donors (St. Markus Hospital, Frankfurt, Germany) as described previously (Pocek et al., 2005). Washed platelets were finally resuspended in PBS, pH 7.4, and 1 mg/ml glucose (PG buffer) or in PBS, pH 7.4, and 1 mg/ml glucose plus 1 mM CaCl2. For incubations with solubilized compounds, ethanol or DMSO was used as vehicle, never exceeding 1% (v/v). For the measurement of [3H]arachidonic acid release, platelet-rich plasma was prepared from freshly drawn blood (in 3.13% citrate) from healthy adult donors by centrifugation for 10 min at 750g.

Determination of Release of [3H]-Labeled Arachidonic Acid from Intact Platelets. Platelet-rich plasma was labeled with 19.2 nM [3H]arachidonic acid (1 μCi/ml) for 20 min at 37°C. After addition of stimuli and further incubation at 37°C for the times indicated, 12-LO products (12/9-Hydo(pero)xy-6-trans-3,11,14-cis-eicosatetraenoic acid (12-DH(1)E(T)E) were extracted and then analyzed by high-performance liquid chromatography as described previously (Albert et al., 2002). 12-HETE and 12-DH(1)E(T)E elute as one major peak, and integration of this peak represents p12-LO product formation, expressed as nanograms of metabolites per 106 cells.

For the determination of p12-LO product formation in broken cell preparations, platelets (106/ml PG buffer) were supplemented with either 1 mM CaCl2, 1 mM EDTA, or 1 mM EDTA plus 30 μM BAPTA/AM. Platelets were preincubated with the indicated agents for 15 min at 37°C. After the addition of stimuli and further incubation at 37°C for the times indicated, 12-LO products (12/9-Hydo(pero)xy-6-trans-8,11,14-cis-eicosatetraenoic acid (12-DH(1)E(T)E) were extracted and then analyzed by high-performance liquid chromatography as described previously (Albert et al., 2002). 12-HETE and 12-DH(1)E(T)E elute as one major peak, and integration of this peak represents p12-LO product formation, expressed as nanograms of metabolites per 106 cells.

Immobilization of Boswellic Acids and Protein Pull-Down Assays. For immobilization of KBA at EAH Sepharose 4B beads, the free 3-OH group of KBA was used (N. Kather, L. Tausch, D. Pocek, O. Werz, E. Herdtweck, and J. Jauch, unpublished data). In brief, KBA was reacted with glutaric anhydride to form the half-ester glutaroyl-KBA and analyzed by 3H and 13C NMR and by mass spectrometry. This substance was ready for immobilization at EAH
Seharose 4B by standard amide coupling procedures. The carboxylic acid of the KBA core was unlikely to react under standard conditions because of steric crowding. The success of the coupling reaction was determined by two methods: 1) glutaroyl-KBA was used in defined excess (2 μmol of glutaroyl-KBA per 1 μmol NH₂ groups of the EAH Sepharose 4B), and after the coupling reaction, the hypothetical excess of glutaroyl-KBA (1 μmol) could be indeed recovered; and 2) treatment of glutaroyl-KBA with KOH in isopropanol under reflux for approximately 3 h, cleaved the ester bond, and gave KBA, which was then analyzed by thin-layer chromatography.

For protein fishing experiments, 10⁶ platelets were lysed in 1 ml of lysis buffer (50 mM HEPES, pH 7.4, 200 mM NaCl, 1 mM EDTA, 1% Triton X-100, 2 mM phenylmethylsulfonyl fluoride, 2 μg/ml leupeptin, and 120 μg/ml soybean trypsin inhibitor). After sonication (3 × 8 s) and centrifugation for 10 min at 12,000g, 50 μl of the Sepharose slurry (50% v/v) was added to supernatants and incubated at 4°C overnight under continuous rotation. The Sepharose beads were washed three times with binding buffer (HEPES, pH 7.4, 200 mM NaCl, and 1 mM EDTA), and precipitated proteins were finally separated and denatured by the addition of 2× SDS-polyacrylamide gel electrophoresis (PAGE) sample loading buffer (SDS-b; 20 mM Tris/HCl, pH 8.2, 2 mM EDTA, 5% SDS (w/v), and 10% β-mercapto-ethanol). After boiling (95°C, 6 min), Sepharose beads were removed by centrifugation and proteins in the supernatant were analyzed by SDS-PAGE as described previously (Poeckel et al., 2005). Proteins were visualized by Western blotting (Poeckel et al., 2005) or Coomasie staining, respectively.

Statistics. Statistical evaluation of the data was performed by one-way analyses of variance for independent or correlated samples followed by Tukey honestly significantly different post hoc tests. Where appropriate, Student's t test for paired and correlated samples was applied. A p value of <0.05 (*) or <0.01 (**, ###) was considered significant.

Results

Boswellic Acids Induce Arachidonic Acid Release Independent of Ca²⁺. In the presence of extracellular Ca²⁺ (1 mM), β-boswellic acid and its 11-keto counterpart AKBA (Fig. 1) concentration-dependently increased the liberation of arachidonic acid with significant effects at 10 μM each (Fig. 2). No marked differences in the potencies between β-boswellic acid and AKBA were obvious, and the efficacy of boswellic acids was comparable with thrombin (2 U/ml) or Ca²⁺-ionophore A23187 (5 μM) (Fig. 2). When cells were depleted from intracellular (chelation with BAPTA/AM) and extracellular (chelation with EDTA) Ca²⁺, boswellic acids still exhibited a strong stimulatory effect on arachidonic acid release with similar efficacies for β-boswellic acid and AKBA (Fig. 2). Although the absolute levels of arachidonic acid released into the medium in response to β-boswellic acid or AKBA (30 μM each) were higher in the presence of Ca²⁺, the relative increases in the absence of Ca²⁺ were more pronounced (4.6- to 5.4-fold), as when Ca²⁺ was present (2.1- and 2.4-fold), which apparently is due to reduced basal arachidonic acid levels in unstimulated cells in which Ca²⁺ has been depleted. However, the release of arachidonic acid evoked by boswellic acids in the absence of Ca²⁺ was much slower compared with conditions in which Ca²⁺ was present.

Effect of Boswellic Acids on 12-H(P)ETE Formation. 12-H(P)ETE is a major metabolite of arachidonic acid in platelets produced by p12-LO (Hamberg and Samuelsson, 1974) that can be easily monitored by reverse-phase high-performance liquid chromatography, representing a sensitive readout for the evaluation of platelet arachidonate metabolism. Washed platelets were incubated with vehicle (DMSO), β-boswellic acid and AKBA (30 μM each), thrombin (2 U/ml), or exogenous arachidonic acid (10 μM, positive control), either in Ca²⁺-containing medium or under Ca²⁺-free conditions (pretreatment with BAPTA/AM plus EDTA). As shown in Fig. 3A, β-boswellic acid strongly stimulated the formation of 12-H(P)ETE to a level comparable with that of thrombin. AKBA exerted a much weaker effect than β-boswellic acid. In Ca²⁺-depleted cells, stimulation with thrombin is virtually ineffective, whereas β-boswellic acid clearly stimulated 12-H(P)ETE formation, and a minor stimulation was also seen for AKBA (Fig. 3A). As can be seen from Fig. 3B, boswellic acids lacking the 11-keto group (β-boswellic acid and Aβ-BA) caused a concentration-dependent increase in 12-H(P)ETE formation, whereas boswellic acids containing the 11-keto moiety (KBA and AKBA) were hardly effective, and for AKBA, the formation of 12-H(P)ETE was even lower at higher concentrations. Thus, the 11-keto group seemingly hampers the formation of 12-H(P)ETE. A similar pattern was found in Ca²⁺-depleted cells (data not shown). Selective inhibitors of cPLA₂ (cPLA₂α inhibitor, 1 μM; MAPP, 10 μM) and p12-LO (CDC, 10 μM) strongly suppressed 12-H(P)ETE formation under all experimental conditions, whereas an inhibitor of the Ca²⁺-independent PLA₂ (bromoenol lactone, 5 μM) caused no suppression (Fig. 3C). In conclusion, both β-boswellic acid and AKBA induce the release of arachidonic acid equally well, but only β-boswellic acid and not AKBA potently stimulates 12-H(P)ETE formation, which in part is Ca²⁺-independent.

Kinetic Analysis of 12-H(P)ETE Formation. The kinetics of 12-H(P)ETE formation in platelets was studied. The time necessary for half-maximal 12-H(P)ETE synthesis ($t_{\text{max1/2}}$) was determined by regression analysis using a
three-parameter Hill equation: \(f(t) = a \times \frac{t^b}{(c^b + t^b)} \), where \(t \) is time, \(f(t) \) is the amount of 12-H(P)ETE per milliliter, and \(a, b, \) and \(c \) are fitting constants. In the presence of \(\text{Ca}^{2+}, \beta\)-boswellic acid (30 \(\mu \)M) induced a rapid 12-H(P)ETE generation \((t_{\text{max}1/2} = 37 \text{ s}) \) entering a plateau phase after 3 min (Fig. 4A). A similarly rapid 12-H(P)ETE production was recorded when arachidonic acid (2 \(\mu \)M; \(t_{\text{max}1/2} = 41 \text{ s} \)) or ionophore A23187 (2.5 \(\mu \)M; \(t_{\text{max}1/2} = 44 \text{ s} \)) were added to platelets. It is noteworthy that the kinetic profile of thrombin was different and was considerably delayed \((t_{\text{max}1/2} = 157 \text{ s} \) Fig. 4C). AKBA (30 \(\mu \)M) gave a less consistent kinetic profile with a \(t_{\text{max}1/2} \) of \(\geq 100 \text{ s} \) (Fig. 4D).

Lack of extracellular \(\text{Ca}^{2+} \) (1 mM EDTA) did not strongly alter the kinetic progression of 12-H(P)ETE formation induced by \(\beta\)-boswellic acid \((t_{\text{max}1/2} = 28 \text{ s} \) Fig. 4A) or by exogenously added arachidonic acid \((t_{\text{max}1/2} = 33 \text{ s} \) Fig. 4B). However, when intracellular \(\text{Ca}^{2+} \) was removed by BAPTA/AM, \(\beta\)-boswellic acid- but not arachidonic acid-induced 12-H(P)ETE formation was remarkably delayed but continuously increased. Long-term kinetic recordings show that whereas the 12-H(P)ETE level in \(\text{Ca}^{2+}\)-containing buffer gradually decreases after approximately 60 min, it continuously increases up to a plateau after 150 min in \(\text{Ca}^{2+}\)-depleted cells (Fig. 4F). When \(\text{Ca}^{2+}\)-depleted cells were stimulated with thrombin, no detectable increase in 12-H(P)ETE formation was observed (Fig. 4C). Together, \(\beta\)-boswellic acid induces arachidonic acid liberation/12-H(P)ETE formation in

Fig. 3. Boswellic acids stimulate the formation of p12-LO in intact platelets. A, 12-H(P)ETE formation. Platelets were supplemented with either 1 mM CaCl\(_2\) or 1 mM EDTA plus 30 \(\mu \)M BAPTA/AM as indicated. \(\beta\)-Boswellic acid (\(\beta\)-BA, 30 \(\mu \)M), AKBA (30 \(\mu \)M), thrombin (2 U/ml), arachidonic acid (AA, 10 \(\mu \)M), or vehicle (DMSO) was added and 12-H(P)ETE formation was determined. B, concentration-response experiments for 12-H(P)ETE formation. Platelets were treated with \(\beta\)-boswellic acid (\(\beta\)-BA), AP-BA, KBA, or AKBA at the indicated concentrations and 12-H(P)ETE formation was determined. C, effects of p12-LO and PLA\(_2\) inhibitors. Platelets were supplemented with either 1 mM CaCl\(_2\) or 1 mM EDTA plus 30 \(\mu \)M BAPTA/AM and preincubated with CDC (10 \(\mu \)M), MAFP (10 \(\mu \)M), cPLA\(_2\) inhibitor (1 \(\mu \)M), and bromoeno lactone (BEL, 5 \(\mu \)M). After 10 min, \(\beta\)-boswellic acid (\(\beta\)-BA, 30 \(\mu \)M) was added, and 12-H(P)ETE formation was determined. Data are given as mean \(\pm \) S.E., \(n = 3 \) to 5. **, \(p < 0.05; \#\#, \ p < 0.01.

Fig. 4. Kinetics of 12-H(P)ETE formation in intact platelets. Platelets (10\(^7\)) were resuspended in 10 ml of PG buffer containing either 1 mM CaCl\(_2\), 1 mM EDTA (triangles), or 1 mM EDTA plus 30 \(\mu \)M BAPTA/AM (open symbols). Cells were stimulated with either \(\beta\)-boswellic acid (30 \(\mu \)M A, and 10 \(\mu \)M F), 2 \(\mu \)M arachidonic acid (B), 1 U/ml thrombin (C), 30 \(\mu \)M AKBA (D), or 5 \(\mu \)M ionophore (E). Aliquots of 1 ml corresponding to 10\(^7\) cells were mixed with 1 ml of ice-cold methanol after the indicated times, and 12-H(P)ETE formation was determined. Data are given as mean \(\pm \) S.E., \(n = 3 \) to 5.
platelets by a rapid Ca2+-mediated pathway and by a Ca2+-independent route(s).

Pharmacological Dissection of Signaling Pathways Activated by β-Boswellic Acid. The signaling pathways underlying the Ca2+-dependent and Ca2+-independent mechanisms of arachidonic acid liberation and generation of 12-H(P)ETE were investigated using a pharmacological inhibitor approach. In the presence of Ca2+, increased arachidonic acid liberation due to β-boswellic acid was suppressed by the PI3K inhibitor wortmannin (Fig. 5A). In addition, the Src family kinase inhibitors SU6656 and PP2 (but not its inactive variant PP3) reduced the effects of β-boswellic acid. In contrast, inhibitors of mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (U0126) and p38 MAPK (SB203580) failed in this respect. Note that in Ca2+-depleted cells, no significant suppression of β-boswellic acid-evoked arachidonic acid release by any of the above inhibitors was observed (Fig. 5A).

In analogy to arachidonic acid release, in the presence of Ca2+, the β-boswellic acid-evoked generation of 12-H(P)ETE (Fig. 5B) was blocked by wortmannin, SU6656, and PP2 (but not by PP3), whereas U0126 or SB203580 were hardly active. In addition, in the absence of Ca2+, β-boswellic acid-evoked p12-LO product formation was not sensitive to any of these inhibitors (Fig. 5B). Moreover, in control experiments, in which p12-LO product formation was not sensitive to any of these inhibitors, arachidonic acid-evoked arachidonic acid release by any of the above inhibitors was observed.

Effects of Boswellic Acids on cPLA\textsubscript{2} and p12-LO Activity in Cell-Free Assays. To test the stimulation of cPLA\textsubscript{2} by boswellic acids in vitro, we determined the effects of β-boswellic acid or AKBA on arachidonic acid release from platelet membrane lipids in the absence (inclusion of 1 mM EDTA) and in the presence of 2 mM Ca2+. Arachidonic acid release was increased by Ca2+ by approximately 2.4-fold, and was suppressed by the cPLA\textsubscript{2α} inhibitor, ensuring that cPLA\textsubscript{2} is the arachidonic acid-releasing enzyme in this assay. No significant and concentration-dependent modulation of the arachidonic acid release was observed by 1 to 100 μM boswellic acid (data not shown), regardless of the presence of Ca2+, implying that boswellic acids do not stimulate cPLA\textsubscript{2} activity in vitro. In addition, there was no increased association of cPLA\textsubscript{2} with platelet membranes after either incubation of platelet homogenates with boswellic acids or exposure of intact platelets to boswellic acids (assessed by Western

Fig. 5. Effects of relevant pharmacological inhibitors on β-boswellic acid-induced arachidonic acid release and 12-H(P)ETE formation. A, arachidonic acid release. Platelets were labeled with 3Harachidonic acid as described in the legend to Fig. 2. After washing, cells were either left untreated or 1 mM EDTA plus 30 μM BAPTA/AM (○) was added. Then, cells were preincubated with 200 mM wortmannin (wortm), 3 μM PP2 or PP3, 3 μM SU6656, 3 μM U0126, 10 μM SB203580, or vehicle (DMSO, negative/positive) as indicated for 15 min at 37°C. CsCl\textsubscript{2} (1 mM) was added to the cells as indicated, and after 2.5 min, cells were stimulated with 30 μM β-boswellic acid (β-BA). 3HArachidonic acid released into the medium was measured after 5 min (●) or 15 min (▴), respectively. B, 12-H(P)ETE formation. Platelets were resuspended in 1 ml of PG buffer plus 1 mM CaCl\textsubscript{2} (●) or in PG buffer containing 1 mM EDTA plus 30 μM BAPTA/AM (○) and preincubated with 200 nM wortmannin (wortm), 3 μM PP2 or PP3, 3 μM SU6656, 3 μM U0126, 10 μM SB203580, or vehicle (DMSO) as indicated. Then, 30 μM β-boswellic acid (β-BA, left) or 10 μM arachidonic acid (AA, right) was added and 12-H(P)ETE formation was determined. Data are expressed as a percentage of control (100%, vehicle), and values are given as mean ± S.E., n = 3 to 4. *, p < 0.05; **, p < 0.01.
The effects of boswellic acids on p12-LO activity in the platelet 100,000g supernatant were investigated. Platelet 100,000g supernatant was incubated with AKBA plus 2 μM arachidonic acid in the presence of either 1 mM EDTA or 1 mM CaCl₂. 12-H(P)ETE formation was approximately 3-fold higher in the presence of CaCl₂ (Fig. 6A and B). AKBA caused a concentration-dependent inhibition of p12-LO activity (Fig. 6A). In the presence of CaCl₂, the IC₅₀ value was approximately 15 μM, whereas without CaCl₂, the IC₅₀ value was approximately 50 μM. In contrast to AKBA, 12-H(P)ETE formation was differentially modulated by β-boswellic acid. Thus, only a weak inhibition of p12-LO activity by β-boswellic acid (IC₅₀ > 100 μM) was detectable in the presence of CaCl₂ (Fig. 6B). However, in the absence of CaCl₂, β-boswellic acid elevated 12-H(P)ETE up to approximately 2-fold at a threshold concentration of 10 μM (Fig. 6B), which was sensitive to the p12-LO inhibitor CDC (data not shown). Together, β-boswellic acid stimulates the catalysis of crude p12-LO in the absence of CaCl₂, whereas AKBA generally suppresses the catalytic activity of p12-LO, and no direct modulation of cPLA₂ in cell-free assays is apparent for either boswellic acid.

Interaction of Boswellic Acids with cPLA₂ and p12-LO. To assess the direct interaction of boswellic acids with cPLA₂ or p12-LO, a protein fishing assay was performed using KBA as bait that was covalently linked to EAH Sepharose 4B beads via a glutaric acid linker (KBA-Sep). EAH-Sepharose beads without ligand (Seph) were used as control, and platelet 12,000g supernatants served as protein source. Coomassie-staining of gels after SDS-PAGE or Ponceau S staining of membranes after blotting ensured comparable protein-loading by Seph and KBA-Sep (data not shown). As shown in Fig. 7, no cPLA₂ protein was detectable (by Western-blotting analysis) in precipitates using Seph or KBA-Sep. cPLA₂ was abundantly present in the corresponding platelet lysates and clearly detectable. However, substantial amounts of p12-LO were present in KBA-Sep pull-downs but not in precipitates using Seph as negative control. Because 5-lipoxygenase was postulated as an AKBA-binding protein (Sailer et al., 1998), we attempted to confirm 5-lipoxygenase binding by our protein fishing strategy using 12,000g supernatants of PMNL as a source for 5-lipoxygenase. Both Seph and KBA-Sep moderately bound 5-lipoxygenase without significant quantitative differences (Fig. 7). In summary, p12-LO could be selectively precipitated by KBA immobilized to Sepharose beads.

Discussion

Activation of platelets by adequate stimuli may lead to substantial release of arachidonic acid by cPLA₂, connected to subsequent conversion by cyclooxygenase-1 and p12-LO, depending on the strength of the stimuli and the nature of the signaling molecules involved (Hamberg and Samuelsson, 1974; Holmsen, 1994; Coffey et al., 2004). CaCl₂ is a determinant for these processes because it stimulates cellular activation and catalysis of both cPLA₂ (Gijon and Leslie, 1999; Leslie, 2004) and p12-LO (Baba et al., 1989). Besides CaCl₂, serine phosphorylations by MAPK (Borsch-Haubold et al., 1999) and interaction with PIP2 (Balsinde et al., 2000) or sphingolipids (Huwiler et al., 2001; Pettus et al., 2004; Subramanian et al., 2005) activate cPLA₂. In contrast, for p12-LO, there is only limited information regarding cellular activation (Coffey et al., 2004), and except the redox-tone (Bryant et al., 1982), which is of general importance for lipoxigenase activation, only CaCl₂ is known as a (moderate) stimulatory cofactor (Baba et al., 1989). It is assumed that the capacity of platelets to form 12-H(P)ETE is essentially dependent on the presence of CaCl₂, suggesting that boswellic acids do not promote binding of cPLA₂ to membrane phospholipids in vitro.

Fig. 6. Effects of boswellic acids on the activity of p12-LO in cell-free assays. Platelets were sonicated, and a 100,000g supernatant was prepared. AKBA (A) or β-boswellic acid (β-BA) (B) were added to the 100,000g supernatant at the indicated concentrations, and the synthesis of 12-H(P)ETE was started by the addition of arachidonic acid (2 μM) with or without 2 mM CaCl₂, as indicated. 12-H(P)ETE was determined by high-performance liquid chromatography. Data are given as mean ± S.E., n = 3 to 5; *, p < 0.05; **, p < 0.01.

Fig. 7. AKBA selectively binds p12-LO; 12,000g supernatants of platelet lysates (for precipitation of cPLA₂ and p12-LO) or of PMNL lysates (for 5-lipoxygenase) were incubated overnight at 4°C with either KBA-Sep or with crude Seph. Precipitates were intensively washed, solubilized by addition of SDS-b, and separated by SDS-PAGE. Proteins were visualized by Western blotting using specific antibodies against cPLA₂, p12-LO, or 5-lipoxygenase (5-LO). Aliquots of the corresponding lysates were used as positive controls. Similar results were obtained in three additional experiments.
linked to the supply of arachidonic acid. Because boswellic acids induce massive mobilization of Ca\(^{2+}\) and activate MAPK in platelets (Poeckel et al., 2005), it was reasonable that boswellic acids as a result may elicit the release of arachidonic acid and concomitantly 12-H(P)ETE synthesis.

β-Boswellic acid and AKBA evoked arachidonic acid release with comparable potencies, similar to those of the strong platelet agonists thrombin or ionophore that act by recruiting cPLA\(_2\) via phosphorylation and/or elevation of \([Ca^{2+}]\). (Borsch-Haubold et al., 1995; Kramer et al., 1996). The liberation of arachidonic acid was rapid and sensitive to selective inhibitors of the Ca\(^{2+}\)-dependent cPLA\(_2\), suggesting that in analogy to thrombin and ionophore, cPLA\(_2\) is the responsible PLA\(_2\) isoform. However, in contrast to thrombin and ionophore, boswellic acids may induce cPLA\(_2\) activation, at least in part, independent of Ca\(^{2+}\). Note that bromoenoate lactone did not compromise arachidonic acid release in the absence of Ca\(^{2+}\), which excludes the Ca\(^{2+}\)-independent PLA\(_2\) (Hazen et al., 1991) as a responsible enzyme. In addition, the determination of 12-H(P)ETE shows that boswellic acids but not thrombin partially act in a Ca\(^{2+}\)-independent manner.

AKBA failed to substantially induce 12-H(P)ETE synthesis, probably related to its inhibitory action on p12-LO (discussed below). Moreover, our kinetic analysis of cellular 12-H(P)ETE production favors an additional Ca\(^{2+}\)-independent cPLA\(_2\)/p12-LO activation pathway. Thus, 12-H(P)ETE formation induced by β-boswellic acid was much more rapid than by thrombin, although increases in \([Ca^{2+}]\), by β-boswellic acid are delayed compared with thrombin (Poeckel et al., 2005). Therefore, it is unlikely that the rapid and robust 12-H(P)ETE synthesis induced by β-boswellic acid is mediated solely by the elevation of \([Ca^{2+}]\).

The Ca\(^{2+}\) dependence of cPLA\(_2\) in platelets is well established, but alternate signaling routes such as phosphorylation by MAPKs contribute (Borsch-Haubold et al., 1995, 1999; Kramer et al., 1996). In fact, boswellic acids activate MAPK in platelets (Poeckel et al., 2005); however, MAPK inhibitors failed to suppress β-boswellic acid-induced arachidonic acid release and 12-H(P)ETE synthesis. Nevertheless, our inhibitor approach indicates that PI3K and Src family kinases may be integrated in β-boswellic acid-evoked responses, at least under conditions in which Ca\(^{2+}\) is present. Because Src family kinases and PI3K are also involved in β-boswellic acid-induced Ca\(^{2+}\) mobilization (Poeckel et al., 2005), the suppressive effects of the respective inhibitors are likely to be due to inhibition of Ca\(^{2+}\) mobilization rather than uncoupling Ca\(^{2+}\)-independent signals to cPLA\(_2\). This is supported by the fact that the inhibitors completely failed to suppress β-boswellic acid-induced responses in the absence of Ca\(^{2+}\). Moreover, no inhibition of 12-H(P)ETE formation was evident after stimulation with exogenous arachidonic acid, implying that arachidonic acid release rather than p12-LO activation is primarily affected by the inhibitors. PI3K and Src family kinases have also been implicated in the formation of 12-H(P)ETE from endogenous arachidonic acid in platelets stimulated by collagen and collagen-related peptide (Coffey et al., 2004).

Apart from Ca\(^{2+}\) and phosphorylation, cPLA\(_2\) is activated by direct interaction with PIPI2 or ceramide and ceramide 1-phosphate (Huwiiler et al., 2001; Pettus et al., 2004; Subramanian et al., 2005), and it seemed possible that also boswellic acids could activate cPLA\(_2\) by direct interactions. However, cPLA\(_2\) failed to bind KBA-Sep, and boswellic acids did not stimulate cPLA\(_2\) activity in cell-free assays, excluding such interrelations. We conclude that, collectively, boswellic acids activate cPLA\(_2\) independent of Ca\(^{2+}\) and phosphorylation by a yet-unrecognized mechanism.

Boswellic acids were initially identified as inhibitors of 5-lipoxygenase (Safayhi et al., 1992, 1995) that may interfere with a regulatory arachidonic acid-binding site in a Ca\(^{2+}\)-dependent manner (Sailer et al., 1998). Among the boswellic acids, AKBA is the most potent 5-lipoxygenase inhibitor with high selectivity for 5-lipoxygenase, whereas inhibition of p12-LO in intact platelets was excluded (Safayhi et al., 1992). We found that AKBA inhibits p12-LO in cell-free assays with an IC\(_{50}\) value (15 \(\mu M\)) significantly lower than the values determined for 5-lipoxygenase under comparable assay conditions (50 \(\mu M\)) (Werz et al., 1997, 1998). It is interesting that p12-LO bound to KBA-Sep but was absent in pull-downs using Seph, implying a rather selective interaction between KBA-Sep and p12-LO. Note that the amounts of 5-lipoxygenase in KBA-Sep and Seph precipitates from 12,000g supernatants of PMNL lysates were approximately the same, implying unspecific binding of 5-lipoxygenase to KBA-Sep.

Direct suppression of p12-LO activity by AKBA may explain why despite the induction of marked arachidonic acid release in intact platelets, no subsequent conversion to 12-H(P)ETE was evident, whereas β-boswellic acid (or Aβ-BA) concentration-dependently induced 12-H(P)ETE formation. In agreement with others (Baba et al., 1989), Ca\(^{2+}\) increased p12-LO activity in platelet 100,000g supernatants approximately 3-fold, and β-boswellic acid mimicked this effect because it stimulated p12-LO activity without Ca\(^{2+}\). In contrast, in the presence of Ca\(^{2+}\), β-boswellic acid did not further stimulate p12-LO. The 11-keto moiety seems to determine the quality of p12-LO modulation by boswellic acids, and contrasting effects of boswellic acids depending on the 11-keto moiety were observed before also in other experimental settings (Altmann et al., 2004; Poeckel et al., 2005, 2006).

The conclusions from our results deviate from the long-established view of boswellic acids as negative modulatory agents of the arachidonic acid cascade, because we demonstrate strong induction of arachidonic acid release and formation of 12-H(P)ETE by boswellic acids in platelets. In addition, we suggest p12-LO as a definite target of boswellic acids with superior susceptibility compared with 5-lipoxygenase. The question of the pharmacological consequence resulting from the divergent effects of β-boswellic acid and AKBA on 12-H(P)ETE biosynthesis in vivo remains to be answered. After oral intake of 4 \(\times\) 786 mg of B. serrata extracts (containing approximately 3.7% AKBA, 10.5% Aβ-BA, 6.1% KBA, and 18.2% β-boswellic acid) per day, the plasma levels of AKBA (0.1 \(\mu M\)) (Buchele and Simmet, 2003) are far lower than the concentrations required to efficiently suppress p12-LO (IC\(_{50}\) = 15 \(\mu M\)). On the other hand, β-boswellic acid reached plasma levels (10.1 \(\mu M\)), virtually sufficient to induce 12-H(P)ETE formation. In our in vitro assays, relevant amounts (approximately 5 \(\mu g/ml\)) of B. serrata extracts, containing diverse boswellic acids, strongly induced arachidonic acid release and 12-H(P)ETE synthesis (data not shown). 12-H(P)ETE may act as a chemoattractant for leukocytes (Goetzl, 1980), mediate angiogenesis and tumor metastasis (Hon et al., 1994), possess inhibitory neuromodulatory effects (Piomelli et al., 1987), and be involved
in cardiovascular diseases (Gonzalez-Nunez et al., 2001), which should be taken into account when administering boswellic acid-containing medicine. Besides the dissertation of the influences of boswellic acids on 12-H(P)ETE as mediator in (patho-) physiology applied as complex composed extracts of B. serra, it also remains a future challenge to fully elucidate the Ca2+/phosphorylation-independent signaling routes, leading to cPLA2 activation and increased release of arachidonic acid by boswellic acids.

Acknowledgments

We thank Sven George for expert technical assistance.

References

Subrmanian P, Stahelin RV, Stuie Z, Bielawska A, Cho W, and Chaflent CE (2005) Ceramide 1-phosphate acts as a positive allosteric activator of group IVA cytosolic phospholipase A2 and enhances the interaction of the enzyme with phosphati-

Syrovets T, Buchele B, Kraus C, Launommer Y, and Simmet T (2005a) Acetyl-
boswellic acids inhibit lipopolysaccharide-mediated TNF-alpha induction in mono-

Address correspondence to: Dr. Oliver Werz, Department of Pharmaceutical Analytical, Institute of Pharmacy, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, D-72076 Tuebingen, Germany. E-mail: oliver.werz@ uni-tuebingen.de