Pioglitazone and Rosiglitazone Decrease Prostaglandin E₂ in Non–Small-Cell Lung Cancer Cells by Up-Regulating 15-Hydroxyprostaglandin Dehydrogenase

Sawasti Hazra, Raj K. Batra, Hsin H. Tai, Sherven Sharma, Xiaoyan Cui, and Steven M. Dubinett

Department of Medicine (S.H., R.B., S.S., X.C., S.D.), Division of Pulmonary and Critical Care Medicine, Lung Cancer Research Program and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (R.B., S.S., S.D.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (H.T.).

Received December 12, 2006; accepted April 5, 2007

ABSTRACT

Lung cancer cells elaborate the immunosuppressive and anti-apoptotic mediator prostaglandin E₂ (PGE₂), a product of cyclooxygenase-2 (COX-2) enzyme activity. Because peroxisome proliferator-activated receptor (PPAR) γ ligands, such as thiazolidinediones (TZDs), inhibit lung cancer cell growth, we examined the effect of the TZDs pioglitazone and rosiglitazone on PGE₂ levels in non–small-cell lung cancer (NSCLC) A427 and A549 cells. Both TZDs inhibited PGE₂ production in NSCLC cells via a COX-2 independent pathway. To define the mechanism underlying COX-2 independent suppression of PGE₂ production, we focused on other enzymes responsible for the synthesis and degradation of PGE₂, the expression of none of the three prostaglandin synthases (microsomal PGES1, PGES2 and cystolic PGES) was down-regulated by the TZDs. It is noteworthy that 15-hydroxyprostaglandin dehydrogenase (15-PGDH), an enzyme that produces biologically inactive 15-keto-prostaglandins from active PGE₂, was induced by TZDs. The TZD-mediated suppression of PGE₂ concentration was significantly inhibited by small interfering RNA to 15-PGDH. Studies using dominant-negative PPARγ overexpression or 2-chloro-5-nitrobenzamide (GW9662; a PPARγ antagonist) revealed that the suppressive effect of the TZDs on PGE₂ is PPARγ-independent. Together, these findings indicate that it is possible to use a clinically available pharmacological intervention to suppress tumor-derived PGE₂ by enhancing catabolism rather than blocking synthesis.

Lung cancer is the major cause of cancer-related death in the United States. There is an overall 5-year survival of less than 15%, and thus new therapeutic strategies are needed (Parkin, 2001). Recent research has focused on targeted pathways operative in lung cancer pathogenesis.

Increased cyclooxygenase expression (Huang et al., 1998) and elevated PGE₂ production have been implicated in the pathogenesis of several malignancies and are also associated with a poor prognosis in lung cancer (Wolff et al., 1998). Two isoenzymes of cyclooxygenase (COX) have been described: the constitutive enzyme COX-1 and the inducible enzyme COX-2. Elevated expression of COX-2 is found in a variety of malignant tissues, including colon, gastric, esophageal, prostate, breast, and lung carcinomas (Huang et al., 1998; Dannenberg and Zakim, 1999; Molina et al., 1999; Shamma et al., 2000; Shao et al., 2000; Soslow et al., 2000; Williams et al., 2000; Yip-Schneider et al., 2000). The COX enzyme possesses two distinct enzymatic functions: a cyclooxygenase activity that converts arachidonic acids to prostaglandin (PG) G₂ and a peroxidase activity, which converts PGG₂ to PGH₂. PGH₂ is then converted to PGE₂, PGD₂, PGF₂α, PGL₂, and thromboxane A₂ by their respective synthases (Smith et al., 1991).

PGE₂ may promote malignant growth by stimulating angiogenesis, tumor invasiveness, and apoptosis resistance and...
by inhibiting immune surveillance in human non–small-cell lung cancer (NSCLC) (Stolina et al., 2000; Heuze-Vourch et al., 2003; Krysan et al., 2004; Pöld et al., 2004). One strategy for inhibiting carcinogenesis or treating established disease is to prevent the overproduction of PGE₂ in premalignant or malignant tissues. In fact, in murine models, COX-2 inhibitor drugs or treatment with anti-PGE₂ monoclonal antibody have been demonstrated to reduce tumor growth, leading to prolonged survival (Stolina et al., 2000).

Considerable evidence suggests that COX-2, an inducible enzyme expressed in response to cytokines, growth factors, and other stimuli, is a potential pharmacologic target for inhibiting or preventing tumor growth (Riedl et al., 2004; Sandler and Dubinett, 2004). Although studies have suggested that COX-2 inhibition may be beneficial in cancer prevention, recent data raise concern regarding cardiovascular toxicities associated with the use of COX-2 inhibition (Schrör et al., 2005). An alternative approach that could potentially avoid this toxicity includes targeting other elements in the prostanoid pathway downstream of COX-2.

The nicotinamide adenine dinucleotide positive-dependent catalytic enzyme 15-PGDH metabolizes PGE₂ to the biologically inactive 15-keto derivatives (Cho and Tai, 2002). 15-PGDH has recently been identified as a tumor suppressor gene (Ding et al., 2005; Wolf et al., 2006). When the expression of 15-PGDH is suppressed, the limited degradation of PGE₂ may lead to increased tumor growth (Ding et al., 2005). Thus, augmentation of 15-PGDH expression and activity could limit PGE₂ without affecting COX-2.

Thiazolidinedione (TZDs), also known as peroxisome proliferator-activated receptor-γ (PPAR-γ) ligands, may modulate cancer progression and have been the subject of extensive investigation. For example, recent studies show that ciglitazone inhibited the growth of lung cancer cells via induction of apoptosis and differentiation (Chang and Szabo, 2000). In this study, we investigated the effect of the TZDs pioglitazone and rosiglitazone on COX-2 and PGE₂ levels in NSCLC cell lines. We report that both TZDs suppress PGE₂ levels in a COX-2 expression-independent and 15-PGDH-dependent manner.

Methods and Materials

Cell Culture and Reagents. Human A427 (obtained from Dr. J. A. Radosевич, Northwestern University, Evanston, IL) and A549 (American Type Culture Collection, Manassas, VA) are maintained in Dulbecco’s modified Eagle’s medium (Mediatech, Herndon, VA) supplemented with 4.5 g/liter glucose and 4 mM L-glutamine, 100 units/ml penicillin/streptomycin (Invitrogen, Carsbad, CA), and 10% fetal calf serum (Gemini Bio-Products, Woodland, CA). Cell cultures were grown in a six-well plate at 37°C. The TZDs used in these studies were pioglitazone (Actos; Eli Lilly, Toronto, ON, Canada) and rosiglitazone (Cayman Chemical, Ann Arbor, MI). DMSO was used as a diluent. The cells were incubated with 1 to 10 μM pioglitazone or rosiglitazone for 24 h for PGE₂ ELISA. Pioglitazone and rosiglitazone were used at a concentration of 10 μM for the rest of the experiments. To assess the role of PPARγ, experiments were performed in the presence of the PPARγ antagonist GW9662 (10 μM) (Sigma-Aldrich Co, St. Louis, MO) or dnPPARγ.

PGE₂, Enzyme Immunoassay. Cells were plated in six-well plates in RPMI 1640 medium containing 10% FBS and cultured overnight. The next day, cells were treated with pioglitazone and rosiglitazone (10 μM) for 24 h. Arachidonic acid (final concentration, 15 μM) was added to the culture 1 h before collecting the culture medium. Therefore, TZDs and arachidonic acid were both in the medium for only 1 h before collecting the supernatant for PGE₂ assays. PGE₂ levels were determined by PGE₂ enzyme immunoassay kits (Cayman Chemical). Cells were lysed with radioimmunoprecipitation assay buffer and the COX-2 levels were determined by human COX-2 ELISA kits (Assay Designs, Ann Arbor, MI).

COX-2 ELISA. Cells were plated in six-well plates in RPMI 1640 medium containing 10% FBS medium and treated as described above. The lysates were stored at ~80°C for protein isolation. COX-2 protein was measured by the Human Cyclooxygenase-2 Enzyme Immunoassay Kit (Assay Designs) using 30 μg of each protein sample.

Western Blot Analysis of Cellular Proteins. NSCLC cells were cultured in a six-well plate for 24 h. Cells were washed with PBS once and lysed with a lysis buffer containing 50 mM Tris-HCl, pH 7.4, 1% Nonidet P-40, 0.25% sodium deoxycholate, 150 mM NaCl, 1 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, 1× complete protease inhibitor mixture (Roche Diagnostics Corp., Indianapolis, IN), 1 mM Na₃VO₄, and 1 mM NaF. The protein content was measured using Bradford reagent (Bio-Rad Laboratories, Hercules, CA). An equal amount (20 μg) of the whole-cell protein was run and separated by SDS-polyacrylamide gel electrophoresis and transferred on polyvinylidene difluoride membranes (Millipore Corp., Billerica, MA). Proteins were detected by incubating the filter with COX-2 polyclonal antibody (Santa Cruz Biotechnology, Santa Cruz, CA), Glyceraldehyde-3-phosphate dehydrogenase monoclonal antibody (Advanced Immuno Chemicals Inc., Long Beach, CA) at a concentration of 0.2 to 2 μg/ml in Tris-buffered saline (100 mM Tris-HCl 7 and 1.5 M NaCl, pH 7.4) with 5% nonfat milk. For determining the expression of all three prostaglandin E synthases and 15-PGDH after pioglitazone and rosiglitazone treatment, polyclonal antibodies (Cayman Chemical) against prostaglandin E synthase-1 (microsomal prostaglandin E synthase-1) were used.

![Fig. 1](https://example.com/figure1.png)

Fig. 1. A and B, pioglitazone and rosiglitazone decrease PGE₂. A427 and A549 cells were treated with 1 to 10 μM concentrations of either pioglitazone or rosiglitazone for 24 h in six-well plates in serum-free medium. Arachidonic acid (15 μM) was applied 1 h before collecting the conditioned medium. PGE₂ concentrations in the medium were then assessed by ELISA. PGE₂ was significantly decreased by pioglitazone and rosiglitazone, which were used at 10 μM by approximately 2- and 3-fold, respectively, in A427 cell line (Fig. 1A) (*, P < 0.05, compared with the control “DMSO + ARA”). Pioglitazone and rosiglitazone (10 μM) decreased PGE₂, by approximately 2-fold in A459 cells (B) (*, P < 0.05, compared with control “DMSO + ARA”). All data are representative of four independent experiments. ARA, arachidonic acid; Pio, pioglitazone; Rosi, rosiglitazone.
TZD-Mediated Suppression of PGE2 in NSCLC

Results

Pioglitazone and Rosiglitazone Inhibit PGE2 Production in NSCLC Cell Lines. Two NSCLC cell lines, A427 and A549, were used to access the Effect of TZDs on PGE2 production. These cells were incubated with 1 to 10 μM pioglitazone or rosiglitazone for 24 h. The greatest inhibition of PGE2 by these TZDs was observed at 10 μM in both A427 (Fig. 1A) and in A549 (Fig. 1B) cells when 1, 5, and 10 μM TZDs were used for the treatment.

Suppression of PGE2 by Pioglitazone and Rosiglitazone Is Mediated via a COX-2 Expression-Independent Pathway. To determine whether this inhibition of PGE2 was COX-2-dependent, we tested the capacity of these TZDs to inhibit IL-1β-induced COX-2 expression in NSCLC cells. Neither pioglitazone (Fig. 2A) nor rosiglitazone (Fig. 2A) decreased IL-1β induced COX-2 expression levels, as shown in Western blots. These results were also confirmed by COX-2 ELISA assay as shown in Fig. 2, B and C.

TZDs Do Not Suppress the Expression of PGE Synthases but Up-Regulate 15-PGDH Expression in NSCLC Cells. To understand the mechanism underlying COX-2-independent suppression of PGE2 by the TZDs in NSCLC cells, the downstream events that regulate PGE2 production were assessed. For example, an inducible prostaglandin E synthase (PGES) converts COX-derived PGH2 to PGE2. Three enzymes possessing PGE synthetic activity have been identified. Microsomal PGES (mPGES1) is an enzyme downstream of COX-2 that affects PGE2 production, whereas cytosolic PGES (cPGES) is functionally coupled with COX-1 only, and mPGES2 is functionally coupled with both COX-1 and COX-2 (Murakami and Kudo, 2006).

Here, we determined whether these three enzymes (mPGES1, cPGES, mPGES2) were altered by TZDs in A427 and A549 cell lines (Fig. 3, A–D). Western blot analysis of the mPGES1, cPGES, and mPGES2 enzymes revealed no pioglitazone- or rosiglitazone-mediated decrease in expression.

We next examined whether pioglitazone and rosiglitazone could regulate biological inactivation of PGE2. As described previously, the first step of metabolism of PGE2 was catalyzed by the 15-PGDH enzyme, which produces biologically inactive 15-keto-prostaglandins. TZDs (such as cigitazone) have been suggested to inhibit 15-PGDH (Cho and Tai, 2002). However, Western blot analysis revealed that 24-h treatment with pioglitazone (10 μM) (Fig. 3E) or rosiglitazone (Fig. 3F) up-regulated 15-PGDH protein expression in both NSCLC cell lines.

15-PGDH Mediates the Inhibition of PGE2 by TZDs in NSCLC Cells. To determine the role of 15-PGDH in the reduction of PGE2 concentrations by pioglitazone and rosiglitazone, A549 cells were transiently transfected with siRNA targeting the 15-PGDH gene. After transfection with 15-

Inhibition of 15-PGDH Expression by Small Interfering RNA. Cells were plated in 24-well plates at 6 x 10^4 cells per well and grown overnight in RPMI 1640 medium + 10% fetal bovine serum. Cells were transfected with 15-PGDH or negative control (composed of a 19-base-pair scrambled sequence) Silencer small interfering RNA (siRNA) (Ambion, Inc., Austin, TX) using TransMessenger transfection reagent (QIAGEN, Valencia, CA) at different RNA /RNA (siRNA) (Ambion, Inc., Austin, TX) using TransMessenger transfection reagent (QIAGEN, Valencia, CA) at different RNA /transfection reagent ratios. In all conditions, we observed a significant suppression of 15-PGDH expression (50–90% inhibition) by transfection reagent (QIAGEN, Valencia, CA) at 1 μg/10 ml. Culture medium was collected and PGE2 levels were determined using 15-PGDH polyclonal antibody (Cayman Chemical) in Western blotting. For additional experiments, transfection was performed in serum-free medium for another 24 h. Arachidonic acid (15 μM) was added 1 h before collecting the medium for PGE2 ELISA.

Transient Transfection/PGE2 Assay. The dn.PPARγ construct was a generous gift of Dr. V. K. Chatterjee (Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK) (Gurnell et al., 2000). Cells were seeded at a density of 3 x 10^5 cells/well in a six-well plate in RPMI 1640 medium containing 10% fetal bovine serum and cultured overnight. For each well, 1 μg of the PCDNA3 control vector or 1 μg of dn.PPARγ vector was transfected with the Effectene transfection reagent (QIAGEN) according to the manufacturer’s protocol. The TZDs (10 μM) were added 24 h after the transfection in a serum-free medium for another 24 h. Arachidonic acid (15 μM) was added 1 h before harvesting the medium. Culture medium was collected and PGE2 levels were determined using PGE2 EIA kit (Cayman Chemicals, Ann Arbor, MI).

Statistical Analysis: Probability values were calculated using two-tailed non paired Student’s t test. Tests of statistical significance were significant if P < 0.05.

Fig. 2. NSCLC cells were pretreated with IL-β (280 units/ml) for 30 min followed by treatment with 10 μM concentrations of either pioglitazone or rosiglitazone for 24 h in six-well plates in serum-free conditions. Western blot analysis shows that pioglitazone and rosiglitazone did not alter COX-2 protein levels in either A549 or A427 cell line (A). This was further confirmed by COX-2 ELISA assay. Neither pioglitazone (B) nor rosiglitazone (C) affected basal or IL1-induced COX-2 levels in NSCLC cell lines. Data are representative of four independent experiments. Pio, pioglitazone; Rosi, rosiglitazone.
PGDH siRNA, Western blot analysis revealed significant suppression of 15-PGDH protein, whereas it did not affect GAPDH protein expression in A549 cells (Fig. 4A). After 24-h treatment with pioglitazone or rosiglitazone, cell-free culture supernatants were harvested for PGE_2 assays. In the absence of TZDs, 15-PGDH siRNA-treated cells showed a marked increase in PGE_2 concentrations compared with those of control siRNA. (Fig. 4, B and C). Although significant reductions in PGE_2 concentrations (approximately 50% for both pioglitazone and rosiglitazone) were demonstrated in the control siRNA-transfected cells after TZD exposure, these reductions were not evident in 15-PGDH siRNA-transfected cells. This suggests that 15-PGDH induction is critical for the pioglitazone- and rosiglitazone-mediated suppression of PGE_2 levels.

Suppression of PGE_2 by Pioglitazone and Rosiglitazone Is PPARγ-Independent. To determine whether the suppressive effects of pioglitazone and rosiglitazone are PPARγ-dependent, a dominant-negative PPARγ plasmid construct (Gurnell et al., 2000) was transfected in A549 cells. As expected, the PPRE activity was increased in the presence of both pioglitazone and rosiglitazone in NSCLC (Fig. 5A). Expression of dn.PPARγ significantly suppressed the induction of basal as well as TZD-mediated PPRE activity in A549 cell lines (Fig. 5A), indicating significant suppression of PPARγ expression by dn.PPARγ. In the presence of overexpression of dn.PPARγ (Fig. 5, B and C), pioglitazone and rosiglitazone maintained the capacity to decrease PGE_2, suggesting that this effect of the TZDs is PPARγ-independent. This observation was further verified by using GW9662, a PPARγ antagonist (Fig. 5, D and E). GW9662 (10 μM) was added 1 h before addition of pioglitazone or rosiglitazone in A427 cells. The experimental results using dn.PPARγ and GW9662 suggest that the suppression of PGE_2 by these TZDs is PPARγ-independent.

Discussion

We report that pioglitazone and rosiglitazone have the capacity to reduce PGE_2 production in NSCLC. To avoid the potential cardiovascular toxicities of COX-2 inhibition, we evaluated pharmacologic agents for their capacity to regulate tumor derived PGE_2 by modulating arachidonic acid pathway elements downstream of COX-2. Because PGE_2 was decreased without changes in COX-2 levels, we concluded that these TZDs reduce PGE_2 in a COX-2 expression-independent manner. We found that PGES protein levels were
not suppressed by the TZDs in NSCLC cells. In contrast, 15-PGDH expression was up-regulated by TZDs.

Colon cancers have been observed to manifest very limited expression of 15-PGDH; Backlund et al. (2005) also reported that 15-PGDH is down-regulated in colorectal cancer. Furthermore, levels of 15-PGDH are reduced in several other malignancies, including NSCLC; Ding et al. (2005) found that, compared with normal epithelial cells, 15-PGDH expression was diminished in human lung tumors. This led to the suggestion that 15-PGDH, by suppressing the level of PGE\textsubscript{2}, may promote susceptibility to apoptosis and thus function as a tumor suppressor gene (Ding et al., 2005). Thus, the development of certain malignancies may require a combination of up-regulated COX-2 expression and a concomitant down-regulation of an opposing and putative tumor suppressor gene, 15-PGDH (Yan et al., 2004). Consistent with these previous investigations, we found that 15-PGDH inhibition by siRNA increases PGE\textsubscript{2} production in A549 cells. We report here that the capacity for pioglitazone and rosiglitazone to decrease PGE\textsubscript{2} was significantly decreased after 15-PGDH si-RNA transfection.

TZDs are currently used for the treatment of type 2 diabetes mellitus (Durbin, 2004) and have been shown to have a broad array of biological activities. Some of these TZDs have been shown to exert anti-inflammatory (Consoli and Davangeli, 2005), antiproliferative (Schmidt et al., 2004), and antiangiogenic effects (Keshamouni et al., 2005). TZD-mediated PPAR\textsubscript{\gamma} activation has been shown to regulate COX-2 expression in several malignancies including cervical (Han et al., 2003), colon, and liver cancers (Li et al., 2003). It has been reported that TZDs inhibit tumor formation in a variety of animal models, including colon (Yoshizumi et al., 2004) and lung cancers (Keshamouni et al., 2004). PPAR\textsubscript{\gamma} is expressed in many NSCLC cell lines (Chang and Szabo, 2000), and troglitazone and pioglitazone significantly inhibit angiogenesis in NSCLC (Keshamouni et al., 2005). These two TZDs were also shown to inhibit tumor-associated angiogenesis by blocking the expression of ELR+CXC chemokines.

Although TZDs are widely known as ligands for PPAR\textsubscript{\gamma}, they may mediate receptor-independent effects, as demonstrated here and as previously reported (Chawla et al., 2001; Lennon et al., 2002). For example, by using the embryonic stem cells from PPAR\textsubscript{\gamma}-null mice, Chawla et al. (2001) found that neither macrophage differentiation nor anti-inflammatory effects of synthetic PPAR\textsubscript{\gamma} ligands are PPAR\textsubscript{\gamma} receptor-dependent. To understand whether the suppression of PGE\textsubscript{2} by pioglitazone and rosiglitazone is PPAR\textsubscript{\gamma}-dependent in NSCLC, we performed experiments using either a dn.PPAR\textsubscript{\gamma} plasmid vector or a PPAR\textsubscript{\gamma} inhibitor GW9662. Here, for the first time, we report that pioglitazone and rosiglitazone increase 15-PGDH and thus decrease PGE\textsubscript{2} in a PPAR\textsubscript{\gamma}-independent manner.

PGE\textsubscript{2} is well-known to play an important role in tumorigenesis. However, the precise role of the 15-PGDH enzyme, which regulates the biological activity via degradation of PGE\textsubscript{2}, has not yet been well defined in the pathogenesis of lung cancer.

The potential benefits of inhibiting PGE\textsubscript{2} levels in a COX-2-independent manner include the following. First, promoting 15-PGDH activity could decrease PGE\textsubscript{2} without modify-

![Fig. 5. A–E. PPAR\textsubscript{\gamma} antagonists do not alter PGE\textsubscript{2} levels in NSCLC cell lines.](Image)
ing other prostaglandins such as PGL$_2$. This is potentially important because the latter has been noted to have antitu-
mor properties (Keith et al., 2004). It has been suggested that a ratio of PGs may be important in regulating the malignant phenotype. Thus, inhibiting COX-2 activity would diminish both PGE$_2$ and PGL$_2$, whereas selective induction of 15-
PGDH could lead to a more favorable PGL$_2$/PGE$_2$ ratio. Sec-
ond, the suppression of PGE$_2$ levels without alteration in COX-2 may limit some of the cardiovascular toxicities associ-
ated with COX-2 inhibition. Finally, unlike COX-2 inhibi-
tion, which may lead to up-regulation of certain leukotrienes
associated with COX-2 inhibition. Ultimately, COX-2 inhibition may lead only to a decrement of PGE$_2$. This
speculation will require further investigation. Ultimately,
these findings will allow strategies for developing PGE$_2$
 inhibitors in the treatment and prevention of lung cancer.

Acknowledgments

We thank Dr. Andrew Dannenberg (Department of Medicine, Weill Medical College of Cornell University, New York, NY) and Dr. Peter Tontonoz (Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA) for their valuable sugges-
tions.

References

Backlund MG, Mann JR, Holla VR, Buchanan FG, Tai HH, Musiek ES, Milne GL,
Katsuki T, and DuBois RN (2005) 15-Hydroxyprostaglandin dehydrogenase is
Chawla A, Banar Y, Nagy L, Iancu D, Tontonoz P, and Evans RM (2001) PPAR-
gamma dependent and independent effects on macrophage-gene expression in
dehydrogenase (15-PGDH) by cyclooxygenase inhibitors and chemopreventive
14:794–797.
Dannenberg AJ and Zakim D (1999) Chemoprevention of colorectal cancer through
Ding Y, Tong M, Liu S, Moscow JA, and Tai HH (2005) NAD$^+$-linked 15-
hydroxyprostaglandin dehydrogenase (15-PGDH) behaves as a tumor suppressor in
Durbin RJ (2004) Thiazolidinedione therapy in the prevention/delay of type 2 dia-
betes in patients with impaired glucose tolerance and insulin resistance. Diabetes
Gurnell M, Wentworth JM, Agostini M, Adams M, Collingwood TN, Provenzano C,
Browne PO, Rajanayagam O, Burris TP, Schwabe JW, et al. (2000) A dominant-
negative peroxisome proliferator-activated receptor γ (PPARγ) mutant is a consti-
tutive repressor and inhibits PPARγ-mediated adipogenesis. J Biol Chem 275:
5754–5759.
through peroxisome proliferator-activated receptor γ in human cervical cancer
Abnormal interleukin 10Ralpha expression contributes to the maintenance of
770.
Huang M, Stolina M, Sharma S, Mao JT, Zhu L, Miller PW, Wollman J, Herschman H,
and Dubinin SM (1998) Non-small cell lung cancer cyclooxygenase-2-
dependent regulation of cysteine balance in lymphocytes and macrophages: up-
regulation of interleukin 10 and down-regulation of interleukin 12 production.
Cancer Res 58:1208–1216.
Keith RL, Miller YE, Hudish TM, Girod CE, Soto-Santiago S, Frankel WA, Nen-
enoff RA, March TH, Nana-Sinkam SP, and Geraci MW (2004) Pulmonary pros-
tacyclin synthase overexpression chemoprevents tobacco smoke lung carcinogen-
TJ (2005) PPAR-gamma activation inhibits angiogenesis by blocking ELR-CXC