Activation of Corticotropin-Releasing Factor Receptor 1 Selectively Inhibits Ca\textsubscript{v}3.2 T-Type Calcium Channels[S]

Jin Tao, Michael E. Hildebrand, Ping Liao, Mui Cheng Liang, Gregory Tan, Shengnan Li, Terrance P. Snutch, and Tuck Wah Soong

Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (J.T., P.L., M.C.L., G.T., T.W.S.); Michael Smith Laboratories, University of British Columbia, Vancouver, Canada (M.E.H., T.P.S.); Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.T., S.L.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (T.W.S.)

Received November 19, 2007; accepted February 21, 2008

ABSTRACT

The corticotropin-releasing factor (CRF) peptides CRF and urocortins 1 to 3 are crucial regulators of mammalian stress and inflammatory responses, and they are also implicated in disorders such as anxiety, depression, and drug addiction. There is considerable interest in the physiological mechanisms by which CRF receptors mediate their widespread effects, and here we report that the native CRF receptor 1 (CRFR1) endogenous to the human embryonic kidney 293 cells can functionally couple to mammalian Ca\textsubscript{v}3.2 T-type calcium channels. Activation of CRFR1 by either CRF or urocortin (UCN) 1 reversibly inhibits Ca\textsubscript{v}3.2 currents (IC\textsubscript{50} of \(\sim\)30 nM), but it does not affect Ca\textsubscript{v}3.1 or Ca\textsubscript{v}3.3 channels. Blockade of CRFR1 by the antagonist astressin abolished the inhibition of Ca\textsubscript{v}3.2 channels. The CRFR1-dependent inhibition of Ca\textsubscript{v}3.2 channels was independent of the activities of phospholipase C, tyrosine kinases, Ca2+/calmodulin-dependent protein kinase II, protein kinase C, and other kinase pathways, but it was dependent upon a cholera toxin-sensitive G protein-mediated mechanism relying upon G protein \(\beta\)\(\gamma\) subunits (G\(\beta\)\(\gamma\)). The inhibition of Ca\textsubscript{v}3.2 channels via the activation of CRFR1 was due to a hyperpolarized shift in their steady-state inactivation, and it was reversible upon washout of the agonists. Given that UCN affect multiple aspects of cardiac and neuronal physiology and that Ca\textsubscript{v}3.2 channels are widespread throughout the cardiovascular and nervous systems, the results point to a novel and functionally relevant CRFR1-Ca\textsubscript{v}3.2 T-type calcium channel signaling pathway.

The corticotropin-releasing factor (CRF) family, consisting of CRF, urocortin 1 (UCN), UCN2, and UCN3, are critical regulators of stress and inflammatory responses, and they have been variously associated with being cardioprotective and contributing toward alcohol and drug dependencies (Reul and Holsboer, 2002; Bale and Vale, 2004; Bruijnzeel and Gold, 2005; Gravanis and Margioris, 2005). CRF has a higher affinity for CRFR1 than for CRFR2, whereas UCN affect multiple aspects of cardiac and neuronal physiology and that Ca\textsubscript{v}3.2 channels are widespread throughout the cardiovascular and nervous systems, the results point to a novel and functionally relevant CRFR1-Ca\textsubscript{v}3.2 T-type calcium channel signaling pathway.

The corticotropin-releasing factor (CRF) peptides CRF and urocortins 1 to 3 are crucial regulators of mammalian stress and inflammatory responses, and they are also implicated in disorders such as anxiety, depression, and drug addiction. There is considerable interest in the physiological mechanisms by which CRF receptors mediate their widespread effects, and here we report that the native CRF receptor 1 (CRFR1) endogenous to the human embryonic kidney 293 cells can functionally couple to mammalian Ca\textsubscript{v}3.2 T-type calcium channels. Activation of CRFR1 by either CRF or urocortin (UCN) 1 reversibly inhibits Ca\textsubscript{v}3.2 currents (IC\textsubscript{50} of \(\sim\)30 nM), but it does not affect Ca\textsubscript{v}3.1 or Ca\textsubscript{v}3.3 channels. Blockade of CRFR1 by the antagonist astressin abolished the inhibition of Ca\textsubscript{v}3.2 channels. The CRFR1-dependent inhibition of Ca\textsubscript{v}3.2 channels was independent of the activities of phospholipase C, tyrosine kinases, Ca2+/calmodulin-dependent protein kinase II, protein kinase C, and other kinase pathways, but it was dependent upon a cholera toxin-sensitive G protein-mediated mechanism relying upon G protein \(\beta\)\(\gamma\) subunits (G\(\beta\)\(\gamma\)). The inhibition of Ca\textsubscript{v}3.2 channels via the activation of CRFR1 was due to a hyperpolarized shift in their steady-state inactivation, and it was reversible upon washout of the agonists. Given that UCN affect multiple aspects of cardiac and neuronal physiology and that Ca\textsubscript{v}3.2 channels are widespread throughout the cardiovascular and nervous systems, the results point to a novel and functionally relevant CRFR1-Ca\textsubscript{v}3.2 T-type calcium channel signaling pathway.

T.W.S. is supported by grants from the Biomedical Research Council, Singapore. T.P.S. is supported by an operating grant from the Canadian Institutes for Health Research and a Canada Research Chair.

Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.

The online version of this article (available at http://molpharm.aspetjournals.org) contains supplemental material.

ABBREVIATIONS: CRF, corticotropin-releasing factor; UCN, urocortin(s); CRFR, corticotropin-releasing factor receptor; GPCR, G protein-coupled receptor; HEK, human embryonic kidney; RGS, regulator of G protein signaling; MAS-GRK3, G protein-coupled receptor kinase; RT-PCR, reverse transcription-polymerase chain reaction; TBST, Tris-buffered saline/Tween 20; I-V, current-voltage; PTX, pertussis toxin; CTX, cholera toxin; GF-109203X, 3-[3-[3-(dimethylaminopropyl)-1H-indol-3-yl]-1-propylamino]-N-(4-bromocinnamylamino)ethyl]-5-isoquinoline; KN-93, 2-([N-(4-methoxybenzenesulfonyl)amino)-(4-chlorocinnamyl)-N-methylamino]-U-73122, 1-[6-[[17]-methoxyestra-1,3,5(10)-tri-en-17-yl]aminovinyl]-1H-pyrole-2,5-dione monohydrochloride; H-89, KN-93, 2-([N-(4-hydroxyethyl)]N-(4-methoxybenzenesulfonyl)amino)-N-(4-chlorocinnamyl)-N-methylamine; U-73122, 1-[(6-[[17]-methoxyestra-1,3,5(10)-tri-en-17-yl]aminovinyl]hexyl]-1H-pyrole-2,5-dione; PKA, cAMP-dependent protein kinase; G\(\beta\)\(\gamma\), G protein \(\beta\)\(\gamma\) subunit; GDP\(\beta\)S, guanosine-5’-[O-3-thiotriphosphate]; GTP\(\gamma\)S, guanosine-5’-[O-3-thiotriphosphate]; PLC, phospholipase C; PKC, protein kinase C; TK, tyrosine kinase(s); ET-18-OCH\(_3\), 1-[6-[[17]-methoxyestra-1,3,5(10)-tri-en-17-yl]aminovinyl]hexyl]-1H-pyrole-2,5-dione; PKI 5-24, protein kinase A inhibitor fragment 5-24.
CaV3.1, CaV3.2, and CaV3.3 are differentially and widely expressed (Perez-Reyes, 2003). Previous reports have shown that CaV3.2 channels are expressed as CaV3.2 agonists. As UCN affect multiple aspects of cardiac and neuronal physiology and as CaV3.2 channels are expressed in brain and various peripheral tissues (Cribbs et al., 1998; McKay et al., 2006; Molineux et al., 2006). Altered T-type calcium channel activity has been implicated in cardiac hypertrophy (Nuss and Houser, 1993), generalized epilepsy (Nelson et al., 2006), and both acute and chronic pain signaling (Bourinet et al., 2005). Although the electrophysiological properties of CaV3 T-type channels are primarily regulated by dynamic changes in membrane potential, their functional properties can also be modulated by the actions of hormones or neurotransmitters acting via GPCRs that trigger downstream transduction pathways (Welsby et al., 2003; Wolfe et al., 2003; Chemin et al., 2006; Kim et al., 2006).

UCN, an endogenous agonist for CRF receptors, has been shown to either attenuate or stimulate low threshold calcium currents depending on the type of native cells examined (Lee and Tse, 1997; Tao et al., 2005; Kim et al., 2007). Various T-type calcium channel subtypes are expressed in these cells (Jagannathan et al., 2002); however, because of the lack of discriminatory antagonists, the selective inhibitory effect of CRF1 activation on each of the three CaV3 channels—CaV3.1, CaV3.2, and CaV3.3—could not be investigated pharmacologically in these cells. As CRFR1, CaV3 and various calcium channels are localized to peripheral and central neuron regions, including the amygdala, hippocampus, hypothalamus, and pituitary (Chalmers et al., 1995; Talley et al., 1999), it is of interest to ask by what mechanism does the activation of the CRF1 underlie the inhibition of CaV3.3 channels and to ask whether the CaV3 calcium channels are specifically inhibited.

In the present study, we report that activation of CRF1 endogenous to the HEK293 cells selectively inhibited CaV3.2 calcium channels, whereas CaV3.1 and CaV3.3 channels were not affected. Besides, the mechanism for the inhibition was mediated via a cholina-toxin sensitive, Gβγ-dependent pathway. It is noteworthy that the decrease in CaV3.2 currents was due to a novel mechanism involving the hyperpolarized shift in the steady-state inactivation property of the channels, and the effect is reversible upon washout of the CRF1 agonist. As UCN affect multiple aspects of cardiac and neuronal physiology and as CaV3.2 channels are expressed widely throughout the cardiovascular and nervous systems, our results point to a novel and functionally relevant CRF1-calcium channel signaling pathway.

Materials and Methods

Cell Culture and Transient Transfection Protocols. HEK293 cells were maintained in Dulbecco’s modified Eagle’s medium + 10% fetal bovine serum. Transient transfection was performed using the standard calcium phosphate transfection method with a DNA mix containing 1:9 ratios (by weight) of green fluorescent protein plasmid and constructs encoding for rat or human CaV3.1, CaV3.2, and CaV3.3 isoforms. The full-length rat (McRory et al., 2001) and human (kindly provided by David Parker, Neuromed Pharmaceuticals, Inc., Vancouver, BC, Canada) CaV3.1, CaV3.2, and CaV3.3 α1-subunits were cloned into the pcDNA3 vector (Invitrogen, Carlsbad, CA). ROSA2 and MGRK3 constructs (both kindly provided by Dr. Brett Adams, Utah State University, Logan, UT) were subcloned into pEGFP-C2 and pIRES vectors, respectively (Clontech, Mountain View, CA).

Reverse Transcription-Polymerase Chain Reaction. Total RNA was extracted from HEK293 cells using the RNeasy kit (QiAGEN, Valencia, CA). Reverse transcription was carried out with SuperScript II (Invitrogen). Negative control (reactions without reverse transcriptase) was carried out in all RT-PCRs to exclude contamination. The sequences of the primers used in this study are summarized in Supplemental Table 1. Hypothalamus and left cardiac atrium were used as positive controls for the expression of CRFR2α and CRFR2β, respectively. The expression of β-actin mRNA was examined as an internal control. The PCR protocol includes a denaturation step at 95°C for 2 min, and the denaturation, annealing, and elongation cycle was carried out at 94°C for 30 s, at 65°C (CRF1, R2α, and R2β) or 60°C (β-actin) for 20 s, and at 72°C for 1 min. PCR was carried out for 35 cycles (CRF1, R2α, and R2β) or 25 cycles (β-actin), respectively. PCR analysis was repeated at least twice with the same samples to confirm reproducibility of the results.

Western Blotting. HEK293 cells were lysed for 1 h in buffer containing 1% Triton X-100, 10 μg/ml aprotinin, and 1 mM phenylmethylsulfonyl fluoride in phosphate-buffered saline (PBS). After centrifugation at 40,000 rpm for 30 min at 4°C, 30 μg of soluble protein was separated on 10% SDS-polyacrylamide gel. The proteins were then transferred electrophoretically onto polyvinylidene difluoride membrane (Bio-Rad Laboratories, Hercules, CA) using a semidy dry transfer system (Bio-Rad Laboratories) with methanol omitted from the transfer buffer. For immunolabeling experiments, membranes were first incubated with 5% nonfat milk in TBST (20 mM Tris, pH 7.6, 137 mM NaCl, and 0.05% Tween 20) for 1 h at room temperature. The membranes were then incubated with diluted primary antibody anti-CRF1 (1:500 dilution, V-14; Santa Cruz Biotechnology, Inc., Santa Cruz, CA) or anti-CRFR2 (1:500 dilution, V-14; Santa Cruz Biotechnology, Inc.) at 4°C overnight. After two washes with TBST, membranes were incubated for 2 h with 2000-fold diluted rabbit anti-goat secondary antibody (Sigma-Aldrich, St. Louis, MO). After another five washes with TBST, the specific binding of the primary antibody was detected with SuperSignal West Pico chemiluminescent substrate (Pierce Chemical, Rockford, IL). The intensity of immunoreactive staining was measured using a scanning densitometer (Scion Image, Scion Corporation, Frederick, MD).

Immunohistochemical Localization of CRF1. HEK293 cells were grown on polylysine-coated sterile coverslips, and then they were fixed in PBS containing 4% sucrose and 4% paraformaldehyde for 20 min at 4°C. The fixed cells were washed three times with PBS before permeabilization in PBS containing 0.1% Triton X-100 for 5 min. Blockade was then carried out with 4% horse serum in TBST for 1 h. This was followed by incubation in primary antibody (goat anti-CRF1, 1:500; Santa Cruz Biotechnology, Inc., Santa Cruz, CA) or anti-CRFR2 (1:500 dilution, C-15; Santa Cruz Biotechnology, Inc.) at 4°C overnight. After five washes with TBST, membranes were incubated for 2 h with 2000-fold diluted rabbit anti-goat secondary antibody (Sigma-Aldrich, St. Louis, MO). After another five washes with TBST, the specific binding of the primary antibody was detected with SuperSignal West Pico chemiluminescent substrate (Pierce Chemical, Rockford, IL). The intensity of immunoreactive staining was measured using a scanning confocal microscope (Fluoview BX61; Olympus, Tokyo, Japan). Negative controls, omitting each primary antibody, were performed in each case, and no significant immunolabelings were observed (data not shown).

Measurement of cAMP. To determine intracellular cAMP levels, 0.5 mM 3-isobutyl-1-methylxanthine, a cyclic nucleotide phosphodiesterase inhibitor, was added to each well 30 min before the addition of CRF, UCN, or astressin to prevent breakdown of accumulated cAMP.
After incubation with CRF or UCN for 10 min, cells were immediately immersed in 0.25 ml of 0.1 M HCl to stop the reaction. For experiments using antagonist, the astressin was applied for 30 min before the 10-min incubation as described above. Cells were collected and then centrifuged at 3000 rpm for 15 min at room temperature. The intracellular cAMP content was determined from the supernatant using the direct cAMP enzyme immunoassay kit in accordance with the manufacturer’s high-sensitivity acetylation protocol (Sigma-Aldrich).

Cloning of Rat CRFR1 Receptor. Rat CRFR1 mRNA was isolated from rat (Wistar) brain, and RT-PCR was performed using CRFR1 forward (5-ATGGAGAATGCCGCACAGCTGCTGCTG-3) and reverse (5-TCCACTGCTGTCGACTTTGATG-3) primers. The PCR product was cloned into pGEM-T Easy (Promega, Madison, WI) vector, and the identity of the rat CRFR1 was confirmed by DNA sequencing. The full-length rat CRFR1 digested with restriction enzymes SpeI and NotI was subcloned into MCS B site of the pRES vector (Clontech), whereas mCherry (gift from Dr. Roger Y. Tsien, University of California, San Diego, CA) was cloned into the MCS A site using the XhoI and EcoRI restriction enzyme sites.

Electrophysiological Recordings and Data Analysis. Whole-cell currents were recorded at room temperature. Extracellular solution contained 140 mM tetraethylammonium methanesulfonate, 10 mM HEPES, and 5 mM BaCl2 (pH 7.3 with CsOH). Patch pipettes (WPI, Sarasota, FL) have a resistance of 2 to 3 MΩ when filled with an internal solution of 138 mM Cs-MSO4, 5 mM CsCl, 0.5 EGTA, 1 mM MgCl2, 4 mM MgATP, and 10 mM HEPES (pH 7.3, adjusted with CsOH). Complete replacement of external solution 2 mM/min in the chamber was achieved within 2 to 3 min. Whole-cell Ba2+ currents were recorded using a MultiClamp 700B amplifier (Axon Instruments, Foster City, CA), controlled and monitored with a PC running p-CLAMP software, version 9.3 (Axon Instruments, Foster City, CA), controlled and monitored with a PC running p-CLAMP software, version 9.3 (Axon Instruments). Series resistance was typically <5 MΩ, and then it was electronically compensated by at least 70%. Data were low-pass-filtered at 2 kHz using the built-in Bessel filter of the amplifier, and subtraction of capacitive and leakage current was carried out on-line using the P/4 protocol. Student’s t tests were used to compare the different values, and they were considered significant at P < 0.05. All data are expressed as means ± S.E.M., and GraphPad Prism software (GraphPad Software Inc., San Diego, CA) was used for data plotting.

Concentration–response curves were fitted by sigmoidal Hill equation $I_{max} \cdot \frac{[G]}{IC50 + [G]}$, where X is the decadic logarhythm of the concentration used, $IC50$ is the concentration at which the half-maximum effect occurs, and nH is the Hill coefficient. The current-voltage (I-V) curves were fitted by $I_{Ba} = G_{max} \cdot (V - E_{0Ba})/(1 + \exp(-V/V_{1/2}))$. Activation data were fitted by $G/T = F_{max}/(1 + \exp(-V/V_{1/2}))$. Steady-state inactivation data were fitted by a Boltzmann function of the form $I_{Ba}/I_{BA} = \exp(V - V_{1/2})/\exp(V - V_{1/2})$. Recovery of currents from inactivation was tested using a double-pulse protocol. The peak current from the second test pulse was always normalized to the first s-pulse, and the plot of normalized current versus repolarization time was fitted with a double exponential equation: $Y = Y_{min} + A_1 \times [1 - \exp(-t/\tau_1)] + A_2 \times [1 - \exp(-t/\tau_2)]$, where Y is the fraction of recovery, A_1 and A_2 are the maximum values of the fast and slow component, and τ_1 and τ_2 are the time constants, respectively.

Pharmacological Agents. All drugs were obtained from Sigma-Aldrich, unless otherwise indicated. Stock solutions of UCN, CRF, PKI 5-24, chelerythrine chloride, pertussis toxin (PTX), cholera toxin (CTX), and astressin were prepared in distilled deionized water. Stock solutions of GF109203X, H-89, wortmannin, genistein, KN-93, and U-73122 were prepared in dimethyl sulfoxide. The concentration of dimethyl sulfoxide in the bath solution is expected to be less than 0.01%, and it had no functional effects on the T-type calcium currents. The QEHA peptide (QEQHAEPEPQYMYQGIVMGFAYALVGK) and SKEE peptide (SKEEKSDKERWQHL ADLADFALAMKDT) were synthesized by GenScript Corporation (Scotch Plains, NJ). The peptides were purified by high-performance liquid chromatography (>95%), and the identities were verified by mass spectrometry.

Results

HEK293 Cells Endogenously Expressed Functional CRFR1. Previous reports have shown that HEK293 cells endogenously express CRF receptors (Dautzenberg et al., 2000). To confirm both the receptor subtype and the ability of endogenous receptors to transduce downstream signals after binding CRF or UCN, we characterized HEK293 cells by RT-PCR, Western blot, and immunohistochemistry analyses. RT-PCR analysis demonstrated that CRFR1 mRNA was expressed in HEK293 cells, but that neither CRFR2a nor CRFR2β mRNA could be detected (Fig. 1A). As controls for the RT-PCR, CRFR2α and CRFR2β transcripts could be clearly amplified from mRNAs isolated from mouse hypothalamus and left atrium, respectively (Fig. 1A). All RT-PCR reactions were able to amplify β-actin, whereas the negative controls performed in parallel in the absence of reverse transcriptase enzyme in the RT reaction showed no product. Western blot analysis of HEK293 cell protein lysates using anti-CRFR1 antibody revealed that CRFR1 was expressed at the predicted size of ~55 kDa, whereas CRFR2 was not detected by anti-CRFR2 antibody (Fig. 1B). As a positive control, mouse hypothalamus, which is known to express both CRFR1 and CRFR2, showed prominent bands of ~55 kDa (CRFR1) and ~65 kDa (CRFR2), and both HEK293 cell and hypothalamus lysates produced robust staining for β-actin (Fig. 1B). As CRF receptors belong to the family of seven-transmembrane GPCRs (Markovic et al., 2006) and would be expected to be localized to the plasma membrane, we examined the distribution of CRFR1 on HEK293 cells by confocal microscopy. Figure 1C clearly shows the membrane localization of CRFR1. To test the functionality of the endogenous CRFR1 in HEK293 cells, we measured the levels of cAMP produced from CRF stimulation by either CRF or UCN, both of which are known to activate adenylyl cyclase (Markovic et al., 2006). Upon either 0.01 μM CRF or 0.01 μM UCN application to HEK293 cells, cAMP production was stimulated ~7-fold over basal levels (Fig. 1D). In the presence of the CRFR1 antagonist, 1 μM astressin, the stimulation of cAMP accumulation by UCN or CRF was completely abrogated (Fig. 1D). Taken together, the results show that the HEK293 cells endogenously expressed fully functional CRFR1 and that they could therefore be used to investigate the mechanisms by which Ca3.1 T-type calcium channels might be affected.

CRFR1 Selectively Inhibited Ca3.2 T-Type Calcium Channels. The binding affinities of CRF and UCN peptides to CRFR1 are roughly similar (Dautzenberg et al., 2000), and we decided to first investigate the activation of CRFR1 by UCN on Ca3.2 T-type calcium channels. Figure 1 shows that rat Ca3.2 channels were selectively inhibited by application of 0.1 μM UCN, whereas the rat Ca3.1 and Ca3.3 T-type calcium channels were not affected. A similar selective inhibition of Ca3.2 channels was observed at all test potentials (Fig. 2, A–C, right). Overall, application of 0.1 μM UCN significantly reduced Ca3.2 currents by ~31% (I/Icontrol = 0.70 ± 0.05, n = 15, P < 0.05), whereas neither Ca3.1 nor Ca3.3 currents were significantly affected (Ca3.1: I/Icontrol = 0.98 ± 0.03, n = 13, P > 0.05; Ca3.3: I/Icontrol =
0.96 ± 0.04, n = 6, P > 0.05). After washout, CaV3.2 channel currents returned to baseline levels within 5 min (Fig. 2F), indicating the effect of UCN on CaV3.2 currents was not due to rundown. To determine whether the observed selective inhibition of CaV3 was species-specific, we further investigated the effects of 0.1 μM UCN on the three human brain CaV3 T-type calcium channel isoforms expressed in HEK293 cells. Figure 1E shows a similar degree of UCN-mediated inhibition (−37%) of human CaV3.2 currents (I/I_control = 0.63 ± 0.06, n = 7, P < 0.01), with no significant effects on either CaV3.1 (I/I_control = 0.97 ± 0.03, n = 9, P > 0.05) or CaV3.3 (I/I_control = 0.98 ± 0.07, n = 7, P > 0.05) currents. Electrophysiological recordings for the UCN-mediated inhibition of human CaV3 T-type calcium channels and the time course of the inhibition are shown (Supplemental Fig. 8).

CRFR1 Activation Affected CaV3.2 Channels by Shifting Steady-State Inactivation Properties. Before investigating the mechanism for the selective inhibition of CaV3.2 calcium channels via UCN activation of CRFR1, we examined 1) whether the response is dosage-dependent and 2) whether channel electrophysiological properties were affected. To address the first issue, we performed a UCN dose-response study for the inhibition of CaV3.2 currents. At a holding potential of −110 mV, application of UCN at 0.01, 0.1, 1, and 10 μM increasingly inhibited CaV3.2 currents by 15% (I/I_control = 0.85 ± 0.03, n = 8, P < 0.05), 31% (I/I_control = 0.70 ± 0.05, n = 15, P < 0.05), 41% (I/I_control = 0.59 ± 0.04, n = 9, P < 0.01), and 43% (I/I_control = 0.57 ± 0.05, n = 7, P < 0.01), respectively (Fig. 3A). The maximum inhibition reduced the original peak current by 43%, with a calculated IC50 = 30.41 nM and a Hill coefficient of 0.98. We next evaluated the inhibition of UCN at a more physiological holding potential of −80 mV, and we found that the CaV3.2 channels were even more sensitive to inhibition by UCN with an ~4-fold decrease in the IC50 to 6.93 nM (Hill coefficient of 0.97; Fig. 3B). To address the second point, we investigated

Fig. 1. CRFR1 is endogenously expressed in HEK293 cells. A, detection of CRFR1, CRFR2α, and CRFR2β in HEK293 cells. Total RNA from mouse hypothalamus or left atrium was used as positive controls for CRFR2α and CRFR2β, respectively. Negative control indicates RT-PCR reaction without the addition of RT. B, Western blot analysis of CRFR1 (top), CRFR2 (middle), and β-actin (bottom) of HEK293 membrane protein extracts. Mouse hypothalamus expressing both CRFR1 (~55 kDa) and CRFR2 (~65 kDa) is used as positive control, whereas β-actin expression controls for loading. Quantifications of band intensities are measures of relative expression levels. C, membrane expression of CRFR1 determined by confocal microscopy. Merged picture (top) of bright field (bottom, left) and fluorescent signals of CRFR1 (bottom, right). Scale bar, 20 μm. Proteins were immunolabeled by a monoclonal goat anti-CRFR1 antibody (green; Alexa). D, application of 0.01 μM UCN and 0.01 μM CRF stimulated robust cAMP production, but not in the presence of antagonist astressin at 1 μM. The results are representative of three independent experiments. *, P < 0.05 versus control.
whether the steady-state activation and inactivation properties of CaV3.2 channels were affected by bath application of 0.1 μM UCN. We observed a slight but statistically insignificant shift of 2 mV in the hyperpolarizing direction of the activation potential ($V_{1/2}$ from -41.8 ± 2.6 to -43.7 ± 1.3 mV and k value from 5.9 ± 0.3 to $6.0 \pm 0.6, n = 19, P > 0.05$) (Fig. 3C). In contrast, 0.1 μM UCN significantly shifted the steady-state inactivation potentials of CaV3.2 calcium channels in the hyperpolarizing direction by ~ 13 mV ($V_{1/2}$ from -66.7 ± 0.6 to -79.5 ± 0.7 mV, and k value from 4.9 ± 0.6 to $7.2 \pm 0.7, n = 17, P < 0.05$) (Fig. 3D). In addition, UCN at 30 nM ($-IC_{50}$ at holding potential of -110 mV) shifted the steady-state inactivation potentials of CaV3.2 calcium channels in the hyperpolarizing direction by an expected smaller
potential of $-8 \text{ mV} (V_{1/2} = -75.3 \pm 0.7 \text{ mV and } k = 6.6 \pm 0.8, n = 6, P < 0.05 \text{ versus control})$ (Fig. 3E), suggesting a dose dependence in the shift of the steady-state inactivation upon activation of CRFR1 by UCN. Furthermore, after 0.1 μM UCN washout, the steady-state inactivation reversed to values similar to controls before UCN application ($V_{1/2} = -68.4 \pm 0.7$ and $k = 5.2 \pm 0.6, n = 8, P < 0.05$). This result suggests that the reduction in CaV3.2 currents observed upon application of UCN could be the result of increased channels remaining in the inactivated state. We further determined whether activation of CRFR1 will affect CaV3.2 recovery from inactivation. A typical two-pulse protocol was used with a prepulse of 1-s duration (Fig. 3F). We observed a slight but statistically insignificant effect of 0.1 μM UCN ($P > 0.05$) on the fast and slow components of recovery from inactivation (control: $\tau_{\text{fast}} = 110 \pm 19 \text{ ms, } n = 9, \tau_{\text{slow}} = 916 \pm 113 \text{ ms, } n = $...
9; 0.1 \mu M UCN; \tau_{\text{fast}} = 103 \pm 17 \text{ ms}, n = 9, \tau_{\text{slow}} = 684 \pm 72 \text{ ms}, n = 9) (Fig. 3F), which suggested that the UCN blockade purely shifted the steady state of inactivation potentials to the left and that it did not affect the rate of recovery. Interestingly, however, there seemed to be some facilitation of the Ca\textsubscript{v}3.2 channels under both conditions.

UCN and CRF Similarly Inhibited Ca\textsubscript{v}3.2 Currents by Activation of CRFR1. To confirm that the UCN-mediated response occurred via CRFR1, we examined its effects on Ca\textsubscript{v}3.2 currents in the presence or absence of the CRFR antagonist astressin. Preincubation with 1 \mu M astressin blocked the UCN-induced inhibition (I/I_{\text{control}} = 0.95 \pm 0.06, n = 6, P < 0.05) (Fig. 4A), indicating that the inhibition of Ca\textsubscript{v}3.2 channels is CRFR1-dependent. Importantly, CRF peptide activation of CRFR1 also showed robust inhibition (by \sim 28\%) of the Ca\textsubscript{v}3.2 currents (I/I_{\text{control}} = 0.72 \pm 0.04, n = 6, P < 0.05) (Fig. 4B) and was CRFR1-dependent as demonstrated by the abrogation of inhibition after preincubation with 1 \mu M astressin.

Ca\textsubscript{v}3.2 Channel Inhibition Can Be Enhanced by Exogenous CRFR1 Expression. We next explored whether the level of Ca\textsubscript{v}3.2 channel inhibition might be increased in the CRFR1-transfected HEK293 cells. Preincubation with 1 \mu M CRF blocked the UCN-induced inhibition (I/I_{\text{control}} = 0.54 \pm 0.04, n = 6, P < 0.05) (Fig. 4B) and was CRFR1-dependent as demonstrated by the abrogation of inhibition after preincubation with 1 \mu M astressin.

We also examined whether the level of Ca\textsubscript{v}3.2 channel inhibition might be increased in the CRFR1-transfected HEK293 cells. Figure 5C shows that upon application of either UCN or CRF that Ca\textsubscript{v}3.2 currents were significantly reduced by 46.3\% (I/I_{\text{control}} = 0.54 \pm 0.04, n = 6, P < 0.05) and 42.5\% (I/I_{\text{control}} = 0.57 \pm 0.04, n = 6, P < 0.05), respectively. These values represent an \sim 50\% increase in the degree of inhibition of Ca\textsubscript{v}3.2 currents compared with that for non–CRFR1-transfected HEK293 cells. Dose-response analysis of UCN inhibition in CRFR1 transfected HEK293 cells showed an enhanced affinity by \sim 6-fold (IC\textsubscript{50} = 5.07 nM and Hill coefficient = 0.96) (Fig. 5C, bottom). Again, pretreatment of the cells with 1 \mu M astressin abrogated the inhibitory effects of UCN and CRF on Ca\textsubscript{v}3.2 currents (I/I_{\text{control}} = 0.95 \pm 0.03 for UCN, n = 6 and I/I_{\text{control}} = 0.96 \pm 0.04 for CRF, n = 6) (Fig. 5, C and D). Overall, the apparent nonlinearity of the relationship between the level of CRFR1 protein, the production of cAMP, and the degree of Ca\textsubscript{v}3.2 inhibition may reflect the fact that cAMP/cAMP-dependent protein kinase (PKA)-dependent intracellular signaling factors required to affect inhibition of Ca\textsubscript{v}3.2 channels might be lim-
iting. Alternatively, it may indicate that a signaling mechanism distinct from the well described CRFR1-mediated cAMP/PKA pathway is involved in the inhibition of Ca\textsubscript{v}3.2 T-type channels (see below).

Involvement of G Proteins in CRFR1-Mediated Ca\textsubscript{v}3.2 Calcium Channel Inhibition. To address whether G proteins are directly involved in the CRFR1-dependent inhibition of Ca\textsubscript{v}3.2 calcium channels, we dialyzed into cells guanosine-5-O-(2-thiodiphosphate) (GDP\textsubscript{S}; 1 mM), a non-hydrolysable GDP analog. It shows that GDP\textsubscript{S} abolished the inhibition of Ca\textsubscript{v}3.2 currents by 0.1 μM UCN (Fig. 6A, left; \(I/I_{\text{control}} = 0.97 \pm 0.03, n = 6\)). In contrast, the non-hydrolyzable GTP analog guanosine-5-O-(3-thiotriphosphate) (GTP\textsubscript{S}; 100 μM) did not prevent the UCN-mediated inhibition of Ca\textsubscript{v}3.2 currents (\(I/I_{\text{control}} = 0.58 \pm 0.03, n = 6, P < 0.05\)) and that the inhibition remained for up to 10 min after the washout of UCN. For control cells not dialyzed with intracellular GTP\textsubscript{S}, the inhibition by UCN was reversed and the currents returned to baseline levels within 5 min after the washout of UCN (Fig. 6B). These results indicated

Fig. 5. Effects of overexpression of CRFR1 on Ca\textsubscript{v}3.2 channels. A, Western blot analysis showed robust expression of cloned CRFR1 transfected in HEK293 cells. Anti-CRFR1 immunolabeled mouse hypothalamus (left lane, positive control) and transfected HEK293 cells (right lane) showing the –55-kDa CRFR1, with β-actin as control (42 kDa, bottom). B, stimulation of cAMP in CRFR1-transfected HEK293 cells by 0.01 μM CRF (n = 6), 0.01 μM UCN (n = 6) in the presence or absence of 1 μM astressin (n = 6). The results are from three independent experiments done in duplicates; *, \(P < 0.05\) versus control. C and D, effects of UCN (C; n = 6) and CRF (D; n = 6) on Ca\textsubscript{v}3.2 currents in HEK293 cells cotransfected with Ca\textsubscript{v}3.2 and CRFR1 cDNA. Exemplary traces show the effects of 0.1 μM UCN or 0.1 μM CRF on Ca\textsubscript{v}3.2 currents in the absence (top, left) (n = 6) and presence (top, right) (n = 6) of 1 μM astressin. Pooled data are shown as mean ± S.E.M. for control and drug treated cells (bottom, left). Dose-response curves were fitted by a sigmoidal Hill equation. Ca\textsubscript{v}3.2 currents were evoked by a 100-ms depolarizing step to –30 mV from a holding potential of –110 mV. Astressin alone did not affect the amplitudes of Ca\textsubscript{v}3.2 currents (C; bottom, n = 6), *, \(P < 0.05\) versus control.
that G proteins are involved in the CRFR1-mediated inhibition of CaV3.2 currents. We further determine that which isofrom of Ga was involved in this inhibition. To investigate whether the UCN-mediated response occurred via Ga, we examined its effects on CaV3.2 currents in the presence of CTX, which could catalyze ADP-ribosylation of Ga. Pretreatment of CaV3.2-expressing cells with CTX (500 ng/ml for 24 h) abolished the UCN-induced inhibition (I/I_control = 0.95 ± 0.06, n = 6) (Fig. 6C), indicating that the inhibition of CaV3.2 channels is Ga-dependent. In addition, after pretreatment of the cells with PTX (200 ng/ml for 24 h), which catalyzes the ADP-ribosylation of Ga, UCN still mediated robust inhibition of the CaV3.2 currents (I/I_control = 0.67 ± 0.07, n = 5) (Fig. 6C). The CaV3.2 currents inhibition induced by CRFR1 activation was sensitive to CTX but not PTX, implicating Ga in this inhibition. To investigate whether UCN-mediated CaV3.2 currents inhibition proceeds through a Ga-mediated pathway, CaV3.2 currents inhibition was examined in the presence of 0.1 µg/µl RGS2, which could selectively bind Ga,GTP (Kammermeier and Ikeda, 1999). In RGS2-expressing cells, UCN still inhibited CaV3.2 currents by ~29% (I/I_control = 0.70 ± 0.02, n = 5) (Fig. 6C), which is not significantly different compared with the RGS2-nontransfected cells. These results suggested that Ga, not Ga and Ga, is involved in the UCN-induced CaV3.2 channels inhibition.

UCN Inhibited CaV3.2 Channels Independently of Phospholipase C and Downstream Protein Kinases.

Previous reports have shown that cardiovascular and neuronal protections by UCN are mediated via activation of either cAMP/PKA or PKC (Markovic et al., 2006). As it has also been reported that T-type calcium channels can be regulated by serine-threonine kinases, tyrosine kinases (TK), and phospholipase C (PLC) pathways (Chemin et al., 2006), we investigated whether the inhibitory effects of CRFR1 are mediated by these known pathways. After pretreatment of CaV3.2-expressing cells with the selective PKC inhibitors GF109203X (1 µM) or chelerythrine chloride (1 µM), 0.1 µM UCN still mediated robust inhibition of the CaV3.2 currents (I/I_control = 0.70 ± 0.04, n = 6, P < 0.05 versus control and I/I_control = 0.70 ± 0.08, n = 5, P < 0.05 versus control, respectively) (Fig. 7, A and G). Likewise, pretreatment with selective PLC inhibitors U-73122 (3 µM) or chelerythrine chloride (1 µM), 0.1 µM UCN still mediated robust inhibition of the CaV3.2 currents (I/I_control = 0.67 ± 0.03, n = 5, P < 0.05 versus control and I/I_control = 0.68 ± 0.05, n = 5, P < 0.05 versus control, respectively) (Fig. 7, B and G). The degree of inhibition by UCN in the presence or absence of

Fig. 6. G protein-mediated inhibition of CaV3.2 channels by UCN. A, exemplary traces of CaV3.2 currents before (−UCN) and during 0.1 µM UCN (+UCN) application in the presence of 1 mM GDPβS (left). Pooled data show the mean current amplitude ± S.E.M. of CaV3.2 currents (n = 6). B, time course of UCN inhibition on CaV3.2 currents in absence and presence of GTPγS. Exemplary traces of CaV3.2 currents obtained in presence (left) of GTPγS, before, during, and after washout of the application of 0.1 µM UCN. Application of UCN (dark bar, bottom) was for 5 min before washout for the next 10 min (light bar). Both control cells (○) and cells recorded with 0.1 mM GTPγS in the patch pipette (●) show current inhibition as evaluated at time = 0 min. After washout, CaV3.2 currents recorded in control cells, in the absence of GTPγS, returned to original amplitude, whereas GTPγS-treated cells show a continuous inhibition for up to 10 min. Numbers in parentheses indicate number of cells tested. C, effects of UCN on CaV3.2 currents in PTX (200 ng/ml for 24 h, n = 5) or CTX (500 ng/ml for 24 h, n = 5)-treated cells, and RGS2-expressing HER293 cells (0.1 µg/µl, n = 5). CaV3.2 currents (A–C) were evoked by a 100-ms depolarization step to −30 mV from a holding potential of −110 mV. D, effect of 500 ng/ml CTX on the steady-state inactivation curve of CaV3.2. Steady-state inactivation curves in the absence (○) or presence (●) of CTX were obtained by evoking CaV3.2 currents with a test depolarization to −30 mV applied at the end of 15-s conditioning pulses ranging from −120 to −30 mV.
PKC inhibitors (GF109203X or chelerythrine chloride) and PLC inhibitors (U-73122 or ET-18-OCH₃) were not significantly different. After pretreatment with 100 μM genistein, a broad-spectrum inhibitor of TK, and after current amplitudes had stabilized, application of 0.1 μM UCN inhibited the Iₜₖₐ by ~27% (I/Iₜₖₐ = 0.73 ± 0.06, n = 5) (Fig. 7C), which was not different from the inhibition obtained in the absence of genistein. Previous reports also showed that CaMKII and phosphatidylinositol 3-kinase (PI3K) were involved in G protein-mediated regulation of T-type calcium channels (Chemin et al., 2006). Here, preincubation with 1 μM wortmannin, a specific PI3K inhibitor, or 0.5 μM KN-93, a selective CaMKII inhibitor, failed to prevent the UCN-induced inhibition of Ca₃.₂ channel currents (I/Iₜₖₐ = 0.69 ± 0.08, n = 5, P < 0.05 versus control) (Fig. 7D; I/Iₜₖₐ = 0.65 ± 0.06, n = 5, P < 0.05 versus control) (Fig. 7E), indicating that the PI3K and CaMKII pathways were not involved. As activation of CRFR1 increases cAMP accumulation and PKA activity (Dautzenberg et al., 2002), blocking PKA activity might be expected to block the effect of UCN-mediated inhibition. To test this possibility, we dialedyzed the cells with a pipette solution containing PKI 5-24 (1 μM) and found no effect on the Ca₃.₂ currents over 5 min. After this pretreatment of PKI 5-24 for 5 min, application of 0.1 μM UCN still reduced current amplitudes by 30% (I/Iₜₖₐ = 0.70 ± 0.05, n = 6, P < 0.05 versus control) (Fig. 7F) similar to that for currents recorded in the absence of PKI 5-24. Similar inhibition by UCN on Ca₃.₂ currents with 0.5 μM H-89 (~29%; I/Iₜₖₐ = 0.71 ± 0.07, P < 0.05 versus control, n = 5) was also obtained (Fig. 7G). Taken together, these results indicate that the inhibition of Ca₃.₂ currents mediated by CRFR1 is not likely to be mediated via PLC or downstream PKA, PKC, CaMKII, PI3K, or TK signaling pathways.

UCN Inhibited Ca₃.₂ T-Type Calcium Channels via G Protein βγ Subunits. We further tested whether the UCN-induced inhibition of Ca₃.₂ currents might be mediated via Gβγ subunits by introducing into the recording pipette a synthetic peptide, QEH (encoding residues 956 to 982 of adenylyl cyclase 2), which competitively binds Gβγ Fig. 7. UCN inhibits Ca₃.₂ channels independently of PKC, PKA, TK, PI3K, CaMKII, and PLC (A–G). Ca₃.₂ currents were evoked by a 100-ms depolarizing step to −30 mV from a holding potential of −110 mV. Cells were incubated with 1 μM GF109203X for 30 min (A; n = 6), 3 μM U-73122 for 30 min (B; n = 5), 100 μM genistein for 30 min (C; n = 5), 1 μM wortmannin (D; n = 5), and 0.5 μM KN-93 (E; n = 5), or intracellular applied 1 μM PKI 5-24 (F; n = 6). Pretreatment of cells with 0.5 μM H-89 (n = 5), 10 μM ET-18-OCH₃ (ET; n = 5), and 1 μM chelerythrine chloride (n = 5) is shown (G). The amplitude of the peak Ca₃.₂ current in the presence of UCN is normalized to the peak current recorded before drug application. Exemplary traces (A–F, top) and pooled data (A–F, bottom) show Ca₃.₂ currents in the absence (−UCN) or presence (+UCN) of 0.1 μM UCN. *, P < 0.05 versus control.
and blocks Gβγ-mediated signaling (Chemin et al., 2006). As a control, we used a synthetic SKEE peptide, representing the cognate region of adenylyl cyclase 3, that does not bind Gβγ. Our results showed that intracellular pipette application of 200 μM QEHA suppressed the effects of 0.1 μM UCN (I/I_{control} = 0.97 ± 0.03, n = 6 for −UCN and 0.95 ± 0.04, n = 9 for +UCN) (Fig. 8, A and B). Furthermore, the intracellular application of the QEHA peptide also eliminated the hyperpolarizing shift in the steady-state inactivation potential normally elicited by UCN (V_{1/2} = −69.6 ± 0.7 mV for control and V_{1/2} = −67.8 ± 0.9 mV for UCN + QEHA, n = 5, P > 0.05) (Fig. 8E). In contrast, intracellular application of 200 μM SKEE peptide did not significantly affect the UCN-induced inhibition of Ca₃.2 currents (I/I_{control} = 0.97 ± 0.02, n = 6 for −UCN and 0.69 ± 0.04, n = 7 for +UCN) (Fig. 8, C and D). Beside intracellular application of QEHA, a membrane-associating C-terminal construct of a G protein-coupled receptor kinase that sequesters Gβγ (MAS-GRK3) was transfected into HEK293 cells to further determine whether Gβγ is involved in the inhibition of Ca₃.2 currents. When MAS-GRK3 was coexpressed in Ca₃.2-expressing HEK293 cells, the robust inhibition by UCN was almost eliminated (I/I_{control} = 0.92 ± 0.09, n = 5) (Fig. 8G). These results demonstrate that Ca₃.2 channel inhibition is mediated via a Gβγ-dependent mechanism upon the activation of the CRFR1.

Fig. 8. Evidence that Gβγ mediates CRFR1-dependent inhibition of Ca₃.2 currents. A, 200 μM synthetic QEHA peptide prevented current inhibition by 0.1 μM UCN perfused continuously as indicated by arrow. Inset, without UCN (□) and 0.1 μM UCN (▲). B, pooled data indicate QEHA peptide abolition of UCN-induced inhibition of Ca₃.2 currents in the absence (−UCN, n = 6) or presence of 0.1 μM UCN (+UCN, n = 9). C, control 200 μM SKEE peptide did not prevent UCN-induced inhibition. Inset, without UCN (□) and +UCN (0.1 μM) (▲). D, pooled data indicate SKEE peptide effect on UCN-induced inhibition of Ca₃.2 currents in the absence (−UCN, n = 6) and presence of 0.1 μM UCN (+UCN, n = 7); *, P < 0.05 versus control. E, steady-state inactivation curve of QEHA peptide in the absence of UCN (□) (n = 5) and presence of 0.1 μM UCN (n = 5) (▲). F, left, PCR products of Gβ2 (1023 base pairs) and Gβγ (216 base pairs) amplified from HEK293 mRNA. Negative controls: without adding RT (−RT) or template (water). Right, Gβ (top) was expressed in HEK293 cells and rat brain, with β-actin as control (bottom). G, effects of UCN on Ca₃.2 currents in 0.01 μg/μl MAS-GRK3-coexpressed HEK293 cells (n = 5).
G protein-dependent inhibition of calcium channels has been previously demonstrated to require the G_{12} subunit, whereas the requirement for a specific G_{13} subunit is less stringent (Wolfe et al., 2003). To support our results that the inhibition of CaV3.2 calcium channels induced by CRFR1 activation was via G_{12}, we investigated whether G_{12} or G_{13} subunit was endogenously expressed in HEK293 cells. We found by RT-PCR that G_{12} and G_{13} transcripts are endogenously expressed in HEK293 cells (Fig. 8F, left). Endogenous G_{12} protein was also detected by anti-G_{12} in HEK293 cells (Fig. 8F, right). Taken together, these results strongly suggest that native CRFR1 receptors couple via an endogenous G_{12}-dependent signaling pathway to mediate the selective inhibition of CaV3.2 channels among the T-type subfamily of calcium channels. This pathway represents a novel CRFR1-coupled mechanism distinct from the previously described PLC and downstream kinase signaling pathways.

Discussion

CRF peptides mediate multiple physiological responses, including those involved in mammalian responses to stress and inflammation. There is also growing evidence that CRF peptides contribute toward human disorders such as anxiety, depression, and alcohol and drug addictions (Reul and Holsboer, 2002; Bale and Vale, 2004; Gravanis and Margioris, 2005, Bruinzeel and Gold, 2005). Several CRF receptor subtypes are known to be expressed, and there is considerable interest in determining both the downstream effectors and mechanisms by which these GPCRs mediate their widespread physiological functions. In the present article, we demonstrate that activation of CRFR1 receptors by either CRF or UCN robustly inhibits CaV3.2 calcium channels via a G_{12}-dependent mechanism with no effect on either CaV3.1 or CaV3.3 T-type calcium channels. We also find that the CRFR1-mediated inhibition of CaV3.2 channels is state-dependent, likely occurring through stabilizing the channels in the inactivated state, and the inhibition is reversible after washout of UCN.

HEK293 cells are an appropriate expression system as these cells endogenously and exclusively express the corticotropin-releasing factor receptor 1, the CRFR1 subtype (Dautzenberg et al., 2000) (Fig. 1). Both the activation of endogenous and overexpressed cloned CRFR1 receptors produced robust and selective inhibition of cloned rat and human brain CaV_{3.2} T-type calcium channels. CRF and UCN have both been shown to bind CRFR1 receptors with similar affinities (Dautzenberg et al., 2000), and we found that CaV_{3.2} calcium channel inhibition was also not ligand-dependent as both CRF and UCN elicited comparable levels of T-type calcium channels inhibition.

The G protein-dependent inhibition of T-type calcium channels has been previously demonstrated to require the G_{12} subunit, whereas the requirement for a specific G_{13} subunit is less stringent (Wolfe et al., 2003). These reports have found that inhibition mediated by G protein decreases the probability of opening of the CaV_{3.2} calcium channels, whereas activation and inactivation properties are unaltered. Note that, in our present findings, the activation of CRFR1 receptors by either CRF or UCN produced a distinct and significant hyperpolarizing shift in the steady-state inactivation potentials, whereas activation potentials remained unaltered. Unlike the activation of the dopamine receptor 1, which requires both cAMP and G protein to act in combination to inhibit T-type calcium currents (Drolet et al., 1997), a similar requirement was not evident for the CRFR1-mediated inhibition of the CaV_{3.2} channels. Evaluating the role of cAMP in CRFR1-mediated inhibition of CaV_{3.2} channels, application of PKI 5-24, a potent and selective peptide inhibitor of PKA, failed to diminish the inhibitory effects of CRFR1 activation, indicating that PKA is not directly involved in CaV_{3.2} inhibition.

Previous reports have shown that T-type calcium currents can also be modulated by the PKC signaling pathway. In one instance, examining GH3 cells showed that native T-type calcium currents are inhibited by 1-oleoyl-2-acetylglycerol (a diacylglycerol analog) (Herrington and Lingle, 1992). Similar results were reported for native T-type currents in chick dorsal root ganglion neurons, although in these neurons the direct inhibition was independent of PKA activation (Hockberger et al., 1989). Here, GF109203X, a selective PKC inhibitor, failed to prevent the inhibition by UCN, indicating that PKC is also not involved in CaV_{3.2} channel inhibition. Previous reports have suggested that PLC activation could also be part of the CRFR1-signaling pathway (Radulovic et al., 2003). PLC is a critical component of the phosphoinositol pathway that generates two second messengers, diacylglycerol and inositol 1,4,5-trisphosphate, that are thought to be involved in some types of T-type calcium channel regulation (Chemin et al., 2006). We found that U-73122, a phospholipase C inhibitor, was unable to abrogate the inhibition of CaV_{3.2} induced by the UCN-mediated activation of CRFR1 receptor, ruling out the possible involvement of the PLC pathway. Furthermore, the inhibition of CaV_{3.2} channels via the CRFR1 receptor is independent of the activation of tyrosine kinases, CaMKII, and P13K, through which T-type calcium channels could be regulated. The explanation for the differences remains to be determined, but it might be attributed to the diversity of UCN activities on cells or that the A-kinase-anchoring protein-deficient HEK293 cells may not be capable of supporting robust ion channel phosphorylation. In addition, it has been reported that kinase modulation of T-type calcium channels has been shown to be temperature-dependent in which phosphorylation was observed at 37°C, but it was less obvious when the experiments were performed at room temperature (Chemin et al., 2007). These factors may be involved in CRFR1-mediated CaV_{3.2} regulations, and they need to be further examined.

Native and cloned T-type calcium channel properties have been reported to be regulated by cAMP-dependent PKA, PKC, PKG, calmodulin-dependent protein kinase II, and tyrosine kinases through various G protein-coupled receptors (Herrington and Lingle, 1992; Kim et al., 2006). We find that G_{12} and G_{13} transcripts and proteins are endogenously expressed in HEK293 cells, which suggests the potential involvement of G_{12} in the selective inhibition of CaV_{3.2} channels by activation of the CRFR1 receptor. However, other possible subtypes of G protein βγ subunits could not be excluded, and they need to be further investigated. Previous reports have shown that activation of dopamine D1 and D2 receptors could mediate the T-type calcium channels inhibition (Wolfe et al., 2003; Chemin et al., 2006). Nevertheless, the inhibitory mechanism of CaV_{3.2} channels mediated by CRFR1 receptor is distinctly different from the activation of
the dopamine transporters (Wolf et al., 2003). Our data suggested that the CRFR1-mediated selective inhibition of CaV3.2 was through the stabilization of the channels in their inactivated state, whereas activation of D1 receptors reduces the open probability of the CaV3.2 channels, and the voltage-dependent steady-state inactivation of the channels remains unchanged. Evidence to suggest our conclusion includes 1) robust hyperpolarized shift of voltage-dependent steady-state inactivation, 2) reversal of the hyperpolarized shift of inactivation potentials after introduction of the QEHA competitor peptide or the washout of UCN from the bath solution, and 3) a reduction in the concentration of UCN to trigger inhibition of CaV3.2 channels when cells are held at the more depolarized membrane potential of −80 mV compared with that for −110 mV. However, a comparison of the rat CaV3.2 (AF290213) used in this report with the human CaV3.2 channel used by the Barrett’s group (AF290213) did not show obvious differences in the choice of alternatively spliced exons. But, the two clones contained differences in amino acid residues that code for the II-III linker. Whether these species differences in the cytoplasmic regions of the channels, including the II-III linker, are important to account for the differences in mechanisms for inhibition by CRFR1 and dopamine receptors require future work. Besides, we used a 15-s protocol that is different from the 6-s voltage prepulses used by the Barrett’s group (Wolf et al., 2003). This difference in experimental protocol may be relevant as it has been demonstrated that a shorter duration of the prepulse resulted in a depolarizing shift in the steady-state inactivation in the Gβγ-mediated inhibition of CaV2.2 channels (McDavid and Currie, 2006). Nonetheless, besides the observed hyperpolarized shift in steady-state inactivation, we cannot exclude the possibility that the probability of opening of the CaV3.2 channels may also be reduced upon activation of CRFR1 receptors by UCN. There is a possibility that both mechanisms act as a unified pathway to inhibit the CaV3.2 currents upon activation of CRFR1 receptors by UCN.

In the present study, we found that G protein-mediated CaV3.2 channels inhibition was reversible, which is consistent with the previous reports about CaV2.2 channels. However, our result showed that the kinetics of CaV3.2 channels inhibition induced by CRFR1 activation seemed to be slow, whereas Gβγ inhibition of CaV2.2 channels was very fast (De Waard et al., 1997). The explanation for the differences remains to be determined, but it might be attributed to channel internalization during the slowly developing process or to the diversity of UCN activities on cells. In addition, whereas Gβγ subunits inhibit high-voltage-gated CaV2.2 calcium channels via binding to the I-II linker region, they distinctly bind to the II-III linker of CaV3.2,3 channels (Ikeda, 1996; Zamponi and Snutch, 1998). The binding of the Gβγ subunits to CaV2.2 channels has been reported to alter the voltage-dependent activation or inactivation properties of the channels, depending upon the frequency of the action potential-like waveforms examined (Zamponi and Snutch, 1998). Using low-frequency action potential-like waveforms, CaV2.2 N-type channels display a depolarizing shift in the steady-state inactivation potentials when the conditioning pulse is applied for 3 s (McDavid and Currie, 2006). Given that the Gβγ effects on CaV2.2 N-type channels can vary depending upon the nature of the stimulus, future studies will be required to dissect the differences in the effects on steady-state inactivation properties of CaV3.2 channels observed after activation of CRFR1. Recent studies by Iftinca and colleagues have identified a depolarizing shift on CaV3.2, but not CaV3.1 and CaV3.3, inactivation properties in response to Rho-associated kinase activation via the endogenous ligand lysophosphatidic acid (Iftinca et al., 2007). Like Gβγ regulation on CaV3.2 channels, this mechanism involved the II-III loop, and it is tempting to speculate the existence of cross talk between these two regulatory pathways.

In conclusion, the present study provides evidence that activation of CRFR1 results in the selective inhibition of CaV3.2 T-type calcium currents, whereas CaV3.1 and CaV3.3 were not affected. The mechanism for the inhibition was via a cholera toxin-sensitive, Gβγ-mediated signaling pathway that resulted in a hyperpolarized shift in the steady-state inactivation property of the CaV3.2 calcium channels. Note that the effect is reversible upon washout of the CRFR1 receptor agonists such as CRF or UCN. As UCN affect multiple aspects of cardiac and neuronal physiology and as CaV3.2 channels are expressed widely throughout the cardiovascular and nervous systems, our results point to a novel and functionally relevant CRFR1-calcium channel signaling pathway. In future experiments, it will be interesting to determine whether selective inhibition of CaV3.2 calcium channels via activation of CRFR1 receptors may directly play a role in stress response, affective disorders, or in cardiovascular pathophysiology.

Acknowledgments

We thank Dr. Brett Adams for the kind gifts of MAS-GRK3cet and EGFP-RG5S2 and Dr. David Parker for the human CaV3.1, CaV3.2, and CaV3.3 T-type calcium channels. We also thank Tan Fong Yong and Dejie Yu for excellent technical assistance.

References

Downloaded from molpharm.aspetjournals.org on October 29, 2017 molpharm.aspetjournals.org Downloaded from

