Activation of the A3 Adenosine Receptor Suppresses Superoxide Production and Chemotaxis of Mouse Bone Marrow Neutrophils

Dharini van der Hoeven, Tina C. Wan, and John A. Auchampach
Department of Pharmacology and Toxicology and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin

Received April 18, 2008; accepted June 25, 2008

ABSTRACT
Adenosine is formed in injured/ischemic tissues, where it suppresses the actions of essentially all cells of the immune system. Most of the anti-inflammatory actions of adenosine have been attributed to signaling through the G protein-coupled A2A adenosine receptor (AR). Here, we report that the A3AR is highly expressed in murine neutrophils isolated from bone marrow. Selective activation of the A3AR with (2R,3S,4R,5R)-3-amino-5-[6-(2,5-dichlorobenzylamino)purin-9-yl]-4-hydroxytetrahydrofuran-2-carboxylic acid methylamide (CP-532,903) potently inhibited mouse bone marrow neutrophil superoxide generation and chemotaxis induced by various activating agents. The selectivity of CP-532,903 was confirmed in assays using neutrophils obtained from A2AAR and A3AR gene “knockout” mice. In a model of thioglycollate-induced inflammation, treating mice with CP-532,903 inhibited recruitment of leukocytes into the peritoneum by specifically activating the A3AR. Collectively, our findings support the theory that the A3AR contributes to the anti-inflammatory actions of adenosine on neutrophils and provide a potential mechanistic explanation for the efficacy of A3AR agonists in animal models of inflammation (i.e., inhibition of neutrophil-mediated tissue injury).

The neutrophil is the first cell type recruited to injured tissues where it functions to sterilize the wound of invading bacteria, through phagocytosis and subsequent killing by oxidant mechanisms involving the NADPH oxidase complex (Nathan, 2006). Activated neutrophils also secrete numerous cytokines/chemokines, proteolytic enzymes stored in preformed granules, and pro-inflammatory products of arachidonic acid (prostaglandin E2 and leukotrienes), which collectively serve to recruit additional immune cell populations, remove cell debris, and fine-tune the adaptive immune response (Nathan, 2006). Although these actions of neutrophils are critical components of normal wound healing, exaggerated or long-term neutrophil activity can contribute to additional tissue injury, particularly when little or no infection is present, for instance, during acute ischemia/reperfusion injury or chronic inflammatory diseases such as rheumatoid arthritis (Nathan, 2006).

Because of their destructive nature, intricate mechanisms have evolved that regulate neutrophil activity at sites of inflammation. As neutrophils invade tissues, the metabolism of arachidonic acid shifts to the formation of anti-inflammatory lipoxins that inhibit additional neutrophil recruitment (Levy et al., 2001). Neutrophil activity is further diminished by transforming growth factor-β and other anti-inflamma-

ABBREVIATIONS: AR, adenosine receptor; IL, interleukin; rm TNF, recombinant mouse tumor necrosis factor; MCLA, 2 methyl-6-(4-methoxy-phenyl)-3,7-dihydroimidazol[1,2-a]pyrazin-3-one, hydrochloride; APC, allopurinol; PE, phycoerythrin; 7AAD, 7-amino-actinomycin D; CP-532,903, (2R,3S,4R,5R)-3-amino-5-[6-(2,5-dichlorobenzylamino)purin-9-yl]-4-hydroxytetrahydrofuran-2-carboxylic acid methylamide; ZM241385, 3-(3-hydroxy-4-iodo-3-phenylpropionyl)-bicyclo-[2,2,2]octylxanthine; I-AB-MECA, 4-{2-[7-aminomethyl-2-(2-furyl)](1,2,4)triazolo-[2,3-a][1,3,5]triazin-5-ylamino}ethyl}phenol; ADA, adenosine deaminase; BG 9928, 1,3-dipropyl-8-[1-[4-propionate]-bicycle[2,2,2]octyl]xanthine; I-AB-MECA, N8-[4-amino-3-iodobenzyl]adenosine-5′-N-methylcarboxamide; WT, wild-type; KO, knock-out; HBSS, Hanks’ balanced salt solution; FBS, fetal bovine serum; PBS, phosphate-buffered saline; RT-PCR, reverse transcription-polymerase chain reaction; MLNL, N-formyl-L-methionyl-L-leucyl-L-phenylalanine; PAF, platelet-activating factor; PMA, phorbol 12-myristate 13-acetate; RLU, relative light unit; ANOVA, analysis of variance; LPS, lipopolysaccharide; C5a, complement component 5a; C218680, 2-[2-carboxyl-ethyl]-phosphonatamido]-5′-N-ethylcarboxamidoadenosine; IB-MECA, N8-[3-iodobenzyl]adenosine-5′-N-methylcarboxamide; MRS 1754, 1,3-dipropyl-8-[4-[(4-cyanophenyl)carbamoymethyl]oxy]phenyl]xanthine; MRS 1523, 3-propyl-6-ethyl-5′(ethylthio)carbonyl]-2-phenyl-4-propyl-3-pyridine-carboxylate; NECA, adenosine-5′-N-ethylcarboxamide.
tory molecules released from macrophages after the ingestion of expanded apoptotic neutrophils (Huynh et al., 2002). In addition to these mechanisms designed to resolve inflammatory reactions, neutrophil activity is also importantly modulated by adenosine. Adenosine is a purine nucleoside generated in inflamed tissues from the catalysis by the ectonucleotidases CD39 and CD73 of extracellular ATP and ADP secreted from activated cells (Linden, 2001; Hasko and Cronstein, 2004). Within inflamed tissues, adenosine functions to suppress activity of essentially all cells of the immune system including the neutrophil. Previous studies have shown that adenosine potently inhibits neutrophil superoxide production, adhesion/chemotaxis, and pro-inflammatory mediator production (Cronstein et al., 1983, 1990, 1992; Jordan et al., 1997; Flaman et al., 2000; Visser et al., 2000; Sullivan et al., 2001; McColl et al., 2006).

All of the actions of adenosine are mediated by four adenosine receptor (AR) subtypes belonging to the superfamily of G protein-coupled receptors designated A1, A2A, A2B, and A3. A2A- and A3-ARs couple to Gi proteins that inhibit adenyl cyclase but activate multiple other signaling pathways via the release of βγ subunits, whereas A2B- and A2A-ARs couple to Gs proteins that activate adenyl cyclase, resulting in formation of cAMP (Linden, 2001). Most previous work has implicated the A2A-AR in mediating the inhibitory effects of adenosine on neutrophil function via the cAMP/protein kinase A signaling axis, based on pharmacological studies using isolated human neutrophils (Cronstein, 1994; Linden, 2001; Hasko and Cronstein, 2004; Bours et al., 2006). It is noteworthy that mRNA and protein expression of the A2A-AR is induced in neutrophils as well as in several other immune cell populations in response to Th1 cytokines or Toll-like receptor agonists, which appears to be an additional feedback mechanism by which adenosine “resolves” inflammatory reactions (Khoa et al., 2001; Nguyen et al., 2003; Lappas et al., 2005; Murphree et al., 2005; Fortin et al., 2006).

Although most previous work has focused on the involvement of the A2A-AR in regulating neutrophil activity, a potential role for the A3-AR is currently being considered. In this study, we have used bone marrow neutrophils isolated from A2A- and A3-AR gene knockout mice, as well as the newly developed, highly selective mouse A3-AR agonist CP-532,903, to explore the possibility that the A3-AR mediates some of the suppressive effects of adenosine on neutrophil function. CP-532,903 binds potently to the murine A3-AR (Kᵢ = 9.0 nM) with greater than 100- and 1000-fold selectivity versus murine A1- and A2A/A2B-ARs, respectively (Wan et al., 2008). Our results demonstrate that, like the A2A-AR, activation of the A3-AR subtype inhibits neutrophil superoxide production. In addition, our studies reveal that activation of the A3-AR inhibits chemotaxis toward various activating agents. Collectively, our findings support the theory that the A3-AR contributes to the anti-inflammatory actions of adenosine on neutrophils and provide a potential mechanistic explanation for the efficacy of A3-AR agonists in animal models of inflammation (i.e., inhibition of neutrophil-mediated tissue injury).

Materials and Methods

Materials. Cell culture reagents, TRIzol reagent, recombinant human interleukin-8 (IL-8), recombinant mouse tumor necrosis factor α (rm TNF-α) and ThermoScript RT-PCR kits were purchased from Invitrogen (Carlsbad, CA). Calcine-AM, pluronic F-127, and 2 methyl-6-(4-methoxyphenyl)-3,7-dihydromidazol[1,2-][1,2]pyrazin-3-one, hydrochloride (MCLA) were purchased from Invitrogen. Percoll was purchased from GE Healthcare (Chalfont St. Giles, Buckinghamshire, UK). SYBR Green Supermix and Bradford reagent were purchased from Bio-Rad Laboratories (Heracles, CA). Rat anti-mouse Ly-6G conjugated to allophycocyanin (Gr-1/APC), rat anti-mouse CD11b conjugated to phycoerythrin (CD11b/PE), and ZAA were purchased from BD Pharmingen (San Jose, CA). Goat anti-rat IgG microbeads were from Miltenyi Bistee Inc., (Auburn, CA). CP-532,903 was a gift from Dr. W. Ross Tracey (Pfizer Global Research and Development, Groton, CT), ZM 241385 was from Tocris Cookson Inc. (Ellisville, MO), adenosine deaminase (ADA) was from Roche and Development, Groton, CT), 532,903 was a gift from Dr. Barry Ticho (Biogen Idec., Cambridge, MA), and all remaining drugs and reagents were purchased from Sigma-Aldrich (St. Louis, MO).

Mice. C57BL/6 wild-type (WT) mice were purchased from Taconic Farms (Germantown, NY). Congenic C57BL/6 A3KO mice were a kind gift from Dr. Marlene Jacobson (Merck Research Labs, West Point, PA), and congenic A2A- and A3-AR gene knockout mice (C57BL/6) were created by Dr. Jessica-Fan Chen (Boston University, Boston, MA) were provided by Dr. Joel Linden (University of Virginia, Charlottesville, VA) after crossing to the C57BL/6 genetic background using a speed congenic approach (Sullivan et al., 2004). All animal experiments were conducted with approval of the Institutional Animal Care and Use Committee.

Isolation of Mouse Bone Marrow Neutrophils. Morphologically mature neutrophils were purified from mouse bone marrow by isotonic Percoll gradient centrifugation, as described previously (Lieber et al., 2004). In brief, mice were euthanized by anesthesia with carbon dioxide. Tibias and femurs of mice were flushed with neutrophil isolation buffer (1 × HBSS without Ca²⁺ and Mg²⁺, containing 0.4% sodium citrate) and layered on a three-step Percoll gradient (72, 64, and 52%). After centrifugation at 1060 g for 30 min, cells at the 72-64% interface were removed and washed once with isolation buffer before use in experiments.

For some studies, neutrophils were further purified by immunomagnetic selection using an antibody directed against mouse Ly-6G (Gr-1). Cells obtained by Percoll gradient centrifugation were incubated with rat anti-mouse Gr-1/APC antibody (1:800 dilution) for 30 min on ice, washed with PBS/2% FBS, and then incubated with goat anti-rat IgG microbeads (1:5 dilution) for 15 min. Cells bound to the magnetic beads were obtained using a MiniMACS magnetic separation column according to the manufacturer’s protocol (Miltenyi Bio- tec Inc.).

Flow Cytometry Analysis. Flow cytometry of single cell suspensions was performed using a Bectin Dickinson FACSciCaliber flow cytometer. Cells were incubated with 1:800 dilutions of rat anti-mouse Gr-1/APC antibody and rat anti-mouse CD11b/PE antibody for 30 min on ice. After washing with PBS/2% FBS to remove unbound antibodies, cells (1 × 10⁶ cells/ml) were resuspended in PBS/2% FBS containing 7AAD (1:100). Forward scatter and 7AAD fluorescence were used to exclude debris/aggregates and dead cells, respectively. The remaining fluorescent (PE and APC) and light scatter (side scatter) channels were used to differentiate neutrophils from other cell types.

Quantitative Real-Time RT-PCR. Total RNA was isolated from neutrophils using TRIzol reagent. Subsequently, 1 μg of total neutrophil RNA was reverse-transcribed using a mixture of random and poly-T primers according to the manufacturer’s protocol (Invitrogen). Primers were designed for the mouse A3 (forward, 5′-TGGCTCT-GCTGTTGATTTG-3′; reverse, 5′-GGCTATCCAGGCTTGTTC-3′), A2A (forward, 5′-TCAAGCTTCGCGCTCAATG-3′; reverse, 5′-CTCTCCTGT-GTGCTCGTG-3′), A2B (forward, 5′-TTGCCATGGATGACTC-3′; reverse, 5′-GCTGTCAGG-3′).
reverse, 5′-TATGAGGACTGGAGAGAGT-3′), and A2AR (forward, 5′-CGAAACACACACCCACGAG-3′; reverse, 5′-GTGTGACCCAGATGAC-3′) using Beacon Design software (Bio-Rad Laboratories). PCR amplification (in SYBR Green Supermix) was performed using an iCycler iQ thermocycler (Bio-Rad Laboratories) for 40 cycles of 25 s at 95°C followed by 45 s at an optimized annealing temperature for each AR. The cycle threshold, determined as the initial increase in fluorescence above background, was ascertained for each sample. Melt curves were performed upon completion of the cycles to ensure that nonspecific products were absent. For quantification of AR transcripts, a standard curve plotting cycle threshold versus copy number was constructed for each receptor subtype by analyzing 10-fold serial dilutions of plasmids containing the full-length mouse AR clones. AR transcript levels were expressed as copies per 50 ng of total RNA.

Radioligand Binding Assays. Binding assays were conducted with membranes prepared from isolated neutrophils. In brief, Percoll gradient-purified bone marrow neutrophils were resuspended in homogenization buffer (10 mM Na-HEPES, pH 7.4, 10 mM EDTA, and 0.1 mM benzamidine), homogenized in a glass Dounce homogenizer, and then centrifuged at 20,000×g for 30 min. Cell pellets were washed once in binding buffer (10 mM Na-HEPES, pH 7.4, 1 mM EDTA, and 0.1 mM benzamidine), and then resuspended in binding buffer containing 10% (v/v) sucrose. Membranes were stored at −20°C until used for binding assays.

For radioligand binding studies, membrane protein was incubated in a final volume of 100 μl of binding buffer containing 5 mM MgCl2, 1 unit/ml ADA, and either 0.4 nM 151-I-ZM 241385 to label A2A,ARs, or −0.4 nM [3H]-I-AB-MECA to label A3ARs and A2B,ARs. In competition experiments, inhibitors were included in the reactions at the concentrations indicated. After incubating at room temperature for 3 h, the incubations were terminated by rapid filtration over glass-fiber filters using a 48-well Brandel cell harvester (Brandel Inc., Gaithersburg, MD). Filter discs containing trapped membranes bound with radioligand were quantified using a gamma counter. Nonspecific binding was determined in the presence of 1 μM ZM241385 or 1 μM I-AB-MECA, respectively.

Superoxide Production. Superoxide production was measured using the chemiluminescent probe MCLA (Nishida et al., 1989). Bone marrow neutrophils (7 × 10⁴ cells/ml) were preincubated in HBSS at 37°C for 30 min (unless otherwise specified) with vehicle or AR agonists at the concentrations indicated, in the presence of 1 unit/ml ADA, and either 0.1 mM benzamidine, homogenized in a glass Dounce homogenizer, and then centrifuged at 20,000×g for 30 min. Cell pellets were washed once in binding buffer (10 mM Na-HEPES, pH 7.4, 1 mM EDTA, and 0.1 mM benzamidine), and then resuspended in binding buffer containing 10% (v/v) sucrose. Membranes were stored at −20°C until used for binding assays.

Neutrophil Migration. Neutrophil migration was assessed using a standard 48-well microchemotaxis chamber (NeuroProbe, Gaithersburg, MD). Neutrophils were labeled with the fluorescent dye Calcein-AM (3 μM) in neutrophil isolation buffer for 30 min at 37°C, followed by pretreatment with vehicle or AR agonists at concentrations indicated in HBSS/0.5% BSA/1 unit/ml ADA for another 30 min at 37°C (unless otherwise specified). Neutrophils (5 × 10⁴ cells/well) were added to the upper wells of the chemotaxis chamber, which were separated from the lower wells by a polycarbonate membrane (5-μm pores). In chemokinesis studies, various concentrations of the chemotactant dissolved in HBSS/0.5% BSA were added to both the upper and lower wells, whereas the chemotactants were added only to the lower wells in the chemotaxis studies. The cells were allowed to migrate at 37°C for 35 min, after which fluorescence emitted by cells adhered to the underside of the membrane was measured using a high performance gel and blot imager (Typhoon Imaging System; GE Healthcare). After densitometry analysis using Scion Image software (from the National Institutes of Health), the chemotactic or chemokinesis index was calculated using the following formula: fluorescence density of cells migrated in the presence of chemotactant 32 divided by fluorescence density of cells migrated toward medium.

Thioglycollate-induced peritonitis was used as an in vivo model of neutrophil chemotaxis. In brief, mice were injected intravenously with vehicle or CP-532,903 (100 μg/kg) followed by intraperitoneal injection of 2 ml of 3% thioglycollate. At 4 h, mice were killed by CO₂ asphyxiation and injected intraperitoneally with neutrophil isolation buffer, their abdomens were massaged, and total lavage fluid was collected through a small slit cut into the peritoneal cavity. Collected cells were pelleted by centrifugation, resuspended in neutrophil isolation buffer, diluted with Trypan blue, and counted using a standard hemocytometer chamber. Most of the cells found in the peritoneal exudate 4 h after thioglycollate administration are neutrophils (data not shown; Lagasse and Weissman, 1996).

Data Analysis. Data are reported as means ± S.E.M. Chemotaxis data were analyzed by two-way ANOVA (chemoattractant factor and AR agonist treatment) to determine whether there was a main effect of the chemoattractant, a main effect of pretreating cells with AR agonists, or a chemoattractant-AR agonist treatment interaction. All other data were compared by Student’s t test or one-way ANOVA followed by post hoc contrasts using Dunnett’s t test, as appropriate. A p value <0.05 was considered statistically significant.

Results

Isolation of Neutrophils from Mouse Bone Marrow. We determined the purity of neutrophil isolates from bone marrow by immuno-flow cytometry. Neutrophils are found in the subset that show high GR-1 and high CD11b expression (Fig. 1), whereas myelomonocytes and lymphocytes are found in the Gr-1-low/CD11b-low and Gr-1-negative/CD11b-negative populations, respectively (Lagasse and Weissman, 1996). The results indicate that ~85% of gated mouse bone marrow cells in Percoll density gradient-purified fractions are neutrophils, which agrees with the results of previous studies (Lieber et al., 2004). The majority of the remaining cells were lymphocytes (data not shown). As shown in Fig. 1, cytospin analysis not only confirmed the purity of the Percoll density gradient-purified neutrophil preparations but also revealed that >95% of the neutrophils exhibited the characteristic size, nuclear morphology, and staining pattern of mature cells. Further purification of the Percoll density gradient separated neutrophil population using the anti-Gr-1 antibody yielded >99% mature neutrophils (Fig. 1). Although immunomagnetic selection provided a purer cell population, we could not use this isolation technique for most subsequent assays because of the relatively low yield and because antibody treatment tended to mildly activate the cells.

Both A2A,ARs and A3ARs Are Abundantly Expressed in Mouse Bone Marrow Neutrophils. We used quantitative real-time RT-PCR to measure mRNA expression of ARs in mouse neutrophils. As illustrated in Fig. 2A, we detected transcripts for A2A,AR, A2B,AR, and A3ARs in mouse bone marrow neutrophils isolated by Percoll gradient centrifugation.
Based on calculations obtained from standard curves, mRNA expression of the A3AR was the highest (2693 ± 542 copies of mRNA/50 ng of total RNA), followed by the A2AAR (1240 ± 169 copies of mRNA/50 ng of total RNA) and the A2BAR (74 ± 42 copies of mRNA/50 ng of total RNA). We did not detect expression of A1AR mRNA above background levels obtained with control reactions using water in place of cDNA. mRNA expression studies using neutrophil isolates obtained by sequential Percoll gradient purification and immunomagnetic selection with the anti-GR-1 antibody in which ~99% of the cells were neutrophils gave similar results (Fig. 2A).

We subsequently conducted radioligand binding assays with crude membrane proteins prepared from Percoll gradient-separated bone marrow neutrophils to assess expression of ARs at the protein level. Membranes were incubated with ~0.4 nM [125I]-ZM 241385 (A2AAR antagonist) or ~0.4 nM [125I]-AB-MECA (A1/A3AR agonist). As shown in Fig. 2B, we detected specific binding of [125I]-ZM 241385 to neutrophil membranes, defined by inclusion of 1 μM nonradiolabeled ZM 241385. Specific binding of [125I]-ZM 241385 was not displaced by the A2BAR antagonist MRS 1754 (100 nM), indicating that [125I]-ZM 241385 was specifically labeling A2AARs. We also detected specific binding of [125I]-AB-MECA to membranes prepared from Percoll density gradient-purified mouse bone marrow neutrophils (Fig. 2C), defined by inclusion of 1 μM nonradiolabeled I-AB-MECA. Because [125I]-AB-MECA binds with relatively high affinity to both A1 and A3ARs (Olah et al., 1994), it could have labeled either of these AR subtypes in our assays. However, specific binding of [125I]-AB-MECA was displaced solely by the A3AR antagonist MRS 1523 (5 μM) and not by BG 9928 (A1AR antagonist; 100 nM) or ZM 241385 (A2AAR antagonist; 100 nM), indicating that [125I]-AB-MECA was binding to the A3AR. Given that both radioligands were included in the binding assays at a concentration near their Kd values for A2A- and A3ARs (Olah et al., 1994; Palmer et al., 1995), the Bmax values for [125I]-ZM 241385 and [125I]-AB-MECA were estimated to be 18.17 ± 3.68 and 16.05 ± 2.30 fmol/mg protein, respectively. Collectively, our quantitative real-time RT-PCR and radioligand binding data indicate that A2A- and A3ARs are expressed in mouse bone marrow neutrophils at similar levels. Our PCR data also suggest that mouse bone marrow neutrophils express the A2BAR.

Expression of A2A- and A2B-ARs, but Not the A1AR, Is Induced in Murine Bone Marrow Neutrophils during Inflammation. Previous studies have shown that A2AARs, and in some reports A2B- and A3ARs, are induced by proinflammatory Th1 cytokines and Toll-like receptor agonists in various immune cell populations, providing an additional feedback mechanism whereby adenosine “resolves” inflam-

Fig. 1. Purity of mouse bone marrow neutrophil preparations obtained by Percoll gradient separation (A) coupled with immunomagnetic selection using the anti-Gr-1 antibody (B). Shown are representative cytospin images and results of flow cytometry analysis using Gr-1 and CD11b as markers. The percentage of neutrophils in the entire cell population is indicated. n = 3.
Adenosine receptors and mouse neutrophil function

Matory responses (Khoa et al., 2001; Nguyen et al., 2003; Gessi et al., 2004; Lappas et al., 2005; Murphree et al., 2005; Fortin et al., 2006). Accordingly, we examined whether inflammation induces the expression of ARs in mouse bone marrow neutrophils. For these studies, neutrophils were isolated from bone marrow by Percoll gradient separation from mice pretreated 4 h earlier with a large dose of lipopolysaccharide (LPS; 10 mg/kg i.p.). As shown in Fig. 3A, mRNA expression of both A2A and A2B ARs was increased by ~11- and 15-fold, respectively, in neutrophils isolated from LPS-treated mice compared with those isolated from vehicle-treated mice, whereas mRNA expression of the A3AR was not significantly changed. Specific binding of 125I-ZM 241385 was also increased ~3-fold in neutrophils isolated from LPS-treated mice, indicating that LPS induced expression of the A2AAR at the protein level (Fig. 3B).

Both A2A and A2B ARs Inhibit Superoxide Production by Stimulated Neutrophils. In preliminary studies, we examined the ability of a panel of agents to stimulate Percoll gradient-purified bone marrow neutrophils to generate superoxide anions and confirmed that the bacterial tripeptide fMLP, C5a, PAF, and PMA were all effective stimulants. The
time course and magnitude of superoxide production assessed by MCLA chemiluminescence in response to stimulation with 1 μM fMLP is depicted in Fig. 4. Priming the cells with 100 ng/ml of rm TNF-α increased superoxide production by 3- to 4-fold compared with unprimed cells.

We subsequently assessed the ability of AR stimulation to inhibit superoxide production by Percoll gradient-purified mouse bone marrow neutrophils. Similar to previous reports, pretreatment (30 min) with the nonselective AR agonist NECA (300 nM) or the A2AAR agonist CGS 21680 (100 nM) effectively attenuated fMLP (1 μM)-stimulated superoxide production by ~45% in assays using unprimed cells and by ~25% using TNF-α-primed cells (Fig. 5A). It is noteworthy, however, that pretreating neutrophils with the selective A3AR agonist CP-532,903 [100 nM (Tracey et al., 2003; Wan et al., 2008)] also effectively inhibited fMLP-induced neutrophil superoxide generation regardless of priming with TNF-α (Fig. 5A). These results imply that the A3AR, in addition to the A2AAR, might function to inhibit neutrophil superoxide production. Pretreatment with NECA (300 nM), CGS 21680 (100 nM), or CP-532,903 (100 nM) also inhibited superoxide production by ~50% from neutrophils stimulated with C5a (3 nM) or PAF (100 nM), but not those stimulated by PMA (800 nM; Fig. 5B–D).

To conclusively determine whether the A3AR regulates neutrophil superoxide production, we compared concentration-response curves generated with CGS 21680 or CP-532,903 using Percoll gradient-purified neutrophils obtained from WT, A2AAR KO, or A3AR KO mice. As shown in Fig. 6, pretreating neutrophils with either CGS 21680 or CP-532,903 produced a concentration-dependent reduction in fMLP-induced superoxide generation by neutrophils obtained from WT mice with equal potencies and efficacies (EC50 and maximum inhibition were 25.3 ± 10.8 nM and 48.6 ± 5.7%, respectively, for CGS 21680 and 49.3 ± 26.3 nM and 61.2 ± 5.1%, respectively, for CP-532,903). The ability of CGS 21680 to inhibit superoxide production was lost completely using neutrophils obtained from A2AAR KO mice but was unaffected using neutrophils obtained from A3AR KO mice (Fig. 6A). These results indicate that CGS 21680 reduced superoxide production by selectively activating the A2AAR. On the other hand, the concentration-response relationship obtained with CP-532,903 to inhibit superoxide production was unaffected using A2AAR KO neutrophils but was right-shifted ~100-fold using neutrophils obtained from A3AR KO mice, suggesting that CP-532,903 inhibited superoxide production primarily via the A3AR at low concentrations. These results confirm that activating either the A2AAR or the A3AR effectively inhibits neutrophil superoxide production.

We also compared concentration-response curves for CGS 21680 and CP-532,903 to inhibit superoxide production using Percoll gradient-purified neutrophils obtained from mice pretreated 4 h earlier with LPS (10 mg/kg), in which A2AAR message and protein were induced. Both agonists continued to concentration-dependently inhibit fMLP-induced superoxide production. EC50 values for CGS 21680 (30.4 ± 17.6 nM) and CP-532,903 (23.8 ± 11.8 nM) were similar to those obtained in assays using naive neutrophils, although the maximal inhibition (27.2 ± 5.2 and 36.0 ± 4.0%, respectively) was less compared with those obtained with naive cells. The efficacies of the agonists to inhibit superoxide production were similar to values obtained with naive cells treated with TNF-α (Fig. 5A), suggesting that cells obtained from LPS-treated mice had probably undergone priming.

Prolonged A3AR Activation Is Required to Effectively Inhibit Neutrophil Superoxide Production. In all previous superoxide assays in this study, cells were pre-
treated with the AR agonists for 30 min before the addition of activating agents. We therefore examined the duration of pretreatment that is necessary to produce maximal inhibition of FMLP-induced superoxide production. For these studies, Percoll gradient-purified mouse bone marrow neutrophils were pretreated with CGS 21680 (100 nM) or CP-532,903 (100 nM) for 6, 18, or 30 min before stimulating with fMLP (1 μM). As shown in Fig. 7, pretreating unprimed cells with CGS 21680 for as little as 6 min resulted in maximal inhibition (51.1 ± 8.7% of vehicle-treated cells) of FMLP-stimulated superoxide production, whereas maximal inhibition with CP-532,903 (49.0 ± 5.3% of vehicle-treated cells) was only achieved when the cells were pretreated for at least 18 min. Pretreatment with CP-532,903 for 6 min inhibited superoxide production by only 17.8 ± 2.1%.

Activation of the A3AR Inhibits Chemotaxis of Mouse Bone Marrow Neutrophils. We initially examined whether activation of the A3AR affects chemotaxis in a transwell assay system with Percoll gradient-purified neutrophils in the upper wells and increasing concentrations of CP-532,903 in the lower wells, separated by a polycarbonate membrane. Neutrophils were suspended in a buffer containing 1 unit/ml ADA to remove endogenous sources of adenosine. As shown in Fig. 8A, inclusion of up to 10 μM CP-532,903 in the lower wells did not promote chemotaxis using naive neutrophils. Inclusion of increasing concentrations of CP-532,903 in the lower wells in combination with 1 μM fMLP also neither promoted nor inhibited chemotaxis of unprimed or TNF-α primed cells (Fig. 8B).

Based on the results of our superoxide studies, we subsequently examined whether pretreating neutrophils with CP-532,903 influenced chemotaxis. For this assay, neutrophils were pretreated with either vehicle or AR agonists for 30 min in the presence of ADA before their addition to the chemotaxis apparatus containing increasing concentrations of fMLP in the lower wells. Using vehicle-treated cells, fMLP produced a typical bell-shaped concentration-response curve observed with chemoattractants with a maximal chemotaxis index of ~4 occurring at a concentration of 1 μM (Fig. 9). Pretreatment the cells with 100 nM CP-532,903 had no effect on the chemotactic response of unprimed cells to fMLP (Fig. 9A). However, pretreatment with CP-532,903 inhibited migration of TNF-α-primed cells toward higher concentrations of fMLP. In contrast, treatment with the A2AR agonist CGS

![Fig. 5. Effect of pretreating with AR agonists on superoxide production by Percoll gradient-purified mouse bone marrow neutrophils in response to fMLP (A), C5a (B), PAF (C), or PMA (D). Neutrophils were pretreated with either vehicle or the AR agonists for 30 min in the presence of ADA (1 unit/ml) and then stimulated with the activating agents while measuring superoxide production using the chemiluminescent probe MCLA. In studies with fMLP, the effect of the agonists on superoxide production was tested with both unprimed and TNF-α-primed (100 ng/ml) neutrophils. The data (mean ± S.E.M.) are presented as the percentage of superoxide produced compared with the vehicle-treated group. * p < 0.05 versus the vehicle-treated group by one-way ANOVA and Dunnett’s t test, n = 4–6.](molpharm.aspetjournals.org)
21680 had no significant effect on fMLP-induced chemotaxis of WT neutrophils regardless of whether the cells were primed or not (Fig. 9, A and B). To confirm that the effect of CP-532,903 on chemotaxis was mediated via the A3AR, the assays were repeated using neutrophils obtained from either A2AKO or A3KO mice. As shown in Fig. 9, CP-532,903 continued to inhibit fMLP-induced chemotaxis in assays using A2AKO but not A3KO neutrophils, indicating that the effect of CP-532,903 on chemotaxis was mediated by the A3AR. Note that the chemotactic responses of both A2AKO and A3KO neutrophils were similar to that of WT neutrophils.

We further examined whether pretreatment with CP-532,903 influences chemotaxis of neutrophils toward other stimuli, including C5a, PAF, and IL-8. We found that pretreatment with CP-532,903 (100 nM) inhibited migration of neutrophils toward C5a regardless of whether they were primed or not, whereas it only inhibited chemotaxis of unprimed neutrophils toward PAF and IL-8 (Fig. 10).

We next sought to determine whether pretreating neutrophils with CP-532,903 influenced neutrophil chemokinesis. Cells were pretreated with 100 nM CP-532,903 for 30 min in the presence of ADA and then placed into the upper wells of

![Fig. 6.](https://example.com/f6.png) **Fig. 6.** Inhibition of fMLP-induced (1 μM) superoxide production by Percoll gradient-purified bone marrow neutrophils from WT, A2AKO, or A3KO mice by increasing concentrations of CGS 21680 (A) or CP-532,903 (B). Results (mean ± S.E.M.; n = 3) are displayed as percentage of superoxide produced by the vehicle-treated group.

![Fig. 7.](https://example.com/f7.png) **Fig. 7.** Effect of duration of pretreatment with CGS 21680 or CP-532,903 on superoxide production by Percoll gradient purified bone marrow neutrophils in response to fMLP. Neutrophils were incubated (37°C) with vehicle, CGS 21680 (100 nM), or CP-532,903 (100 nM) in the presence of ADA (1 unit/ml) for the times indicated before stimulation with fMLP (1 μM). Superoxide produced was measured using the chemiluminescent probe MCLA (0.5 μM). Results (mean ± S.E.M., n = 4) are presented as the percentage of superoxide produced compared with the corresponding vehicle-treated group.

![Fig. 8.](https://example.com/f8.png) **Fig. 8.** Effect of CP-532,903 on neutrophil chemotaxis in trans-well migration assays using Percoll gradient-purified mouse bone marrow neutrophils. Fluorescently labeled (Calcein-AM) neutrophils were added into upper wells, with fMLP and/or CP-532,903 in the lower wells in the presence of ADA (1 unit/ml) separated by a polycarbonate membrane. After incubating at 37°C for 35 min, migrated cells were quantified and chemotaxis was calculated as described under Materials and Methods. A, effect of adding increasing concentrations of CP-532,903 into bottom wells. B, effect of adding increasing concentration of CP-532,903 into bottom wells on fMLP-induced (1 μM) chemotaxis of unprimed and TNF-α primed neutrophils. Results are presented as the mean ± S.E.M. n = 3–5.
the trans-well apparatus containing increasing amounts of fMLP in both the upper and lower wells. As depicted in Fig. 11, pretreatment with CP-532,903 increased chemokinesis of unprimed neutrophils compared with vehicle-treated cells, becoming significant at fMLP concentrations ≥1 μM, but had no effect on fMLP-induced chemokinesis of TNF-α primed cells.

Given the results of our in vitro chemotaxis assays, we further examined whether activation of the A3AR inhibits leukocyte accumulation in thioglycollate-induced peritonitis. For these studies, WT or A3KO mice were pretreated with either vehicle or CP-532,903 (100 μg/kg i.v.) before intraperitoneal injection of thioglycollate (2 ml of a 3% solution) and the number of cells found within the peritoneal cavity was quantified 4 h later. As shown in Fig. 12, treatment with CP-532,903 significantly reduced thioglycollate-induced leukocyte accumulation in WT mice by ~25% compared with vehicle-treated mice but not in A3KO mice. However, leukocyte recruitment was not different between vehicle-treated WT and A3KO mice. Like the in vitro chemotaxis results, these data suggest that activation of the A3AR inhibits leukocyte chemotaxis but does not play an endogenous role to regulate migration in this model of acute inflammation.

Discussion

Previous work has implicated the A2AAR in mediating the anti-inflammatory actions of adenosine on neutrophils. In the present investigation, we have demonstrated using AR gene knockout mice that the A3AR, in addition to the A2AAR, suppresses the superoxide burst. Moreover, we have demonstrated that activation of the A3AR inhibits neutrophil chemotaxis toward a variety of activating agents.

We found that the A3AR is abundantly expressed in mouse bone marrow neutrophils. Indeed, our data indicate that it is expressed at equal or even higher levels than the A2AAR. Compared with recent reports using RT-PCR, the pattern of AR receptor expression in mouse bone marrow neutrophils seems to be similar to that of circulating human neutrophils, where A2AAR and A3AR expression is predominant, followed by low levels of expression of the A1AR subtype and little or no detectable expression of A2AR message (Chen et al., 2006; Fortin et al., 2006; Zhang et al., 2006). Unlike the A2AAR, expression of the A3AR was not increased in neutrophils obtained from mice treated with LPS, indicating that the A3AR may not be transcriptionally regulated by pro-inflammatory cytokines in neutrophils. It is notable that mRNA expression of the Gs protein-coupled A3AR was induced nearly 15-fold in neutrophils obtained from LPS-treated mice.

Fig. 9. Effect of pretreating with CP-532,903 or CGS 21680 on fMLP-induced chemotaxis of unprimed WT (A), TNF-α primed WT (B), TNF-α primed A2AKO (C), or TNF-α primed A3KO (D) Percoll gradient-purified mouse bone marrow neutrophils. Neutrophils were incubated (37°C) with vehicle, CP-532,903 (100 nM), or CGS 21680 (100 nM; A and B) for 30 min in the presence of ADA (1 unit/ml) with (B–D) or without rm TNF-α (100 ng/ml; A), before addition to the upper wells of trans-well assays containing increasing concentrations of fMLP in lower wells. The chemotaxis index was calculated as described under Materials and Methods after allowing the cells to migrate for 35 min. Results are presented as the mean ± S.E.M. *, p < 0.05 versus the vehicle-treated group by two-way ANOVA, n = 5–16.
According to our results, the A3AR functions in murine neutrophils to inhibit stimulated superoxide production along with the A2AAR. This conclusion is based on our observation that pretreatment with either the A2AAR agonist CGS 21680 or the A3AR agonist CP-532,903 potently inhibited superoxide production. The selectivity of each agonist for its respective AR subtype was confirmed in assays using cells obtained from AR KO mice. Most importantly, we showed that CP-532,903 continued to potently inhibit stimulated superoxide production from neutrophils obtained from A2A KO mice (but not from A3KO mice), excluding the concern that CP-532,903 was acting nonspecifically via the A2AAR. It is noteworthy that we found it necessary to pretreat with CP-532,903 for a much longer period of time (18 min) to achieve maximal inhibition of superoxide production compared with CGS 21680. Pretreatment with CP-532,903 for 6 min only slightly inhibited superoxide production (~18% inhibition), which could be one of the reasons why a role for the A3AR in regulating neutrophil superoxide production has not been detected previously (Jordan et al., 1999). From a functional perspective, our data suggest that the A2AAR serves to provide immediate suppression of superoxide generation as neutrophils migrate into inflamed tissues, whereas the A3AR may assist to sustain inhibition. Although our results show that activating either the A2AAR or the A3AR inhibited superoxide production, activating both receptors simultaneously using the nonselective agonist NECA (Fig. 5) or a combination of CGS 21680 and CP-532,903 (data not shown) did not provide further inhibition. These results suggest that signaling pathways propagated by the Gs protein-coupled A2AAR and the Gi protein-coupled A3AR

Fig. 10. Effect of pretreatment with CP-532,903 on chemotaxis of Percoll gradient-purified mouse bone marrow neutrophils toward various chemoattractants. Neutrophils were incubated (37°C) with vehicle or CP-532,903 (100 nM) for 30 min in the presence of ADA (1 unit/ml) with or without rm TNF-α (100 ng/ml), before addition to the upper wells of trans-well assays containing increasing concentrations of C5a (A and B), IL-8 (C and D), or PAF (E and F) in lower wells. The chemotaxis index was calculated as described under Materials and Methods after allowing the cells to migrate for 35 min. Results are presented as the mean ± S.E.M. *, p < 0.05 versus the vehicle-treated group by two-way ANOVA, n = 3–6.
may cross-talk or converge upon a common inhibitory mechanism, such as interference with assembly of the NADPH oxidase complex, inhibition of intracellular calcium mobilization, or cross-desensitization of chemokine receptors.

Our results also suggest that the A3AR functions to inhibit neutrophil chemotaxis. In a standard trans-well chemotaxis assay, we found that prior activation of the A3AR inhibits neutrophil migration toward a variety of chemotactic agents, predominantly in response to high concentrations of chemotaectants with variability depending on the state of cell priming. These results are consistent with the idea that neutrophils exposed to adenosine within hypoxic/ischemic tissues would have reduced ability to migrate toward chemotactic stimuli. Moreover, our results suggest that systemic administration of an A3AR agonist could inhibit neutrophil chemotaxis into inflamed tissues. Indeed, we found that pretreating mice intravenously with CP-532,903 inhibited migration of neutrophils into the peritoneum after intraperitoneal injection of thioglycollate. Previous studies have shown that adenosine weakly promotes neutrophil chemotaxis at low concentrations, which has previously been attributed to activation of the A1AR (Rose et al., 1988; Cronstein et al., 1990). Considering that murine neutrophils do not express the A1AR and because activation of the A3AR increased fMLP-induced random movement (Fig. 12), we speculate that actions previously attributed to the A1AR in neutrophils may actually be mediated by the A3AR.

Chen et al. (2006) have recently suggested that migrating neutrophils secrete ATP at the leading edge, which signals via P2Y2 receptors to amplify chemoattractant signals. After hydrolysis to adenosine by ecto-nucleotidases, these investigators (Chen et al., 2006) also provide evidence that the A3AR is recruited from a cytosolic location to the leading edge and further promotes chemotaxis by increasing the speed of migration. This hypothesis is supported by results of trans-well migration studies as well as video-tracking studies of migrating neutrophils showing that activation of the A3AR using N\(^6\)-(3-iodobenzyl)adenosine-5′-N-methylcarboxamide (IB-MECA) promotes chemotaxis (Chen et al., 2006). In the present investigation, we were not able to demonstrate that the A3AR normally functions to facilitate neutrophil migration. In trans-well migration assays, we failed to observe that including CP-532,903 in bottom wells alone or with fMLP acutely increases neutrophil chemotaxis (Fig. 8). Unlike Chen et al. (2006), we also failed to observe that chemotaxis of neutrophils obtained from A3KO mice is impaired (Fig. 9C). Although several factors [including the specific pharmacological agents used to stimulate the A3AR (i.e., CP-532,903 versus IB-MECA), methods to isolate/culture murine neutrophils, stimulation protocols (including the time and duration of pretreatment of cells with agonists), and the state of cell priming] could have contributed, a definite explanation for the differences in results obtained in our studies and those of Chen et al. (2006) remain unclear. Nevertheless, the results of our studies are more consistent with the theory that the primary function of the A3AR is to inhibit neutrophil chemotaxis rather than to promote it. In agreement with our work, three previous studies have also concluded that activation of the A3AR inhibits chemotaxis of human and murine eosinophils (Knight et al., 1997; Walker et al., 1997; Young et al., 2004).

In summary, we have shown that activation of the A3AR...
inhibits two pro-inflammatory actions of murine neutrophils (i.e., stimulated superoxide production and chemotaxis). A precise role for the A2AR in regulating these responses was confirmed using A2AR gene knockout mice and the newly characterized selective A2AR agonist CP-532,903 (Wan et al., 2008). Collectively, our results suggest that the anti-inflammatory actions of adenosine are mediated not only through the A2AR but also via the G protein-coupled A3AR. Considering that differences in the functional role of the A2AR have been observed between species (Linden et al., 1994), it will be important to confirm our findings in humans and other species.

Several previous studies have demonstrated that A2AR agonists provide benefit in experimental animal models of inflammation. For example, A2AR agonists have been shown to increase survival during sepsis (Lee et al., 2006), to reduce the severity of inflammation in adjuvant-induced arthritis (Montesinos et al., 2000), and to reduce ischemia/reperfusion injury (Jordan et al., 1999; Ge et al., 2006; Wan et al., 2008). However, the precise mechanism of action of these agents remains uncertain. The results of this investigation provide evidence that these agents may be effective by inhibiting the proinflammatory actions of neutrophils.

Acknowledgments

We acknowledge the assistance of the Cardiovascular Center HPLC Core and the Clinical Immunodiagnostic and Research Laboratory for purification of radioligands and assistance with cytosin analysis, respectively. We also thank Dr. Phillip Pratt (Department of Anesthesiology, Medical College of Wisconsin), Dr. Zhi-Dong Ge (Department of Anesthesiology, Medical College of Wisconsin), and Dr. Jeffrey Woodfill (Department of Pediatrics, Medical College of Wisconsin) for their technical assistance.

References

Address correspondence to: Dr. John A. Auchampach, Department of Pharmacology and Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226. E-mail: jauchamp@mcw.edu