The Regulator of G Protein Signaling Domain of Axin Selectively Interacts with Gα₁₂ but Not Gα₁₃

Laura N. Stemmler, Timothy A. Fields, and Patrick J. Casey

Departments of Pathology (L.N.S., T.A.F.) and Pharmacology and Cancer Biology (P.J.C.), Duke University Medical Center, Durham, North Carolina

Received February 21, 2006; accepted July 25, 2006

ABSTRACT

Axin, a negative regulator of the Wnt signaling pathway, contains a canonical regulator of G protein signaling (RGS) core domain. Herein, we demonstrate both in vitro and in cells that this domain interacts with the α subunit of the heterotrimERIC G protein Gα₁₂ but not with the closely related Gα₁₃ or with several other heterotrimeric G proteins. Axin preferentially binds the activated form of Gα₁₂, a behavior consistent with other RGS proteins. However, unlike other RGS proteins, that of axin (axinRGS) does not affect intrinsic GTP hydrolysis by Gα₁₂. Despite its inability to act as a GTPase-activating protein, we demonstrate that in cells, axinRGS can compete for Gα₁₂ binding with the RGS domain of p115RhoGEF, a known Gα₁₂-interacting protein that links Gα₁₂ signaling to activation of the small G protein Rho. Moreover, ectopic expression of axinRGS specifically inhibits Gα₁₂-directed activation of the Rho pathway in MDA-MB 231 breast cancer cells. These findings establish that the RGS domain of axin is able to directly interact with the α subunit of heterotrimeric G protein Gα₁₂ and provide a unique tool to interdict Gα₁₂-mediated signaling processes.

Heterotrimeric GTP-binding regulatory proteins (G proteins) stimulate a wide variety of cellular signals as a result of their interactions with G protein coupled receptors (GPCRs). Upon ligand binding by a GPCR, the intracellular portion of the GPCR engages and induces a conformational change in the α subunit of the G protein, causing it to release native bound GDP and bind GTP (Cabrera-Vera et al., 2003). The newly activated GTP-bound α subunit then dissociates from the βγ subunit, and both molecules subsequently interact with downstream effectors to trigger a variety of cellular events. G protein signaling is terminated when GTP is hydrolyzed to GDP. Although Gα subunits possess an intrinsic GTPase activity of their own, a family of proteins called regulators of G protein signaling (RGS) has been shown to interact with activated Gα subunits and greatly enhance GTP hydrolysis (Berman et al., 1996; Hunt et al., 1996; Watson et al., 1996).

RGS proteins are defined by a conserved ~120-residue domain termed the “RGS box” (Siderovski et al., 1996). This region binds with high affinity to the transition state of Gα subunits, lowering the energy required for GTP hydrolysis to occur (Ross and Wilkie, 2000). In addition to their GTPase-stimulating activities, some RGS proteins act as scaffolding molecules that hold signaling complexes together. So far, more than 30 mammalian RGS or RGS-like family members have been described and are divided into six subfamilies based on identifiable domains (Hollinger and Hepler, 2002).

One subfamily of RGS proteins, the primary member of which is a protein termed axin, contains multiple domains that facilitate its critical role in the Wnt pathway (Zeng et al., 1997). In this pathway, axin acts as a scaffolding protein holding together a signaling complex involved in the breakdown of β-catenin, the primary target of the canonical Wnt signaling pathway. Wnts are secreted glycoproteins that bind to the Frizzled (Fz) family of seven transmembrane-spanning receptors (Nelson and Nusse, 2004). In the absence of Wnt ligand, cytosolic β-catenin is bound to a complex of proteins including axin, adenomatous polyposis coli (APC), and glycogen synthase kinase 3β, where it becomes phosphorylated, ubiquitinated, and directed to the proteosome for degrada-

ABBREVIATIONS: GPCR, G protein-coupled receptor; RGS, regulator of G protein signaling; APC, adenomatous polyposis coli; RhoGEF, Rho guanine nucleotide exchange factor; Gq, mutationally activated Gα form; WT, wild-type; GFP, green fluorescent protein; DTT, dithiothreitol; GST, glutathione transferase; HEK, human embryonic kidney; LPX, polyoxyethylene 10 laurel ether; PAGE, polyacrylamide gel electrophoresis; GTP, guanosine 5′-O-(3-thio)triphosphate; PIPES, piperazine-N,N′-bis(2-ethanesulfonic acid); PHEM, PIPES/HEPES/EGTA/MgSO₄; PBS, phosphate-buffered saline; GAP, GTPase-activating protein.
tion. The integrity of the β-catenin destruction complex is dependent, in large part, on an interaction between axin and APC (Munemitsu et al., 1995; Spink et al., 2000; Rubinfeld et al., 2001; Choi et al., 2004). Mutations in the APC gene are prevalent in cancers, especially in the colon, and often involve truncations in the region of APC that interacts with axin (Munemitsu et al., 1995; Korinek et al., 1997). In the presence of a Wnt signal, the β-catenin destruction complex dissociates and β-catenin accumulates in the cytosol, eventually reaching levels high enough to enter the nucleus. Once inside the nucleus, it acts as a transcriptional coactivator with members of the lymphoid enhancer factor/T cell factor family of transcription factors and activates genes important in cell growth and development (Nelson and Nusse, 2004).

The RGS domain of axin is the site on this protein at which binding of APC occurs. A cocrystral structure of the RGS domain of axin with the axin-binding domain of APC has confirmed that the axin RGS domain is structurally very similar to other RGS proteins with confirmed G protein binding capacity (Spink et al., 2000). However, binding of APC used a face of the RGS domain distinct from that used for Gα binding by other RGS proteins (Spink et al., 2000). The first description of an interaction between axin and a Gα subunit—Gαs—has recently been reported (Castellone et al., 2005). Here we report that the RGS domain of axin also directly interacts with the α subunit of G12 in an activation-sensitive manner. Biochemical analysis comparing the axin RGS to the RGS domain of a known G12 effector, p115RhoGEF, suggests that Gα12 binds axinRGS and p115RGS in a mutually exclusive fashion. Although axinRGS did not significantly accelerate GTP hydrolysis during in vitro GTPase activity assays, it did specifically prevent Gα-subunit-dependent Rho-dependent cell rounding in MDA-MB 231 breast cancer cells expressing activated Gα12. These data suggest that Gα12 binds to the RGS domain of axin in a manner similar to that in which it interacts with the RGS domain of p115RhoGEF.

Materials and Methods

Materials. Gα12 and Gα13 antibodies were obtained from Santa Cruz Biotechnology (Santa Cruz, CA). Gαq antibody was a gift of Tom Gettys (Pennington Biomedical Research Center, Baton Rouge, LA), and Goα antibody (p860) was described previously (Mumby and Gilman, 1991). The anti-axin rabbit polyclonal antibody and the anti-mye M2 monoclonal antibody were both purchased from Zymed Laboratories (San Francisco, CA), and the M1 anti-FLAG mouse monoclonal antibody was purchased from Sigma-Aldrich (St. Louis, MO). The anti-GFP antibody was purchased from Roche (Indianapolis, IN).

Plasmid Constructs. cDNAs encoding all Go forms used in this study, including mutationally activated (QL) and wild-type (WT) forms, were obtained from the Guthrie Research Institute (now the UMR cDNA Research Center, Rolla, MO). GFP-axinΔDIX, which encodes a fusion between green fluorescent protein (GFP) and axin lacking residues 873 to 956, was kindly provided by Harold Varmus (Sloan-Kettering Institute, New York, NY) and myc-p115RGS by Tohru Kozasa (University of Illinois, Chicago, IL). Two axin RGS domains, Gα12 RGSα (residues 83–211) and axinRGSb (residues 873 to 956), was kindly provided by Harold Varmus (Sloan-Kettering Institute, New York, NY) and myc-p115RGS by Tohru Kozasa (University of Illinois, Chicago, IL). Two axin RGS domains, Gα12 RGSα (residues 83–211) and axinRGSb (residues 873 to 956), was kindly provided by Harold Varmus (Sloan-Kettering Institute, New York, NY) and myc-p115RGS by Tohru Kozasa (University of Illinois, Chicago, IL). Two axin RGS domains, Gα12 RGSα (residues 83–211) and axinRGSb (residues 873 to 956), was kindly provided by Harold Varmus (Sloan-Kettering Institute, New York, NY) and myc-p115RGS by Tohru Kozasa (University of Illinois, Chicago, IL).

In Vitro Binding Assays. HEK293T cells were obtained from the American Type Culture Collection (Manassas, VA) and grown in Dulbecco’s modified Eagle’s medium, 10% fetal bovine serum. Transfections were performed using LipofectAMINE2000 (Life Technologies, Inc., Gaithersburg, MD) according to the manufacturer’s instructions. MDA-MB 231 cells were obtained from the American Type Culture Collection and cultured in Dulbecco’s modified Eagle’s medium with 10% FBS and 10 μg/ml insulin.

Protein Purification. GST fusion proteins used in Gα12 binding experiments (GST-axinRGS, GST-axinRGSα, GST-p115, and GST alone) were made in the BL21DE3 strain of Escherichia coli (NovaGen, La Jolla, CA). In brief, transformed bacterial colonies containing the indicated constructs were inoculated into 10 ml of media and grown overnight. After 16 h, the small cultures were used to inoculate 500 ml of media and grown at 37°C for 2 to 3 h until the optical density reached 0.5 to 0.6. At this point, the cells were induced with 0.5 mM isopropyl-D-thiogalactopyranoside (IPTG) and cultures were grown for an additional 2.5 h at 37°C. The cells were harvested by centrifugation at 6000 g for 15 min, and the resulting pellet was resuspended in 2.5 ml of buffer A (2.3 M sucrose, 50 mM Tris-HCl, pH 7.7, 1 mM EDTA, and a mix of protease inhibitors: 23 μg/ml phenylmethylsulfonyl fluoride, 11 μg/ml 1-ctosylalamide-2-phenyl ethyl chloromethyl ketone, and 11 μg/ml 1-chloro-3-ctosylamido-7 amino-2-heptanone) followed by dilution with 10 ml of buffer B (50 mM Tris-HCl, pH 7.7, 10 mM KC1, 1 mM EDTA, 1 mM DTT, and mix of protease inhibitors). The cells were then passed three times at 10,000 p.s.i. through a microfluidizer (Microfluidics Corporation, Newton, MA). Cell lysates were cleared by centrifugation at 30,000 g for 30 min at 4°C, and the resulting supernatants were incubated with glutathione-Sepharose 4B beads (Amersham Biosciences, Piscataway, NJ) with continuous rocking for 2 h. Beads with bound GST protein were washed with buffer B, and the protein was eluted from the beads by incubation in 50 mM HEPES and 20 mM reduced glutathione three times for 10 min each at 21°C. The eluent was then dialyzed into 50 mM HEPES, 1 mM EDTA, and 1 mM DTT and stored at −80°C.

Recombinant Gα12 and Gα13 were prepared by infecting SB cells with baculovirus directing expression of the respective Go, Gβ, and hexahistidine-tagged Gαq, and Go subunits so produced were purified as described previously (Kozasa and Gilman, 1995; Kozasa et al., 1998). Recombinant Goq, was expressed in E. coli and purified as described previously (Casey et al., 1990), and a mixture containing Goαq was purified from bovine brain as described previously (Sternweis and Robishaw, 1984).

Cell Culture and Transfection. HEK293T cells were obtained from the American Type Culture Collection (Manassas, VA) and grown in Dulbecco’s modified Eagle’s medium, 10% fetal bovine serum. Transfections were performed using LipofectAMINE2000 (Life Technologies, Inc., Gaithersburg, MD) according to the manufacturer’s instructions. MDA-MB 231 cells were obtained from the American Type Culture Collection and cultured in Dulbecco’s modified Eagle’s medium with 10% FBS and 10 μg/ml insulin.

Materials and Methods
buffer (5 μM [γ-35S]GTP, 50 mM HEPES, pH 8.0, 1 mM EDTA, 1 mM DTT, 0.05% LPX, and 5 mM MgSO₄) for 30 min at 21°C. Gα₁₂ and Gα₁₃ were incubated in loading buffer supplemented with 100 mM ammonium sulfate for 1 h at 30°C. The loaded G proteins were then filtered through a 1-ml G50 Sephadex (Pharmacia) spin column for 3 min at 200g at 4°C. GTP•S-loaded G proteins were quantified by scintillation spectroscopy, and equal amounts of active protein (1 pmol) were incubated with gentle rocking along with 70 pmol of the indicated purified GST proteins in loading buffer with 1% (w/v) casamino acids in a volume of 200 μl for 2 h at 4°C. Thirty microliters of glutathione Sepharose beads equilibrated in loading buffer were then added to the incubation and rocked for an additional 2 h at 4°C. Finally, glutathione Sepharose 4B beads (Amersham Biosciences) were washed three times with 150 μl of loading buffer and analyzed by scintillation spectroscopy.

Coimmunoprecipitation Assays. HEK293T cells were grown to 90% confluence on 10-cm plates and transfected with GFP-axinΔDIX or GFP vector alone along with the indicated Gα constructs. The transfected cells were incubated at 37°C for 36 h, washed on ice-cold PBS, and lysed in 0.5 ml of ice-cold lysis buffer (20 mM HEPES, pH 8, 1 mM EDTA, 2 mM MgCl₂, 150 mM NaCl, 2% Triton X-100, and protease inhibitors). The lysate was rocked at 4°C for 1 h, diluted 1:1 with dilution buffer (20 mM HEPES, pH 8, 1 mM EDTA, 2 mM MgCl₂, and 150 mM NaCl) and centrifuged at 100,000g for 1 h. The protein concentration of the supernatant was measured, and equal amounts of protein were incubated for 16 h at 4°C with 2 μg of anti-GFP antibody and 50 μl of protein A/G Sepharose 4 Fastflow (Amersham Biosciences) 1:1 mixture equilibrated in dilution buffer. Immune complexes were precipitated by centrifugation for 3 min at 200g and washed three times with 1 ml of wash buffer containing 1% Triton X-100. The samples were then processed by SDS-PAGE and immunoblot analysis to detect bound proteins.

Cell Rounding Assay. MDA-MB 231 cells were seeded at a density of 150,000 cells per dish on 22-mm sterile glass coverslips (VWR Scientific, West Chester, PA) that had been coated for 2 h at 37°C with 5 μg/ml fibronectin (Sigma-Aldrich) and rinsed with PBS. After 24 h of growth on the coverslips, the cells were infected with adenoviruses directing expression of GFP and Gα₁₂, WT and QL forms of Gα₁₃, to bind the axin RGS domain. We expressed QL forms of Gα₁₂ and Gα₁₃, which are unable to efficiently hydrolyze GTP, in HEK293 cells, and the cell lysates incubated with GST-axinRGS (see Fig. 1) or p115RGS, the latter being the RGS domain from a protein known to interact with both Gα₁₂ family members, Gα₁₂ and Gα₁₃, to bind the axin RGS domain. We expressed QL forms of Gα₁₂ and Gα₁₃, which are unable to efficiently hydrolyze GTP, in HEK293 cells, and the cell lysates incubated with GST-axinRGS (see Fig. 1) or p115RGS, the latter being the RGS domain from a protein known to interact with both Gα₁₂ family members (Kozasa et al., 1998). Complexes so formed were precipitated and G proteins bound to the RGS domains detected by immunoblot analysis. As expected, GST-p115RGS robustly precipitated both Gα₁₂ and Gα₁₃ from the cell lysates (Fig. 2A). It is noteworthy that GST-axinRGS precipitated Gα₁₂, but not the closely related Gα₁₃, from the lysates (Fig. 2A). To further assess the specificity of the interaction between the RGS domain of axin and Gα₁₂ WT and QL forms of Ga subunits representing two other G protein subfamilies (Gαq and Gα₁₃)

A Axin

B GFP-AxinΔDIX

C GST-AxinRGS

D GST-AxinRGSa

Fig. 1. Axin constructs. Schematic illustrations of axin constructs used in the study. Known binding axin partners are indicated above the appropriate domain binding site. A, full-length axin; B, GFP-AxinΔDIX; C, GST-axinRGS; D, GST-axinRGSa.
were also expressed in HEK293 cells, and the lysates were subjected to the precipitation experiment described above. Gα12 bound to axinRGS in an activation-sensitive manner, whereas neither Gαq nor Gαo bound GST-axinRGS at levels above their background binding to GST (Fig. 2B).

To assess whether the observed interaction between axin and Gα12 was direct, we used purified G proteins in binding experiments with a minimal GST-tagged axin RGS domain (GST-axinRGSa; see Fig. 1). Ga subunits were loaded with [35S]GTPγS and incubated with an excess of purified GST-axinRGSa. Protein complexes were precipitated with glutathione-Sepharose beads, and the presence of bound G proteins was analyzed by scintillation spectroscopy. In agreement with the data shown in Fig. 2, A and B, this experiment revealed substantial binding of the RGS domain of axin to Gα12, but not to Gα13, Gαq, or a mix of G1 and Gq proteins (Gαo; Fig. 2C). As expected, Gα12 and Gα13 both bound GST-p115, and Gα12 and GαQ both bound the RGS protein Gα interacting protein (data not shown). Although axin has been reported to bind the activated form of Gαs (Castellone et al., 2005), we were unable to detect significant binding of Gαs to either GST-axinRGS or GST-axinRGSa beyond its binding to GST alone (data not shown).

Axin and Gα12 Interact in Cells. Having obtained evidence that the RGS domain of axin and Gα12 interact in vitro, we further analyzed this interaction using coimmunoprecipitation experiments in which a modified form of axin termed axinΔDIX was used. The ΔDIX construct is missing the C-terminal, self-associating DIX domain, which, if present, causes the formation of large intracellular aggregates upon overexpression (Cong and Varmus, 2004). The GFP-axinΔDIX construct (see Fig. 1) was coexpressed in HEK293T cells with mutationally activated Ga subunits representing three G protein subfamilies (Gα12QL/Gα13QL, GαQL, and GαQ). The cells were lysed and axinΔDIX immunoprecipitated with anti-GFP antibody. As shown in Fig. 3A, axinΔDIX bound specifically to Gα12 but not to Gα13, Gαq, or Gαo. The reciprocal experiment was also performed, in which the complexes were immunoprecipitated with anti-Gα12 or anti-Gα13 antibodies. Again, a specific interaction between axin and Gα12, but not Gα13, was detectable by immunoblot (Fig. 3B). The lower band of the doublet seen in the GFP blots seems to be a cross-reacting protein found in the absence of GFP-axinΔDIX expression.

G proteins can act as molecular switches, existing in either the GTP-bound “on” state or the GDP-bound “off” state. Therefore, many interactions between G proteins and their binding partners are dependent on the activation state of the G protein. RGS proteins typically show preferential binding to activated G proteins (Tesmer et al., 1997). To test the activation preference of the axin-Gα12 interaction, wild-type and QL Gα12 constructs were expressed with GFP-axinΔDIX in HEK293T cells, and complexes were immunoprecipitated with anti-GFP antibody. Using this technique, an interaction between axin and the activated form of Gα12 was observed, but little wild-type Gα12 bound to axin (Fig. 3C, left). Immunoprecipitation with anti-Gα12 antibody produced the complementary result; i.e., axin preferentially bound the activated form of Gα12 (Fig. 3C, right).

Assessment of a Functional Consequence of the Axin-Gα12 Interaction. RGS proteins typically selectively bind the activated form of G proteins and act as GTPase activating proteins (GAPs). To assess the possibility that axin may act as a GAP for Gα12, we performed single-turnover GTPase activity assays using purified recombinant pro-

Fig. 2. AxinRGS specifically binds mutationally activated Gα12. A, lysates from 10-cm plates of 90% confluent HEK293 cells expressing QL or WT forms of Gα12 and Gα13 were prepared and incubated with 350 pmol of purified GST or GST-p115RGS, as indicated in the figure, for 1 h at 4°C. Complexes were precipitated with glutathione-Sepharose beads, and the pellets were processed by SDS-PAGE for immunoblot analysis with anti-Gα12 antibody (left) or anti-Gα13 antisera (right). The data are from a single experiment that is representative of at least three separate experiments. B, lysates from HEK293 cells expressing the indicated Ga proteins (either WT (left) or QL (right)) were prepared and incubated with 350 pmol of purified GST or GST-axinRGS as above. Complexes were precipitated with glutathione-Sepharose beads, and the pellets were processed by SDS-PAGE for immunoblot analysis with anti-Gα12, anti-Gα13, or anti-Gαq antisera as indicated in the figure. The data are from a single experiment that is representative of at least three separate experiments. C, G protein α subunits were purified as described under Materials and Methods. The [35S]GTPγS-loaded G protein indicated in the figure (5 nM) was incubated with either GST or GST-axinRGSa (350 nM each) for 2 h at 4°C. Complexes were precipitated with glutathione-Sepharose beads, and the pellets were analyzed by scintillation spectroscopy. Each bar depicts the mean of two separate determinations from a single experiment for each G protein and is representative of at least two separate experiments.
peptides. In these experiments, we determined that \(\alpha_{12} \) hydrolyzes GTP at 0.12 min\(^{-1} \) at 21°C (data not shown), a rate significantly faster than had been originally estimated (Kozasa and Gilman, 1995) but consistent with rates extrapolated from other subsequent reports (Kozasa et al., 1998). In any event, the presence of axin, even at concentrations greater than a 50-fold molar excess relative to \(\alpha_{12} \), did not significantly increase the GTP hydrolytic activity of \(\alpha_{12} \), despite the fact that the protein readily bound to \(\alpha_{12} \) (Figs. 2 and 3). In contrast, p115RGS was able to stimulate \(\alpha_{12} \) GTPase activity by 3- to 5-fold (data not shown).

To test whether axinRGS can influence \(\alpha_{12} \) signaling by competing with downstream effectors, we examined the effect of axin on \(\alpha_{12} \)-dependent activation of the small G protein RhoA. The two members of the \(\alpha_{12} \) subfamily of G proteins (\(\alpha_{12} \) and \(\alpha_{13} \)) activate Rho through a group of adapter proteins, including p115RhoGEF, PDZ-RhoGEF, and LARG, that contain both an RGS domain and a Dbl homology domain that promotes guanine nucleotide exchange in Rho (Hart et al., 1998b; Fukuhara et al., 2001). Because Rho is important for regulating actin cytoskeletal rearrangements (Hall, 1998), in some cell types, \(\alpha_{12} \)-mediated Rho activation is manifest by the cells exhibiting a rounded phenotype (Meigs et al., 2005). Using adenoviral vectors, expression of mutationally activated forms of both \(\alpha_{12} \) and \(\alpha_{13} \) induced significant rounding in MDA-MB 231 breast cancer cells (Fig. 4A, left), whereas expression of GFP alone had no effect (data not shown). As has been reported previously (Meigs et al., 2005), coexpression of p115RGS prevented both \(\alpha_{12} \)- and \(\alpha_{13} \)-stimulated rounding (Fig. 4A). In contrast, and in complete agreement with the binding data, coexpression of either axinRGS or axin\(\Delta \mathrm{DIX} \) prevented rounding (Fig. 4A), peripheral stress fiber formation, and accumulation (Fig. 4B) in cells expressing \(\alpha_{12} \) but had little effect on cells expressing \(\alpha_{13} \). Infection efficiency was essentially 100%, and immunoblot analysis confirmed that expression of the G proteins was not affected by coexpression of the RGS-containing constructs (data not shown). The axin-mediated inhibition of \(\alpha_{12} \)-stimulated cell rounding (Fig. 4, A and B) was quantified by manually scoring cell morphology in random microscopic fields. As shown in Fig. 4C, expression of either axinRGS or axin\(\Delta \mathrm{DIX} \) inhibited \(\alpha_{12} \)-stimulated rounding by at least 50% but had no significant effect on \(\alpha_{13} \)-stimulated rounding. Thus, the RGS domain of axin can not only bind \(\alpha_{12} \) but also modulate \(\alpha_{12} \) signaling.

The mechanism of the axin-mediated blockade of cell rounding potentially involves inhibition of the \(\alpha_{12} \)-p115RhoGEF interaction. The structure of the RGS domain of axin (Spink et al., 2000) and the corresponding domain of p115RhoGEF (Chen et al., 2001) are quite similar, and we therefore predicted that the two domains would bind \(\alpha_{12} \) in a similar manner. To test this hypothesis, p115RGS and axinRGS were coexpressed with \(\alpha_{12} \)QL, and immunoprecipitation experiments were performed to assess \(\alpha_{12} \) binding to axin and p115 in the context of both RGS-class proteins being present in the mixture. As shown in Fig. 5, immunoprecipitation of axin resulted in coprecipitation of \(\alpha_{12} \) but not p115 (Fig. 5, lane 1); immunoprecipitation of p115RGS resulted in coprecipitation of \(\alpha_{12} \) but not axin (Fig. 5, lane 3); immunoprecipitation of \(\alpha_{12} \) resulted in coprecipitation of both axin and p115RGS (Fig. 5, lane 2). Hence, in cells, \(\alpha_{12} \) binding to these two RGS proteins is mutually exclusive.

Discussion

While the manuscript for this article was being prepared, only one subfamily of RGS proteins, the axin/conductin group, had not been reported to associate with heterotrimeric...
G proteins. The primary member of this subfamily, axin, is the major negative regulator of the Wnt pathway and functions by acting as a scaffold that assembles the complex of proteins necessary for continuous degradation of cytosolic β-catenin (Hart et al., 1998a; Kishida et al., 1998, 1999; Hamada et al., 1999; Hinoi et al., 2000). A report appeared recently demonstrating an interaction between the axin RGS domain and the heterotrimeric G protein G_{i} (Castellone et al., 2005). In this study, we provide the first evidence of a direct interaction between axin and a member of the G_{12} family of G proteins. The interaction was specific for G_{12} relative to G_{13}, and, consistent with other RGS-containing proteins, axin preferentially bound to the activated form of G_{12}. We did not detect a significant in vitro interaction between G_{i} and axinRGS (data not shown). The reason for this is not completely clear, but it may related to the use of slightly different axinRGS constructs. In addition, one of our methods of identifying RGS-G protein interactions used the GTP-bound form of G proteins (Fig. 2C). In Castellone et al., axin did not significantly bind G_{i}-GTP.

It is notable that axin had little effect on the rate of G_{12} GTP hydrolysis in in vitro GTPase assays. The lack of significant GAP activity for axinRGS is not without precedent among RGS proteins. The N terminus of GRK2 contains an RGS domain that selectively binds activated forms of members of the G_{q} family of G proteins. GRK2 lacks significant GAP activity but is able to down-regulate G_{q}-mediated signaling, presumably by sequestering and/or competing with effectors (Carman et al., 1999). In an analogous fashion, axin was able to down-regulate G_{12} signaling; expression of the axin RGS domain in MDA-MB 231 breast cancer cells specifically blocked G_{12} signaling in these cells and protected them from G_{12}-stimulated rounding.

A possible mechanism for the blockade of G_{12} signaling by ectopic expression of axinRGS is an inhibition of the G_{12}-p115RhoGEF interaction, which is one pathway that activates Rho in these cells (Meigs et al., 2005). The structure of the RGS domain of axin (Spink et al., 2000) and the corresponding domain of p115RhoGEF are quite similar, and we would predict that the two domains bind G_{12} in a similar manner. Indeed, when G_{12}, axin, and p115 were coexpressed in cells and complex formation assessed by coimmunoprecipi-

Fig. 4. AxinRGS prevents G_{12}-induced cell rounding in MDA-MB 231 breast cancer cells. A, MDA-MB 231 cells (1.5 × 10⁵) were plated on fibronectin-coated glass coverslips. After 24 h, cells were infected with the adenoviruses directing expression of GFP plus the indicated proteins for 5 h as described under Materials and Methods and serum-starved for 18 additional h. Infection efficiency was essentially 100%. The cells were then fixed and stained with rhodamine-phalloidin to visualize the cell shape and the actin cytoskeleton using an inverted fluorescence microscope (40× objective). The data shown are representative fields from a single experiment that is representative of 3 separate experiments. B, high magnification (60× objective) images of 231 cells (grown, fixed, and stained as described above) showing stress fiber formation and morphology under conditions of adenovirally expressed GFP, G_{12}, G_{12}+axinRGS, or G_{12}+axinΔDIX as indicated in the figure. The data shown are representative fields from a single experiment that is representative of 3 separate experiments. C, the effect of expression of the indicated axin constructs on G_{12}- and G_{13}-stimulated MDA-MB 231 cell rounding (as shown in A) was quantified by counting rounded cells in five random microscopic fields (40× objective) from each condition indicated. The bars indicate the mean percentage of rounded cells. Data are representative of at least 3 separate experiments.
tivation experiments, we observed nonoverlapping binding of axin and p115 to G12, i.e., the binding of these two RGS-containing proteins to Gα12 was mutually exclusive.

The significance of the interactions between G12 and axin remains to be fully elucidated. The G12 knockout mice created by Gu et al. (2002) have thus far revealed no overt phenotypic abnormalities beyond embryonic lethality, so there is no evidence in that system to suggest an impact of G12 on axin function. Germline axin loss-of-function mutations are known to cause a number of developmental defects, including axis duplication, neuroectodermal abnormalities, malformation of the head, and embryonic lethality in homozygotes (Zeng et al., 1997). There has been no reported evidence of unregulated G12 signaling in the mice with these mutations, though this possibility has not been thoroughly examined in the literature. Targeted disruption in the mouse of the closely related axin2, which similarly interacts with G12 (L. Stemmler and T. Fields, unpublished observations), results in premature ossification of the calvarium, a phenotype resembling human craniosynostosis (Yu et al., 2005). The defects in the axin2 knockout mice seemed to be largely attributable to an effect on Wnt signaling, though potential impact on other pathways was not tested (Yu et al., 2005). One noteworthy report demonstrated that osteoblasts from a form of craniosynostosis overexpress RhoA, an important downstream target of G12 (Lomri et al., 2001). However, there is no clear evidence in mice connecting G12 and axin, although the hypothesis has not been formally assessed.

Nevertheless, the axin-G12 interaction may provide a unique approach to specifically inhibiting G12-mediated signaling pathways and distinguishing them from Gα13-activated processes. Furthermore, as work in this field continues, it will be important to determine whether axin can also serve as an effector of Gα13 to regulate the Wnt signaling pathway. Exploration of the cross-talk between G12 and axin pathway could provide significant insight into our understanding of the complex regulation of these two important pathways.

Acknowledgments
We thank A. Nixon, T. Meigs, D. Kaplan, J. Unela, P. Kelly, and A. Embry for helpful discussions.

References

Address correspondence to: Timothy A. Fields, Department of Pathology, Duke University Medical Center, Box 3712, Durham, NC 27710. E-mail: taf1@duke.edu.