Anandamide Inhibition of 5-HT$_{3A}$ Receptors Varies with Receptor Density and Desensitization

Wei Xiong, Masako Hosoi, Bon-Nyeo Koo, and Li Zhang

Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, USA

Received June 19, 2007; accepted November 1, 2007

ABSTRACT

Converging evidence has suggested that anandamide (AEA), an endogenous agonist of cannabinoid (CB) receptors, can directly interact with certain types of ligand-gated ion channels (LGICs). However, little is known about the molecular and cellular mechanisms of AEA-induced direct effects on LGICs. Here, we report that AEA inhibited the function of serotonin-gated ion channels (5-HT$_{3A}$) expressed in Xenopus laevis oocytes and human embryonic kidney 293 cells in a manner that was dependent on the steady-state receptor density at the cell surface. The magnitude of AEA inhibition was inversely correlated with the expression levels of receptor protein and function. With increasing surface receptor expression, the magnitude of AEA inhibition decreased. Consistent with this idea, pretreatment with actinomycin D, which inhibits transcription, decreased the amplitude of current activated by maximal concentrations of 5-hydroxytryptamine (5-HT) and increased the magnitude of AEA inhibition. AEA did not significantly alter 5-HT$_{3A}$ receptor trafficking. However, AEA accelerated 5-HT$_{3A}$ receptor desensitization time in a concentration-dependent manner without significantly changing receptor activation and deactivation time. The desensitization time was correlated with the AEA-induced inhibiting effect and mean 5-HT current density. Applications of 5-hydroxyindole and nocodazole, a microtubule disruptor, significantly slowed 5-HT$_{3A}$ receptor desensitization and reduced the magnitude of AEA inhibition. These observations suggest that 5-HT$_{3}$ receptor density at the steady state regulates receptor desensitization kinetics and the potency of AEA-induced inhibiting effect on the receptors. The inhibition of 5-HT$_{3}$ receptors by AEA may contribute to its physiological roles in control of pain and emesis.

The endocannabinoid anandamide (AEA) is synthesized from lipid precursors in cell membranes via calcium- and G-protein-dependent processes. Rapidly released from neurons after membrane depolarization, AEA can modulate many brain functions by preferentially activating presynaptic cannabinoid type 1 (CB1) receptors (Pacher et al., 2006). However, accumulating evidence has indicated that there are additional molecular sites that may mediate AEA action in the central and peripheral nervous system. AEA has also been found to directly modulate the function of various ligand-gated ion channels (LGICs) such as the serotonin type 3 (5-HT$_{3}$) receptors, nicotinic acetylcholine (nACh) α7 and α4β2 subunits and glycine receptors (Fan, 1995; Barann et al., 2002; Oz et al., 2002, 2003; Hejazi et al., 2006; Spivak et al., 2007). Moreover, some AEA-induced behavioral effects are not mediated by activation of CB$_{1}$ receptors. For example, AEA can induce catalepsy and analgesia in CB1 knockout mice (Zimmer et al., 1999). AEA has been found to attenuate neuronal excitability and pain via a CB1-independent mechanism in mice (Adams et al., 1998).

5-HT$_{3}$ receptors are involved in pain transmission, analgesia, mood disorders, and drug abuse (Zhang and Lummis, 2006). Selective 5-HT$_{3}$ receptor antagonists have anxiolytic and antiemetic effects in human and in animal models (Zhang and Lummis, 2006). The levels of 5-HT$_{3A}$ receptors are differentially expressed in brain regions and subpopulations of neurons (Tecott et al., 1993; Morales and Bloom, 1997; Spier et al., 1999; Morales and Wang, 2002). Although high levels of 5-HT$_{3}$ receptors are found in nucleus of the tractus solitarius and area postrema, low levels of the receptors are expressed in nucleus accumbens and striatum (Waeb er et al., 1988, 1989, 1990; Barnes et al., 1989; Pratt et al., 1990; Tecott et al., 1993; Morales and Bloom, 1997). Overexpression of 5-HT$_{3A}$ receptors in mouse forebrain increases the sensitivity to alcohol-induced behavioral effects.
and enhances hippocampal-dependent learning and attention (Engel et al., 1998; Engel and Allan, 1999; Harrell and Allan, 2003). Several naturally occurring polymorphisms in human 5-HT₃A receptors can significantly change the levels of receptor expression at cell membrane surfaces (Niesler et al., 2001a; Krzyszowski et al., 2007). These mutations are found to associate with affective disorders, the personality trait of harm avoidance, human face processing and emetogenic sensitivity to anticancer drug-induced side effects such as vomiting and nausea (Niesler et al., 2001a; Melke et al., 2003; Idaka et al., 2005; Krzyszowski, 2006).

Despite evidence showing that AEA can directly modulate a variety of ion channel functions, the molecular and cellular mechanisms of the AEA-induced CB1-independent effects remain elusive. AEA has been shown to inhibit the 5-HT₃A receptor-mediated responses in rat nodose ganglion (NG) neurons and in cell lines expressing mouse and human 5-HT₃A subunits (Fan, 1995; Barann et al., 2002; Oz et al., 2002). However, the potency of AEA inhibition has been found to vary significantly among different cell lines. Whereas AEA inhibits 5-HT₃ responses with an EC₅₀ value of 0.19 μM in NG neurons, the EC₅₀ value of AEA inhibition is 3.7 μM in Xenopus laevis oocytes expressing homomeric 5-HT₃A receptors (Fan, 1995; Oz et al., 2002). This discrepancy is unlikely because of different compositions of the 5-HT₃ subunits that are expressed in native neurons and in heterologous expression systems because the potency of AEA inhibition of homomeric 5-HT₃A receptors is similar to that of native receptors expressed in HEK293 cells and NG neurons (Fan, 1995; Barann et al., 2002; Oz et al., 2002). One alternative explanation is that the discrepancy may arise from different levels of receptor expression. To test this hypothesis, we examined the relationships between the extent of the AEA inhibition of 5-HT₃A receptors and receptor density at the cell surface. Our results suggest that the steady-state density of 5-HT₃ receptors critically influences on receptor desensitization and the sensitivity of 5-HT₃ receptors to AEA-induced inhibiting effect.

Materials and Methods

Preparation of cRNAs and Expression of Receptors. The cDNA clone of the human 5-HT₃A subunit was purchased from OriGen, Inc (Rockville, MD). Complementary RNAs (cRNAs) were synthesized in vitro using a mMessage mMachine RNA transcription kit (Ambion Inc., Austin, TX). The quality and sizes of synthesized cRNAs were confirmed by denatured RNA agarose gels. Mature female X. laevis frogs were anesthetized by submersion in 0.2% 3-aminobenzoic acid (Aquaria; Holford) for 1 h with a polyclonal antibody (pAb120, 1:2000) directed to the extracellular N-terminal domain of the 5-HT₃AR receptor (Spier et al., 1999). The proteins were washed, blotted with a 1:600 dilution of fluorescent-linked anti-rabbit IgG in PBS, and incubated with anti-fluorescein-alkaline phosphatase conjugate (Pierce) at 1:2500 dilution in PBS for 1 h. The proteins detected by ECF substrate (GE Healthcare) were scanned using a Storm Gel and Blot Imaging System with ImageQuant image analysis software (GE Healthcare).

HEK 293 Cell Transfection and Whole Cell Recording. HEK 293 cells were cultured as described previously (Hu et al., 2006). The plasmid cDNA of human 5-HT₃A receptors was transfected with SuperFect Transfection kit (QIAGEN, Hilden, Germany). The currents were recorded 24 to 48 h after transfection. Cells were lifted and continuously superfused with a solution containing 140 mM NaCl, 5 mM KCl, 1.8 mM CaCl₂, 1.2 mM MgCl₂, 5 mM glucose, and 10 mM HEPES, pH 7.4, with NaOH. −340 mOsmol with sucrose). Membrane currents were recorded in the whole-cell configuration using an Axopatch 200B amplifier (Molecular Devices) at 20 to 22°C. Cells were held at −60 mV unless otherwise indicated. Data were acquired using pClamp 9 software (Molecular Devices). Bath solutions were applied through three-barrel square glass tubing (Warner Instrument, Hamden, CT) that had been pulled to a tip diameter of ~200 μm. Drugs were applied through Warner fast-step stepper motor-driven system. The 10 to 90% rise time of the junction potential at whole-cell recording was 4 to 12 ms.

Staining and Imaging of 5-HT₃AR Receptor-BTX-tag Transfected in HEK 293 Cells. To generate 5-HT₃AR receptor-BTX-tag, two copies of the sequence 5′-TGGCGGTAC-3′ and 5′-GATCCGATCTCGAGGACGTGC-3′ were inserted into both 3′ and 5′ ends of the 5-HT₃AR subunit subcloned in pCDNA3.1 (+) (-) using polymerase chain reaction amplification. The 5-HT₃AR-BTX-tag was transfected into HEK 293 cells using Lipofectamine 2000 (Invitrogen, Carlsbad, CA). 24 to 48 h after transfection, living cells were stained with tetramethylrhodamine-BTX at 1 μg/ml (Invitrogen) for 5 min at room temperature. Cells were washed twice with PBS and then incubated with 2 μM AEA for 5 min. Cells were stained with Alexa Fluor 488-BTX at 1 μg/ml for 5 min, washed and fixed with 4% paraformaldehyde. Cells were rinsed with PBS and mounted in a glycerol-based mounting medium. Cells were imaged with a CCD camera attached to a Zeiss Axiosvert epifluorescence microscope. The Alexa Fluor 488 excitation was at 480/55 nm and the emission of light was collected using a 535/35 emission filter with a 1.3 numerical aperture 100× objective. The tetramethylrhodamine
Results

AEA Inhibition Was Independent of Agonist Concentrations. Consistent with a previous observation (Oz et al., 2002), incubation of AEA (10 μM) for 10 to 20 min produced gradually developing inhibition of 5-HT (1 μM)-induced currents in X. laevis oocytes previously injected with 2.5 ng of the mouse 5-HT$_{3A}$ subunit cRNA (Fig. 1A). The AEA-induced inhibition reached a maximum of 86% after a 10-min exposure and was completely reversed 30 min after discontinuation of drug application (Fig. 2B). The inhibition by AEA was concentration-dependent with an EC$_{50}$ value of 239 ± 13 nM and slope value of 0.8 ± 0.16 (Fig. 1C). The effect of 10 μM AEA on 5-HT$_{3A}$ receptors was also studied in the presence of different concentrations of 5-HT. The inhibition by AEA was equipotent at all agonist concentrations (Fig. 1D). The EC$_{50}$ and slope values of the 5-HT-concentration response curves were 1.6 ± 0.05 μM and 1.5 ± 0.2 in the absence of AEA, and 1.9 ± 0.2 μM and 1.8 ± 1.0 in the presence of 10 μM AEA. These values were not significantly different (p > 0.2, unpaired t test, n = 5).

AEA Inhibition Correlated with Receptor Surface Protein and Function. To examine whether the AEA inhibition depends on surface receptor density, we injected various concentrations (1, 2.5, 10, 25, 50, and 75 ng) of mouse 5-HT$_{3A}$ subunit cRNA into X. laevis oocytes. We first measured the surface expression of 5-HT$_{3A}$ receptors in oocytes using Western blots by labeling cell-surface proteins with sulfo-N-hydroxysuccinimide-SS-biotin (Lan et al., 2001). Figure 2A reveals a representative Western blot of surface receptor proteins from cells injected with 50, 10, and 1 ng of 5-HT$_{3A}$ receptor cRNA. The amplitude of current activated by 100 μM 5-HT also increased with increasing cRNA injection levels (Fig. 2B). AEA at 10 μM inhibited 5-HT$_{3A}$ receptor-mediated current in a manner that depended on the expression levels of surface receptor protein (Fig. 2, B and C). The magnitude of AEA inhibition was strongest at lower receptor expression levels. For instance, the maximal AEA inhibition was 95% (± 2% of control) in oocytes injected with 2.5 ng of 5-HT$_{3A}$ receptor cRNA, whereas the maximal inhibition was only 25% (± 6% of control) in oocytes injected with 50 ng of 5-HT$_{3A}$ receptor cRNA. These values were significantly different (Fig. 2C; unpaired t test, p < 0.001). The EC$_{50}$ values of AEA inhibition differed by nearly 120-fold between oocytes previously injected with 1 and 50 ng of cRNAs (Fig. 2D). For instance, the EC$_{50}$ value for AEA inhibition was 167 ± 12 nM in cells injected with 1 ng of cRNA, whereas the EC$_{50}$ value for AEA inhibition was 20 ± 2 μM in cells injected with 50 ng of cRNA. These values were significantly different (Fig. 2D; p < 0.001, unpaired t test, n = 5). The magnitude of inhibition produced by 10 μM AEA was strongly correlated with the amount of the cRNA injected into the oocytes (Fig. 3A; p < 0.0001), the expression level of the receptor proteins (Fig. 3B; p < 0.0001) and the
maximal current activated by 100 μM 5-HT (Fig. 3C; \(p = 0.002 \)).

AcD Increased AEA Inhibition. To further confirm the relationship between receptor density and AEA inhibition, we preincubated oocytes with 10 μg/ml AcD, which inhibits RNA transcription, for 24 h before recordings. We observed that AcD significantly reduced current amplitude activated by 100 μM 5-HT from 7.8 ± 2.5 to 1.4 ± 0.4 μA (Fig. 4A; \(p < 0.001 \), unpaired \(t \) test, \(n = 7 \)). This suggests that AcD can reduce the functional expression of 5-HT3A receptors. On the other hand, AcD significantly increased the magnitude of AEA inhibition from 53 ± 11% to 88 ± 2% (Fig. 4B; \(p < 0.02 \), unpaired \(t \) test, \(n = 7 \)).

AEA Inhibition Correlated with Mean Current Density. The above observations indicate that potency of AEA inhibition of 5-HT3A receptor function depends on receptor steady-state density at the cell surface. However, one can argue if this phenomenon occurs exclusively in \(X. \) laevis oocytes, where a slow perfusion system is used. To answer this question, we performed whole-cell recordings combined with fast drug perfusion to examine the effect of AEA on the 5-HT3A subunits expressed in HEK 293 cells. In cells transiently expressing 5-HT3A receptors, the amplitude of current activated by maximal 5-HT (100 μM) varied from 0.3 to 7.9 nA, indicating that the levels of receptor expression differ substantially at the surface of individual cells. AEA inhibited current amplitude activated by 30 μM 5-HT. The magnitudes of average percentage inhibition by 0.1 and 1 μM AEA were 58 ± 3% and 92 ± 2%. These data are in line with a previous study (Barann et al., 2000). Similar to the observations in oocyte experiments, HEK cells that exhibited relatively low current amplitudes were more sensitive to AEA than those that exhibited high-current amplitudes (Fig. 5A). We then calculated MCD by plotting maximal 5-HT current amplitude over capacitance of each individual cell. The extent of MCD was inversely correlated with the percentage of AEA inhibition of current peak (Fig. 5B; linear regression, \(p < 0.01, n = 13 \)) and current area (Fig. 5C; linear regression, \(p < 0.01, n = 13 \)).

AEA Did Not Affect 5-HT3A Receptor Trafficking. The AEA inhibition develops slowly and requires a preincubation of AEA to reach the maximal effect. This observation prompted us to ask whether AEA inhibits 5-HT3 receptors by

Fig. 2. AEA inhibition depends on expression level of receptor proteins at the cell surface. A, Western blot of 5-HT3A receptor protein at the surface membrane of \(X. \) laevis oocytes. A representative gel of Western blot showing the abundance of surface proteins from cells previously injected with various concentrations of 5-HT3A receptor cRNAs. B, tracing records showing AEA inhibition of 5-HT-activated currents in cells previously injected with 2.5 ng (top) and 50 ng (bottom) 5-HT3A receptor cRNAs. C, time course of AEA inhibition of I5-HT in \(X. \) laevis oocytes previously injected with 1, 20, and 50 ng of the 5-HT3A receptor cRNAs. The solid bar indicates the time of AEA application. Each data point represents mean ± S.E. from the average of five cells. D, concentration-response curves of AEA inhibition of 5-HT-activated current in cells previously injected with 1, 2.5, and 50 ng of 5-HT3A receptor cRNAs. The curves were best fit to the Hill equation as described under Materials and Methods. Each data point represents mean ± S.E. from at least 5 oocytes.

Fig. 3. AEA inhibition correlates with levels of receptor expression. A, correlation between the magnitude of inhibitory effect induced by 10 μM AEA and various concentrations of 5-HT3A receptor cRNAs injected into oocytes (linear regression, \(p < 0.0001, n = 6 \)). Each data point represents mean ± S.E. from at least seven oocytes. B, correlation between the magnitude of AEA inhibition and levels of surface 5-HT3A receptor proteins isolated from oocytes previously injected with various concentrations of 5-HT3A receptor cRNA (linear regression, \(p < 0.001, n = 5 \)). Each data point represents mean ± S.E. from three separate experiments. The band density was normalized as a percentage of control. C, correlation between the extent of AEA-induced inhibiting effect on 5-HT3A receptors and current amplitude activated by maximal concentration of 5-HT (100 μM) in oocytes previously injected with 1, 10, and 25 ng of 5-HT3A receptor cRNA (linear regression, \(p < 0.01, n = 24 \)). These data were collected from the same batch of oocytes.
modulating receptor internalization. We first examined the effect of AEA on 5-HT3A receptor trafficking in living HEK 293 cells that express 5-HT3A receptor proteins tagged on the extracellular amino and carboxyl terminus with a α-bungarotoxin pharmatope (BTX). The 13-amino acid BTX pharmatope is derived from the nACh receptor. The BTX pharmatope-tagged receptors can be labeled by BTX, which allows us to specifically label surface receptors and to visualize receptor trafficking in living cells. Cells were labeled with tetramethylrhodamine-BTX (red) before exposure to AEA and then treated with 2 μM AEA for 5 min. These cells were then labeled with Alexa Fluor-488-BTX (green). Under this experimental procedure, the receptors that were endocytosed during AEA incubation period were observed as red signal within interior of cells. Those Alexa Fluor-488 labeled-receptors that did not enter endocytosis were double-labeled and appeared as yellow signal surround cell perimeter, whereas those that appeared in green may represent newly inserted channels. Figure 6A illustrates double-labling of 5-HT3A receptors without and with 2 μM AEA. The majority of the 5-HT3A receptors that were on the cell’s surface during the initial period had been endocytosed in the absence and presence of AEA. Next, we used a protein biotinylation-labeling method to quantitatively evaluate surface expression of 5-HT3A receptor proteins. The density of the surface protein revealed by Western blot seemed to be similar before and 5, 10, and 20 min after AEA administration (Fig. 6B). The average values of protein gel intensity measured were 97 ± 10%, 110 ± 14%, and 104 ± 12% of control (Fig. 6C). These values were not significantly different (Fig. 6C; p > 0.5, ANOVA).

AEA Accelerated Receptor Desensitization. To explore the mechanisms that underlie AEA inhibition of 5-HT3A receptors, we conducted kinetic analysis using fast drug perfusion. Although AEA did not significantly alter the 10% to 30% rise time of 5-HT-activated currents (2.9 ± 0.1 versus 3.1 ± 0.1 ms, unpaired t test, p = 0.2), AEA seemed to accelerate the desensitization decay of 5-HT-activated current (Fig. 7A) in the prolonged presence of 5-HT ("desensitization"). To properly evaluate the desensitization kinetics, we normalized the fast and slow components using the weighted sum formula described under Materials and Methods. We first examined the effect of AEA on the time courses of 5-HT-activated current (•) and receptor desensitization (○). Both AEA-induced inhibition and desensitization developed in similar time courses. However, the receptor desensitization reached the maximal extent after preincubation of AEA for 2 min, whereas the maximal extent of AEA inhibition required 5 min (Fig. 7B). The weighted sum of the desensitization time constant components for 5-HT alone was 536 ± 87 ms, whereas the weighted sum of the desensitization time constants in the presence of 0.03 and 0.1 μM AEA were 386 ± 68 and 76 ± 17 ms, respectively. These values were significantly different from that of control (Fig. 7C; p < 0.01, ANOVA). In contrast, AEA did not significantly affect the deactivation time course, which was also best fit by a biexponential function. The deactivation time constants of the fast decay component averaged 0.12 ± 0.01 and 0.13 ± 0.01 s with and without AEA, respectively. The deactivation

![Fig. 4.](image1)

Fig. 4. AcD treatment decreases I5-HT and increases AEA inhibition of 5-HT3A receptors. A, bar graphs of average amplitude of current induced by maximal concentration of 5-HT (100 μM) without and with AcD treatment of X. laevis oocytes expressing mouse 5-HT3A receptors. B, bar graphs represent average percentage of AEA inhibition of 5-HT3A receptors without and with AcD treatment. Each data point represents mean ± S.E. from five cells. * indicates a significant difference compared with control (p < 0.02).

![Fig. 5.](image2)

Fig. 5. AEA inhibition correlates with 5-HT3A receptor density expressed in HEK 293 cells. A, representative current records show low- and high-density currents induced by 30 μM 5-HT in the absence and presence of 0.1 μM AEA in HEK 293 cells transiently transfected with the cDNA of human 5-HT3A receptors. AEA was preapplied to a cell for 2 min before application of 5-HT. B, correlation between the percentage AEA inhibition of current amplitude and MCD (linear regression, p < 0.01, n = 12). C, correlation between the percentage AEA inhibition of current area and MCD (linear regression, p < 0.01, n = 12).
time constants of the slow component averaged 1.9 ± 0.1 and 1.6 ± 0.2 s in the absence and presence of AEA, respectively. These values were not significantly different ($p > 0.2$, unpaired t test, $n = 12$). A previous study showed that AEA bound to bovine serum albumin (BSA) (Bojesen and Hansen, 2003). A recent study has reported that BSA can accelerate the recovery time of AEA inhibition of nAChβ2 subunits (Spivak et al., 2007). In view of these findings, we applied 0.3% of BSA during washout time of AEA-induced inhibition. We observed that BSA accelerated the recovery time after AEA inhibition. For instance, the average recovery rates of $I_{\text{5-HT}}$ after AEA inhibition were 42 ± 3 and 59 ± 6% of control current without and with BSA 2 min after AEA application. These values were significant different ($p < 0.01$, unpaired t test, $n = 6$).

Receptor Desensitization Was Correlated with MCD. The above observations suggest that AEA accelerates receptor desensitization. Given the observation that MCD was correlated with AEA inhibition, we predicted that MCD would also correlate with receptor desensitization. This was proved to be the case when a strong correlation was observed between MCD and desensitization time (Fig. 8A; linear regression, $p < 0.001$). MCD was also correlated with percentage inhibition by AEA (Fig. 8B; linear regression, $p < 0.001$, $n = 15$). However, no significant correlation was observed between receptor activation/deactivation and MCD (Fig. 8, C and D; $p > 0.5$, $n = 15$).

5-HTID and NOC Slowed Receptor Desensitization and Reduced AEA-Induced Inhibiting Effect on 5-HT$_{3A}$ Receptors. To further explore the mechanism of AEA inhibition, we designed the following experiments. First, we pre-treated cells with 25 μM NOC, a microtubule disruptor, for 4 h before electrophysiological recording of 5-HT-activated current. A recent study from our laboratory has shown that disruption of microtubule by NOC can significantly slow 5-HT$_{3A}$ receptor desensitization (Emerit et al., 2005). Consistent with this study, NOC treatment slowed the decay of 5-HT-activated current in HEK 293 cells expressing human 5-HT$_{3A}$ receptors (Fig. 9A). Another approach we used was 5-HTID, which has been shown to slow 5-HT$_{3A}$ receptor desensitization (van Hooft et al., 1997; Gunthorpe and Lummis, 1999). Simultaneous application of 5-HTID at 5 mM
with 5-HT slowed the decay of 5-HT-activated current (Fig. 9A). Pretreatment of HEK 293 cells with NOC and 5-HTID slowed 5-HT₃A receptor desensitization time by ∼6-fold (solid bars) and, on the other hand, significantly reduced the average percentage of AEA inhibition from 54 ± 3% (control) to 33 ± 2% and 27 ± 6% (Fig. 9B; open bars). These values were significantly different (p < 0.01, ANOVA, n = 11). The MCD induced by maximal concentration of 5-HT were 0.22 ± 0.04, 0.26 ± 0.05, and 0.18 ± 0.04 nA/pF in the absence (control) and presence of NOC and 5-HTID (Fig. 9C). These values were not significantly different (ANOVA, p > 0.2, n = 14–22).

Discussion

Our data presented in this study indicate that the sensitivity of 5-HT₃ receptors to AEA-induced inhibiting effect depends on steady-state receptor density at the cell surface. We have shown that surface protein and functional expression of the 5-HT₃A receptors were correlated with the extent of AEA inhibition in X. laevis oocyte and HEK 293 cells expressing 5-HT₃A receptors. A reduction in the functional expression of 5-HT₃A receptors induced by AcD treatment increased the sensitivity of 5-HT₃A receptors to AEA-induced inhibition. It should be noted that the correlation observed in X. laevis oocytes was more dramatic than that of HEK 293 cells. This difference exists because the expression levels of 5-HT₃A receptor protein can be readily manipulated in X. laevis oocytes. For instance, we injected oocytes with various concentrations of cRNA over a range from 1 to 75 ng. As a result, we observed a difference in the maximal current amplitudes by nearly 350-fold (200–7000 nA). However, the difference of the maximal current amplitude was only 10-fold (200–7000 pA) in HEK 293 cells transiently transfected with 5-HT₃A receptor cDNA.

Our results also suggest that receptor density contributes to receptor desensitization, which is the key factor determining the sensitivity of 5-HT₃A receptors to AEA-induced inhibition. This is evidenced by our observation that both NOC and 5-HTID reduced both receptor desensitization and AEA inhibition without significantly changing maximal 5-HT current amplitude. We propose that the low-density 5-HT₃A receptors at the cell surface should be more efficient than the high-density receptors to enter the desensitized state when exposed to agonist or agonist plus AEA. This idea is supported by a recent study from our laboratory that 5-HT₃A receptor desensitization is regulated by the light chain of the microtubule-associated protein 1B (LC1) (Emerit et al., 2005). In this case, MAP1B-LC1 reduces steady state receptor density at the cell surface and accelerates receptor desensitization kinetics at the steady state. Consistent with our
hypothesis, the steady state density of GABA_A receptors at the cell surfaces has also been found to critically regulate receptor desensitization (Chen et al., 2000; Petriti et al., 2003; Boileau et al., 2005). Likewise, there is a study showing that desensitization of glycine receptors varies with receptor density (Legendre et al., 2002). It should be pointed out that, in addition to receptor density, many other factors contribute to receptor desensitization. These physiological modulators include external calcium concentration (Hu and Lovinger, 2005), post-translational modification of the receptor protein (Yakel and Jackson, 1988) and subunit composition (Hapfölmeier et al., 2003). Future experiments are awaited to determine how the factors listed above regulate AEA-induced inhibiting effect on 5-HT₃ receptors.

AEA seems to selectively alter 5-HT_{3A} receptor desensitization kinetics without changing activation and deactivation kinetic properties. This observation is consistent with a previous study showing that AEA does not alter the specific binding of the 5-HT₃ receptor antagonist [³H]GR65630 in HEK 293 cells expressing 5-HT_{3A} receptors (Barann et al., 2002). AEA belongs to a group of signaling lipids that can bind proteins through a hydrogen-bonding-like interaction (Bojesen and Hansen, 2003). It is plausible to predict that AEA reduces current amplitude by lowering the energy barrier of receptors to enter a desensitized state. Conversely, 5-HT_{3A} receptor density at the steady state contributes to the free energy barrier required for conformational changes during a receptor desensitization process. It should be pointed out that AEA is unlikely to be an open channel blocker (OCB) at 5-HT₃ receptors for the following reasons. First, the inhibitory effect of AEA on 5-HT_{3A} receptors was not voltage-dependent (Fan, 1995; Oz et al., 2002). Second, AEA accelerated receptor desensitization in a concentration dependent manner, whereas a typical OCB usually slows receptor desensitization with increasing its concentrations. Third, AEA became less potent to inhibit 5-HT_{3A} receptors when receptor desensitization was slowed after NOC and 5-HTID treatment, whereas an OCB should be more potent to act at a receptor when its desensitization slows.

LGICs constantly move in and out of synaptic membrane surfaces under various physiological and pathological conditions (Moss and Smart, 2001). Such dynamic receptor trafficking is essential for synaptic transmission and plasticity (Sheng and Pak, 2000). Multiple factors can contribute to the regulation of receptor density at synaptic membrane surfaces. Expression levels of 5-HT₃ receptors can be mediated through mechanisms that involve activation of protein kinases (Sun et al., 2003), cytoskeleton proteins (Emerit et al., 2005), naturally occurring genetic variants (Niesler et al., 2001a) and abused drugs such as alcohol (Ciccocioppo et al., 1998). In addition, the expression of these receptors is increased in serotonin transporter deficient mice, suggesting that the extracellular concentration of 5-HT may also influence receptor density (Mössner et al., 2004). Cannabinoids and endocannabinoids exert (in addition to psychotropic effects) strong antinoceptive and antiemetic effects (Pacher et al., 2006). Coincidentally, selective 5-HT₃ receptor antagonists are also known to effectively control pain and emesis (Zhang and Lummis, 2006). It should be interesting for future studies to determine the physiological and therapeutic significance of AEA inhibition of 5-HT₃ receptors in human and animal models.

We conclude that 5-HT₃ receptor steady-state density determines receptor desensitization kinetics and the sensitivity of the receptor to the inhibitory effect of AEA. Such a mechanism seems to account for the variability in AEA inhibition of 5-HT₃ receptors expressed in different neurons and cell lines. This mechanism could also be applicable to the inhibitory effect of AEA on the other members of LGICs such as nACh and glycine receptors because AEA has been found to accelerate receptor desensitization kinetics in a manner similar to that observed in 5-HT₃ receptors (Lozovaya et al., 2005; Spivak et al., 2007).

Acknowledgments

We thank Drs. David Julius (University of California at San Francisco, San Francisco, CA) and Sarah S. C. Lummis (Cambridge University, Cambridge, UK) for kindly providing the cDNA clones of mouse 5-HT₃ receptor and polyclonal 5-HT_{3A} receptor antis serum. We thank Dr. David M. Lovinger for comments on the manuscript. We also thank Guoxiang Lou for constructing 5-HT₃ R-BTX.

References

Emerit MB, Sun H, Hu X-Q, Schoenebeck JC, Peoples RW, Miko A, Williams CK, and Zhang L (2000) 5-HT₃ receptor over-expression decreases nACh and glycine receptors because AEA has been found to accelerate receptor desensitization in a manner similar to that observed in 5-HT₃ receptors (Lozovaya et al., 2005; Spivak et al., 2007).

