
This work was supported in part by National Institutes of Health grants CA84119 and CA96515 and by OSI Pharmaceuticals.

Erlotinib induces apoptotic pathways in H3255 cells with the EGFR-L858R mutation. Erlotinib shows potent antitumor activity in some non–small-cell lung cancer (NSCLC) cell lines and is approved by the Food and Drug Administration as second and third line treatment for NSCLC. However, the molecular mechanisms by which erlotinib induces apoptosis remain to be elucidated.

Here, we investigated the effect of erlotinib on apoptotic signal pathways in H3255 cells with the EGFR-L858R mutation. The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib shows potent antitumor activity in some non–small-cell lung cancer (NSCLC) cell lines and is approved by the Food and Drug Administration as second and third line treatment for NSCLC. However, the molecular mechanisms by which erlotinib induces apoptosis remain to be elucidated.

Received December 18, 2007; accepted June 3, 2008.

Abbreviations:
- BAX, Bcl-2 associated X protein;
- BAK, Bcl-2 homology domain-containing, death effector
- domain-containing protein;
- TRAIL, tumor necrosis factor-related apoptosis-inducing ligand;
- FAS, CD95 antigen;
- mAb, monoclonal antibody.

mitochondria, both BAX and BAK proteins change their conformation and form homo-oligomers (Suzuki et al., 2000). On the outer membrane of the mitochondria, oligomerized BAX and BAK may form a channel or membrane pore, which allows the release of cytochrome c and Smac/DIABLO (Annis et al., 2005).

Several recent studies have reported that EGFR TKIs, including gefitinib and erlotinib, induce apoptosis in NSCLC cell lines through the activation of intrinsic pathways mediated by the induction of BH3-only BCL-2 family proteins (Costa et al., 2007; Cragg et al., 2007; Deng et al., 2007; Gong et al., 2007). In addition, Kuroda et al. (2007) demonstrated that activation of BH3-only BCL-2 family members BIM and BAD plays the key roles in erlotinib-induced cell death in Bcr/Abl-positive leukemic cells. In this study, we used the human H3255 NSCLC cells harboring the EGFRLaSSR mutation as a model to examine the molecular mechanism of erlotinib-induced apoptosis. We found that 0.1 μM erlotinib induces apoptosis as early as 8 h after cell exposure. We also found that erlotinib-induced apoptosis is not dependent on the FAS/CD95, TRAIL/DR4/DR5, and caspase-8-related pathways, although it caused BH3-only BCL-2 protein activation and release of cytochrome c. Additionally, erlotinib-induced apoptosis was blocked by activation of mitochondrial-mediated pathways, resulting in the loss of Δψm and release of cytochrome c and Smac/DIABLO from mitochondria to cytoplasm. More importantly, we found that the induction of apoptosis by erlotinib involves the activation of BAX and BAK, including their conformational changes and oligomerization. Furthermore, we found that erlotinib-induced BAX and BAK activation and apoptosis are largely dependent on mitochondrial oxidant phosphorylation, but not dependent on intracellular calcium. In addition, we tested the effects of caspase inhibitors, or overexpression of BCL-2 on BAX and BAK activation, and apoptosis induced by erlotinib. Downregulation of BAX and BAK gene expression with siRNA resulted in a significant decrease of erlotinib-induced cell death. All these observations provide a more detailed understanding of the mechanisms of action of the EGFR TK inhibitor erlotinib and should constitute more rational basis for therapeutic use either alone or in combination with other chemotherapeutic agents.

Materials and Methods

Antibodies and Chemicals. Erlotinib was obtained from OSI Pharmaceuticals (Farmingdale, NY), dissolved in DMSO at a stock concentration of 10 mM, and diluted to the indicated concentration with RPMI 1640 medium. The polyconal antibodies of caspase-3, caspase-8, caspase-9, FADD, BID, and BAX were purchased from Cell Signaling Technology Inc. (Danvers, MA); the antibodies of FAS, TRAIL, and cytochrome c were purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA); and monoclonal antibodies of BCL-2, BAX, and polyclonal antibody of Smac/DIABLO were purchased from Calbiochem (San Diego, CA). Rotenone, antimycin A, oligomycin, and Z-VAD-fmk were purchased from BIOMOL Research Laboratories (Plymouth Meeting, PA). Other chemicals were purchased from Sigma-Aldrich (St. Louis, MO).

Cell Lines. The human H3255 NSCLC cell line carrying an L858R EGFR mutation was a generous gift from Dr. Janne (Harvard Medical School, Boston, MA), and the H222 cell line with wild-type EGFR was purchased from American Type Culture Collection (Manassas, VA). Cells were maintained in 75-cm² flasks in RPMI 1640 medium supplemented with 10% fetal bovine serum, 100 units/ml penicillin, and 100 μg/ml streptomycin at 37°C in a humidified atmosphere with 5% CO₂.
Assay of Apoptosis and Cell Death. H3255 cells were treated with 0.1 μM erlotinib for the indicated times. After treatment, cells were fixed with 4% paraformaldehyde in PBS for 5 min and stained with 0.5 μg/ml DAPI in PBS for 15 min. Apoptotic cells (50 cells from three different fields) were counted with a Nikon E400 fluorescence microscope. For sub-G0/G1 assays, cells were fixed with 75% cold (4°C) ethanol overnight and then incubated at room temperature for 3 h with 1 μg/ml propidium iodide and 5 μg/ml RNase I (Roche Molecular Biochemicals, Indianapolis, IN). The number of apoptotic cells (sub-G0/G1) was measured by FACSscan flow cytometry (BD Biosciences, San Jose, CA). For annexin V assay, cells treated with erlotinib were double-stained with FITC-conjugated annexin V and propidium iodide (PI) using a kit according to the manufacturer’s instructions (Calbiochem). The percentage of annexin V-positive cells was assessed by FACSscan flow cytometry. For cell death assays, cells were treated with erlotinib for the indicated times, and cell survivals were determined by trypan blue exclusion.

Assay of Caspase Activity. H3255 cells were treated with 0.1 μM erlotinib for the indicated times. After treatment, cells were extracted with extraction buffer contained 20 mM HEPES, pH 7.2, 100 mM NaCl, 0.1% CHAPS, 10 mM dithiothreitol, 1 mM EDTA, 10% sucrose, 1 mM phenylmethylsulfonyl fluoride, 10 μg/ml leupeptin, and 10 μg/ml aprotinin at 4°C for 15 min. The soluble extracts were collected by centrifugation at 14,000g for 15 min and stored at −80°C until assayed. Ten microliters of cell extract containing 50 μg of protein was added into a total 100-μl reaction mixture containing 12 μM Ac-DEVD-pNA, Ac-IETD-pNA, or Ac-LEHD-pNA (Biomol Research Laboratories) as the substrates for caspase-8, and caspase-9, respectively, in ice water bath for 1 h. After incubation at room temperature for 5 min, the amount of substrate gomers was measured with a DC Protein Assay kit (Pierce Chemical, Rockford, IL) or the same volume of DMSO as a vehicle and assayed for 10 min at 450 nm. The absorbance at 450 nm was determined by subtracting the absorbance at 540 nm, which is the absorbance of DMSO vehicle.

Measurement of Δψm and ΔpH. Cells were plated in a six-well plate and treated with 0.1 μM erlotinib for the same time of medium containing 0.01% DMSO as control for the indicated time periods. After treatment, cells were incubated with 5 μM JC-1 (Invitrogen, Carlsbad, CA) at 37°C for 15 min for determination of Δψm, or with 10 μM 2’,7’-dichlorofluorescein diacetate (DCF-DA; Invitrogen) at 37°C for 30 min to measure reactive oxygen species (ROS). After incubation, the cells were harvested and washed with PBS three times, and JC-1 or DCF-DA were analyzed by fluorescence-activated cell sorter flow cytometry. For validation of conformational change in BAX and BAK, cells were performed with the lysates with zwitterionic detergent C8E6 (10 mg/ml 210 mM mannitol, 70 mM sucrose, 5 mM EGTA, and 5 mM HEPES, pH 7.2, 10 mM KCl, 1.5 mM MgCl2, 1 mM EDTA, 0.1 mM phenylmethylsulfonyl fluoride, 10 μg/ml leupeptin, and 10 μg/ml aprotinin at 4°C for 10 min). The cell lysates were treated with a Dounce homogenizer for 10 strokes and used for assay. A 10 mM BMH cross-linker buffer for 30 min as described above. The pellet was further dissolved in 1% SDS containing 1% SDS as the mitochondrial fraction.

Immunoblot Analysis. Cells were scraped from culture dish, washed twice with ice-cold PBS, then, and suspended in lysis buffer containing 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM NaF, 1 mM phenylmethylsulfonyl fluoride, 1 mM dithiothreitol, 20 μg/ml leupeptin, 20 μg/ml aprotinin, 1% Triton X-100, and 1% SDS at 0–4°C for 15 min. After centrifugation at 15,000g for 30 min at 4°C, the supernatants were collected. The pellet was dissolved in lysis buffer containing 1% SDS as the mitochondrial fraction. The membrane was blocked with 5% nonfat milk in TBST solution and incubated 4°C overnight with the corresponding primary antibodies in the blocking solution. After washing three times with TBST solution, the membrane was incubated at room temperature for 1 h with horseradish peroxidase-conjugated secondary antibody diluted with TBST solution (1:2000). The detected protein signals were visualized by an enhanced chemiluminescence detection system as recommended by the manufacturer (GE Healthcare, Chalfont St. Giles, Buckinghamshire, UK).

In Vitro Cross-Linking for Detection of BAX and BAK Oligomers. In vitro cross-linking of detection of BAX and BAK oligomers was performed according to the methods of Sundararajan et al. (2001). In brief, cells were incubated in 0.5 ml of cross-linking buffer (210 mM mannitol, 70 mM sucrose, 1 mM EDTA, 5 mM HEPES, pH 7.4, 10 mM MgCl2, and 1% CHAPS) containing 1 mM BMH (Pierce Chemical, Rockford, IL) or the same volume of DMSO as a vehicle and kept at 0°C for 10 min. After incubation, cells were pelleted by centrifugation at 15,000g for 15 min at 4°C and subjected to SDS-PAGE. After transfer to nitrocellulose membranes, active BAX and BAK were detected by immunoblotting with polyclonal anti-BAX antibody or monoclonal anti-BAX antibody, respectively.

Transient Transfection of BCL-2. Vector and human wild-type BCL-2 cDNA was a gift from Dr. Xiaobo Cao (Texas A&M, College Station, TX). H3255 cells were plated in a six-well plate and grown at approximately 70% confluence. Cells were transiently transfected with 4 μg/ml vector or BCL-2 cDNA by using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. After a 4-h transfection period, cells were reincubated in fresh medium with 10% fetal bovine serum at 37°C for 24 h. Then, 0.1 μM erlotinib or the same volume of medium containing 0.01% DMSO was added to the cell culture and incubated for an additional 24 h. After treatment, the transfected cells were harvested and divided into two cell aliquots for the determination of BCL-2 protein expression and apoptosis as described above. For determination of the effect of BCL-2 on BAX and BAK activation, transfected cells were immunoprecipitated with anti-BAX (6A7) and anti-BAK (Ab1) antibodies according to the methods of Kamaguchi and Wang (1997). The preparations of activated BAX and BAK were detected by immunoblotting with polyclonal anti-BAX antibody or monoclonal anti-BAX antibody, respectively.

Knockdown of BAX and BAK Gene Expression with siRNA. BAX-siRNA, BAK-siRNA, and the nontarget control of siRNA were purchased from Dharmacon RNA Technologies (Lafayette, CO), respectively.

Apoptosis Induced by EGFR TKI, Erlotinib 795

350 (RETRACTED) 2015
Fig. 1. Erlotinib induces apoptosis and activation of caspases in H3255 cells. A, cells were treated with 0.1 µM erlotinib or with the same volume of medium as a control for 24 h. After treatment, cell morphological changes were visualized by phase-contrast microscopy, or the condensed and fragmented nuclei were visualized by fluorescent microscopy using DAPI staining. Apoptotic cells were determined by flow cytometric analysis after cell staining with PI (B) or staining with annexin V/PI (C). Cells were treated with varying concentrations of erlotinib at 37°C for 24 h (D) or with 0.1 µM erlotinib for the indicated time (E). After treatment, cells were stained with PI solution, and the apoptotic cells were determined by flow cytometric analysis. Data represent the mean ± S.D. of three independent experiments; **, p < 0.01 versus concentration at 0 µM or time at 0. F, cells were treated with 0.1 µM erlotinib for the indicated time. After treatment, cells were harvested and divided into two aliquots. One aliquot was used for determination of generation of active form of cleaved caspase-8, -9, and -3 by immunoblots using corresponding antibodies. G, the other cell aliquot was used for the determination of caspase activity by measurement of the release of pNA from substrates as described under Materials and Methods. Each point represents mean ± S.D. of three independent experiments.
erlotinib. After 24-h incubation, cells were harvested for the determination of BAX and BAK protein expression, and apoptosis as described above.

Statistical Analysis. Data are presented as mean ± S.D. of the number of experiments indicated. The comparisons were made with a t test, and the difference was considered to be statistically significant if the p value was <0.05.

Results

Erlotinib Induces Apoptosis in H3255 Cells. Because human H3255 NSCLC cells that carry an EGFRL858R mutation have shown to be very sensitive to gefitinib (Tracy et al., 2004), we selected this cell line as a model to determine the effect of erlotinib on triggering apoptotic pathways. At first, we treated H3255 cells with 0.1 μM erlotinib for 24 h to evaluate drug-induced apoptosis. As shown in Fig. 1A, erlotinib induces H3255 cell death with the characteristic apoptotic features, including cell detachment, shrinkage, and generation of apoptotic bodies as observed with a phase-contrast microscope, as well as the chromatin condensation and fragmentation in nucleus detected by cell staining with DAPI solution. Moreover, flow cytometric analysis revealed that erlotinib treatment led to an increase in apoptotic nuclei with a subdiploid DNA content (sub-G0/G1) (Fig. 1B), as well as an increase in the FITC-labeled annexin V-positive staining cells with exposure of phosphatidylserine on the outside of the plasma membrane (Fig. 1C). The kinetic studies showed that induction of apoptosis in H3255 cells by erlotinib occurred in a concentration- and time-dependent manner. It could be detected at a concentration as low as 0.05 μM for 24 h and as early as 8 h after exposure to 0.1 μM erlotinib (Fig. 1, D and E). We next explored whether erlotinib-induced apoptosis was associated with activation of caspases. After treatment with 0.1 μM erlotinib for the indicated times, cells were harvested and divided into two aliquots. One aliquot was used for determination of the generation of the active forms of cleaved caspases by immunoblots. The other cell aliquot was used for determination of caspase activities measured by the colorimetric assay as described under **Materials and Methods.** The immunoblot analysis revealed that 0.1 μM erlotinib treatment resulted in the appearance of the active forms of cleaved caspase-8 (43 and 18 kDa) and caspase-9 (37 and 35 kDa) as early as 4 h after exposure, and the active forms of cleaved caspase-3 (26, 19, and 17 kDa) after

![Fig. 2. Effect of erlotinib on extrinsic apoptotic pathway in H3255 cells.](image-url)
8 h of drug exposure (Fig. 1F). Quantitative determinations of caspase activities by colorimetric assays showed consistently that activities of caspase-8 and caspase-9 were markedly increased by approximately 2.8- and 2.4-fold at 4 h of erlotinib treatment, respectively, whereas caspase-3 activity was increased by approximately 2.9-fold after 8 h of drug treatment (Fig. 1G). These results indicate that erlotinib triggers the initiator caspase-8, and caspase-9 initially and subsequently activates the executioner caspase-3.

Effect of Erlotinib on Extrinsic Apoptotic Pathways. Because erlotinib treatment caused a remarkable activation of caspase-8, which is an initiator of caspase in the extrinsic apoptosis pathways (Walczak and Krammer, 2000), we sought to determine whether the death receptor apoptotic signals were involved in erlotinib-induced apoptosis. Results shown in Fig. 2A indicate that erlotinib at 0.1 μM caused a time-dependent caspase-8 induced cleavage of BH3-only BID protein and the formation of its truncated form of BID (t-BID), which could translocate to the mitochondria to enhance the mitochondrial-mediated apoptosis pathways (Li et al., 1998). Under the same experimental conditions, erlotinib did not markedly affect the expression of the death receptors FAS and TRAIL as well as FAS adaptor protein FADD over time (Fig. 2B). To further explore whether erlotinib induces apoptosis is associated with the death receptor pathways, we treated H3255 cells with 0.1 μM erlotinib alone, or plus 2 μg/ml FAS-antagonistic mAb (ZB-4; Upstate, Billerica, MA), or 2 μg/ml TRAIL antagonistic TRAIL/Fc recombinant (Apotech, San Diego, CA) for 24 h. Neither ZB-4 mAb nor TRAIL/Fc recombinant protected against erlotinib-induced cell death, whereas cotreatment with ZB-4 Fc resulted in a significant reduction of FAS-induced cell death (p < 0.01), and cotreatment with TRAIL/Fc attenuated TRAIL-induced cell death (p < 0.05) (Fig. 2, C and D). These results suggest that erlotinib-induced apoptosis may be mediated with FAS/CD95/Apo1 and/or TRIAL/Apo2L apoptotic pathways, although erlotinib-induced caspase activation and generation of t-BID.

Erlotinib Induces Mitochondrial Dysfunction. Next, we examined whether erlotinib-induced apoptosis was associated with the mitochondrial pathways. First, we treated H3255 cells with 0.1 μM erlotinib for the indicated time, and then we determined its effect on the Δψm using a cationic fluorescent JC-1 dye. As shown in Fig. 3A, the typical fluorescence histograms showed that disruption of Δψm, determined by the ratio of JC-1 aggregates to monomers, was observed in cells treated with 0.1 μM after 8 and 24 h compared with control cells. Quantitative analysis of the loss measured by JC-1 aggre-
gates at FL-2 indicated that ~30% of loss of \(\Delta \psi_m \) was observed after 8 h of erlotinib treatment, increasing over time compared at each time point with control cells (Fig. 3B). Second, we evaluated the effect of erlotinib on cytochrome c release from mitochondria to the cytoplasm by immunoblot analysis after cell fractionation. As shown in Fig. 3C, the signal of cytochrome c was barely detectable in cytosol at times 0 to 4 h and clearly detected at 8 h, reached the maximal level thereafter. Under the same experimental conditions, we also detected the release of Smac/DIABLO, another apoptotic regulator, from mitochondria to cytosol with a pattern similar to that of cytochrome c release.

Erlotinib Induces BAX Translocation to the Mitochondria and Conformational Changes of BAX and BAK. Previous reports have demonstrated that BAX translocation to the mitochondria and alteration in protein conformation of BAX and BAK are necessary steps in cells undergoing apoptosis (Desagher et al., 2000; Stankiewicz et al., 2004).

Fig. 4. Erlotinib induces BAX translocation to the mitochondria and BAX and BAK conformational changes. A, H3255 cells were treated with 0.1 \(\mu \)M erlotinib for the indicated time. After treatment, cytosolic and mitochondrial fractions were prepared as described above. The levels of BAX in cytosolic and mitochondrial fraction were detected by immunoblots. B and C, effect of erlotinib on BAX and BAK protein conformational changes. Cells were treated with 0.1 \(\mu \)M erlotinib for the indicated times. After treatment, cells were fixed with paraformaldehyde and then incubated with 6A7 monoclonal anti-BAX antibody or with AM03 monoclonal anti-BAK (Ab1) antibody for 60 min. After incubation with FITC-conjugated second antibody for 30 min, the signals of activated conformation of BAX and BAK proteins were measured by flow cytometric analysis as described under Materials and Methods. The typical histograms of BAX and BAK conformational changes in cells treated with erlotinib are presented in B and C, respectively. The increased folds of activities of BAX and BAK as measurement by flow cytometric analysis are presented in the bottom of B and C, respectively. Data represent the mean ± S.D. of three independent experiments. D and E, erlotinib-induced activation of BAX and BAK protein conformation was further validated by immunoprecipitation. H3255 cells were treated with 0.1 \(\mu \)M erlotinib for the indicated time. After treatment, cells were harvested, and cell pellets were divided into two aliquots. One aliquot was used for the preparation of immunoprecipitation with 6A7 anti-BAX or Ab1 anti-BAK antibodies. The other cell aliquot was lysed with nonionic detergent lysis buffer. The levels of BAX and BAK were detected by immunoblots using polyclonal anti-BAX and anti-BAK antibodies.
We thus examined whether erlotinib-induced apoptosis is associated with the activation of BAX and BAK. We investigated BAX localization in the cytosol and mitochondria after cell fractionation by immunoblots in H3255 cells after exposure to 0.1 μM erlotinib for the indicated times. As shown in Fig. 4A, BAX levels were high in the cytosol at 0 to 4 h of incubation, and then they declined at 8 to 24 h. In contrast, BAX levels in the mitochondrial fraction were low at 0 to 4 h postdrug exposure, and they increased thereafter, indicating that erlotinib treatment led to BAX translocation to the mitochondria. In addition, we found that erlotinib did not markedly alter the subcellular localization of BAK over time, remaining in the mitochondria all along (data not shown).

Next, we analyzed the activity-related conformational changes in BAX and BAK by flow cytometric analysis using immunostaining with special anti-BAX (6A7) and BAK (AM03, Ab1) antibodies, which recognize the N-terminal epitopes of the active conformation of BAX and BAK (Panaretakis et al., 2002). The typical fluorescence histograms shown in Fig. 4, B and C (top), demonstrate that exposure to 0.1 μM erlotinib induces a shift to the right of the BAX and BAK fluorescence curves compared with control, indicating that erlotinib leads to BAX and BAK activated conformational changes. The quantitative analysis presented in Fig. 4, B and C, bottom, indicates that the increased BAX and BAK activities occurred as early as 4 h after erlotinib exposure and gradually increased with time. To further validate these observations, we used the zwitterionic detergent CHAPS, which has been proven to retain the BAX and BAK at native conformation (Yamaguchi and Youle, 2005). We thus examined whether erlotinib-induced apoptosis and activation of BAX and BAK occurred in a concentration at 0.01 μM and as early as at 2 h of drug exposure, although the BAK dimer was also detected in a concentration at 0 μM and time 0.

Erlotinib-Induced BAX and BAK Activation Is Independent of ROS Generation. Several reports have demonstrated that the generation of ROS by a stimulation of intracellular redox plays a critical role in the regulation of activation of BAX and BAK (Zheng et al., 2005). We sought to investigate whether erlotinib-induced apoptosis and activation of BAX and BAK could be tied to ROS generation. We first examined the intracellular ROS levels by flow cytometric analysis after incubation with DCF-DA in cells treated with 0.1 μM erlotinib for 6 h. As shown in Fig. 6 A, erlotinib treatment only did not induce but actually showed a slightly left shift of ROS fluorescence curves as shown by the left shifting of the ROS fluorescence curve, whereas H2O2, as a negative control, led to ROS generation as shown by the right shift of ROS fluorescence curve, compared with control cells (Fig. 6 B). In parallel, we tested the effects of several antioxidants N-acetylcycteine (NAC), tiron, dihydroyxyl-β-cresol, sulfonated disulfonic acid disodium salt, and reduced glutathione on erlotinib-induced activation of BAX and BAK and apoptosis, and we found that all tested antioxidants failed to alter erlotinib-induced apoptosis and activation of BAX and BAK, suggesting that ROS generation played a minor role in erlotinib-induced apoptosis and activation of BAX and BAK.

Fig. 5. Erlotinib induces oligomerization of BAX and BAK proteins in H3255 cells. Cells were treated with varying concentrations of erlotinib for 24 h or with 0.1 μM erlotinib for the indicated time. After treatment, cells were harvested and incubated with 1 mM protein cross-linker BMH at room temperature for 30 min. After incubation, cells were lysed with lysis buffer, and an equal amount of lysates (30 μg of protein) was subjected to a 15% SDS-PAGE. After transferring to a membrane, the oligomers of BAX (A) and BAK (B) were detected by immunoblots using the corresponding antibodies. The nonspecific bands (22 kDa) served as the sample loading control.
that erlotinib-induced cell death is not dependent on ROS-mediated pathways.

Effects of Inhibitors of Mitochondrial Oxidative Phosphorylation on Erlotinib-Induced Activation of BAX and BAK and Apoptosis. Recent investigations have demonstrated that the activation of BAX and BAK may be controlled by either mitochondrial oxidative phosphorylation and/or by mitochondrial membrane permeabilization (Tomiyama et al., 2006). We thus tested the role of mitochondrial oxidative phosphorylation in the regulation of erlotinib-induced activation of BAX and BAK and cell death. We first determined the effects of 1 µM rotenone, 5 µM antimycin A, two inhibitors of mitochondrial electron transport chain complexes I and II (Okun et al., 1999), and 3 µM oligomycin, an inhibitor of mitochondrial ATPase (F₁F₀) (Linnett and Beechey, 1979), on the activation of BAX and BAK as measured by conformational change and oligomerization, and on the mitochondrial dysfunction as monitored by cytochrome c release in H3255 cells after exposure for 12 h with 0.1 µM erlotinib. We found that cotreatment with these inhibitors effectively blocked erlotinib-induced BAX and BAK activation including the reduction of the formation of active BAX and BAK, and decline in BAX and BAK oligomerization (Fig. 7, A and B), and protected cytochrome c release to cytosol compared with cells treated with erlotinib alone (Fig. 7C). Cotreatment with these inhibitors consistently caused a significant inhibition of erlotinib-induced apoptosis compared with cells treated with erlotinib alone (<i>p</i> < 0.01) (Fig. 7D). These data indicated that the activation of BAX and BAK by erlotinib is clearly dependent on mitochondrial oxidative phosphorylation.

Effects of Caspase Inhibitor on Erlotinib-Induced Activation of BAX and BAK and Apoptosis. Because erlotinib-induced apoptosis correlates with the activation of caspases, we tested the effects of caspase inhibitors on the activation of BAX and BAK and on erlotinib-induced apoptosis. We found that cotreatment with 10 µM z-VAD-FMK, a general caspase inhibitor, effectively blocked erlotinib-induced BAX and BAK activation including the reduction of the formation of active BAX and BAK, and decline in BAX and BAK oligomerization (Fig. 7, A and B), and protected cytochrome c release to cytosol compared with cells treated with erlotinib alone (Fig. 7C). Cotreatment with z-VAD-FMK consistently caused a significant inhibition of erlotinib-induced apoptosis compared with cells treated with erlotinib alone (<i>p</i> < 0.01) (Fig. 7D). These data indicated that the activation of BAX and BAK by erlotinib is clearly dependent on mitochondrial oxidative phosphorylation.
caspases, we examined whether the activation of BAX and BAK by erlotinib could be linked to the caspase-dependent pathway. To this purpose, we cotreated H3255 cells with 0.1 μM erlotinib and 50 μM Z-VAD-fmk, a pan-caspase inhibitor for 24 h, and then examined the effect on induction of apoptosis. As shown in Fig. 8A, cotreatment with Z-VAD-fmk led to prevention of erlotinib-induced apoptosis. However, cotreatment with Z-VAD-fmk had no effect on erlotinib-induced BAX and BAK conformational changes and oligomerization (Fig. 8, B and C). These results suggest that BAX and BAK activation may not be through the caspase-dependent pathway, and caspase activation is downstream of BAX and BAK activation in erlotinib-induced apoptosis.

Effect of Overexpression of BCL-2 on Erlotinib-Induced BAX and BAK Activation and Apoptosis. It has been well established that BCL-2 plays a critical role in the regulation of the mitochondrial-mediated apoptotic pathway (Adams and Cory, 2001). We thus transiently transfected H3255 cells with BCL-2 cDNA, and we determined the effect of overexpression of BCL-2 on erlotinib-induced activation of BAX and BAK, and apoptosis. Immunoblot analysis revealed that endogenous BCL-2 was barely detectable in nontransfected and vector-transfected cells, and BCL-2 expression was clearly detected after a 24-h BCL-2 cDNA transfection (Fig. 9A). As expected, transient transfection of BCL-2 led to a significant inhibition of erlotinib-induced cell death; i.e., ∼14% of cells were apoptotic in H3255/BCL-2 cells compared with ∼27% in H3255 and H3255/vector cells after a 24-h treatment with 0.1 μM erlotinib (Fig. 9B). However, we also found that BCL-2 overexpression did not markedly alter erlotinib-induced BAK conformational change and oligomerization and slightly reduced the formation of active form of BAX.

Fig. 7. Effects of inhibitors of mitochondrial oxidative phosphorylation on erlotinib-induced apoptosis and activation of BAX and BAK in H3255 cells. A, cells were treated with 0.1 μM erlotinib alone or with 0.1 μM erlotinib plus 1 μM rotenone, 3 μM oligomycin, 5 μM antimycin A, or with the same volume of medium as a control at 37°C for 24 h. After treatment, cells were harvested, and the active BAX and BAK were immunoprecipitated with 6A7 anti-BAX or Ab1 anti-BAK antibodies as described above. The levels of active BAX and BAK were measured by immunoblots using the corresponding antibodies. B, for assay of BAX and BAK oligomerization, cells were treated with erlotinib alone or plus inhibitors as described above. After treatment, cells were harvested and incubated with 1 mM protein cross-linker BMH for 30 min. The oligomerized BAX and BAK were detected by immunoblots using the corresponding antibodies as described above. C, inhibitors of mitochondrial oxidative phosphorylation inhibit erlotinib-induced cytochrome c release to cytosol. Cells were treated with erlotinib alone or plus the inhibitors of mitochondrial oxidative phosphorylation as described above. After treatment, cells were harvested and the cytosolic fraction was prepared as described under Materials and Methods. The levels of cytochrome c in cytosol were detected by immunoblot analysis. β-Actin was used as a loading control. D, effects of inhibitors of mitochondrial oxidative phosphorylation on erlotinib-induced apoptosis. Cells were treated with erlotinib alone or plus inhibitors as described above. After treatment, cells were stained with DAPI solution, and the percentage of apoptotic cells was determined by counting the condensed and fragmented nuclei. Data represent mean ± S.D. of three independent experiment; **, p < 0.01 versus erlotinib alone.
BAX and dimer (Fig. 9, C and D). These data suggest that overexpression of BCL-2 may not be involved in the regulation of BAX and BAK activation, although it prevented erlotinib-induced cell death.

Effect of Down-Regulation of BAX and BAK Gene Expression by siRNA on Erlotinib-Induced Apoptosis in H3255 Cells. To further investigate the role of BAX and BAK expression on the regulation of cell death by erlotinib, we used BAX and BAK siRNA to down-regulate both proteins expression in H3255 cells, and to test the effect of down-regulation of BAX and BAK on erlotinib-induced apoptosis. As shown in Fig. 10A, immunoblot analysis demonstrated that transfection with BAX and BAK siRNA specifically down-regulated the expression of BAX and BAK protein in either control or erlotinib-treated cells compared with non-transfected cells or cells transfected with nonspecific siRNA. As expected, down-regulation of BAX or BAK protein expression by siRNA resulted in a significant attenuation of erlotinib-induced apoptosis compared with that of nontransfected cells (Fig. 10B). In addition, we found that the double gene silenced by transfection with both BAX and BAK siRNA caused a higher inhibitory effect on erlotinib-induced apoptosis than that observed with transfection with either BAX siRNA or BAK siRNA alone (p < 0.05). These findings suggest that the activation of either BAX or BAK gene may play an important role in the regulation of erlotinib-induced apoptosis.

Discussion

In previous work, we and others have demonstrated that erlotinib is a highly selective EGFR tyrosine kinase inhibitor with potent activity against human NSCLC cell lines in in vitro and in vivo studies (Broyer et al., 2002; Shi et al., 2005). We also found that the erlotinib exposure caused cell growth inhibition accompanied by a cell cycle arrest at G1/S phase in human NSCLC cells. These G1 phase arrest by erlotinib was shown to be accompanied by reduced p27KIP1 expression and nuclear translocation (Zhang et al., 2007). In addition, recent studies have shown that EGFR gene mutations within the active loops of the tyrosine kinase domains confer very reduced susceptibility to the EGFR TKI gefitinib in NSCLC cells (Lynch et al., 2004; Paez et al., 2004). In the present work, we used human H3255 NSCLC cells, which harbor an EGFR(L858R) mutation, as a model to examine the sequence of events involved in the inhibition of cell proliferation and cell death induced by erlotinib. Our results show that the exposure of H3255 cells to low concentrations of erlotinib results in apoptotic cell death as verified from morphological observations and the assessment of sub-G0/G1.

![Fig. 8](image-url)
cells and annexin V-positive staining by fluorescence-activated cell sorter analysis, and it is associated with the activation of caspases at the initiating and effector stages. Furthermore, we found that erlotinib did not affect the expression of the apoptotic receptors FAS and TRAIL, although it induced activation of caspase-8 and cleavage of BH3-only BID protein. Coincubation with the FAS and TRAIL antagonists ZB-4 mAb and TRAIL/Fc recombinant did not prevent erlotinib-induced cell death, suggesting that apoptosis caused by erlotinib is not mediated by apoptotic receptor-related pathways. These results are consistent with the studies by Liu and Fan (2001), who showed that cetuximab, an anti-human EGFR monoclonal antibody, induces cell death in DiFi colon cancer cells, but it does not interact with or regulate the TRAIL- or FAS-related pathway, although it activates caspase-8 (Liu and Fan, 2001). Our studies demonstrated that erlotinib induces the disruption of mitochondrial function with loss of ΔΨm, as well as release of cytochrome c and Smac/DIABLO from mitochondria to the cytosol. We also observed that erlotinib-induced apoptosis is correlated with BAX translocation from the cytosol to the mitochondria, and BAX and BAK protein conformational changes as well as both proapoptotic protein oligomerization. To our knowledge, the observation that activation of BAX and BAK and their oligomerization are involved in erlotinib-induced apoptosis is new. The kinetic studies showed that the activation of BAX and BAK, including their conformational changes and oligomerization, precede the release of cytochrome c and Smac/DIABLO and the activation of caspases and seem to be a major contributing factor in the induction of apoptotic signals by erlotinib. We also tested whether cetuximab-induced activation of BAX and BAK occurs in other human NSCLC cell lines. Preliminary studies show that erlotinib treatment causes H322 cell death, accompanied by the induction of BAX and BAK oligomerization, indicating that the activation of BAX and BAK protein is not restricted to H3255 or H929 cell lines. It has been suggested that BAX and BAK oligomerization can facilitate the formation of the megachannel in the outer mitochondrial membrane, allowing the release of cytochrome c. However, the precise molecular mechanisms of how the megachannel is formed and how cytochrome c is subsequently released remains unknown (Annis et al., 2005).

Fig. 9. Effect of transient transfection with BCL-2 cDNA on erlotinib-induced apoptosis and activation of BAX and BAK in H3255 cells. A, cells were transiently transfected with 2 μg BCL-2 cDNA or with the same amount of vector or with the same volume of medium as a control by Lipofectamine 2000 as described under Materials and Methods. After 24-h transfection, cells were treated with 0.1 μM erlotinib or with the same volume of medium as a control for an additional 24 h. Cells were harvested and divided into two aliquots. One aliquot was used for the determination of BCL-2 expression by immunoblots. β-Actin was used as a loading control. B, the other cell aliquot was used for examination of apoptotic cells after staining with DAPI and Actin. After treatment, cells were harvested and incubated with 1 mM protein cross-linker BMH for 30 min. The oligomerized BAX and BAK were detected by immunoblots using the corresponding antibodies. C, effect of BCL-2 cDNA transfection on erlotinib-induced BAX and BAK oligomerization. Cells were transiently transfected with BCL-2 cDNA and treated with erlotinib as described above. After treatment, cells were harvested and incubated with 1 mM protein cross-linker BMH for 30 min. The oligomerized BAX and BAK were detected by immunoblots using the corresponding antibodies. The nonspecific bands (22 kDa) served as the sample loading control.
Our results indicate that BAX and BAK oligomerization was an earlier event than BAX translocation, as well as cytochrome c release and caspase activation, suggesting that BAX and BAK oligomerization is the event triggering the apoptosis cascades. These results are consistent with the reports by Gross et al. (1998), who demonstrated that BAX oligomerization is a prerequisite for BAX translocation to the mitochondria. Although erlotinib induces apoptosis via the disruption of mitochondrial function and the activation of BAX and BAK, the precise mechanism by which the inhibition of EGFR and its related pathways could lead to the initiation of the apoptotic cascades remain to be further elucidated. One possible explanation for the erlotinib-induced activation of BAX and BAK may be a direct interaction with BAX and BAK, and then inducing protein conformational changes and oligomerization. However, preliminary results show that erlotinib has no effect on protein conformation by immunostaining using active anti-BAX and BAK antibodies, and does not induce oligomerization of BAX and BAK as measured by immunoblots in the presence of protein cross-linker BMH when it is added directly into the cell-free systems such as the cytosolic or mitochondrial fractions prepared from H3255 cells (data not shown), suggesting that erlotinib does not directly interact with BAX or BAK proteins. Another possibility may be that erlotinib inhibits AKT/PKB and/or ERK/MAP kinase, and these events lead to the activation of BAX and BAK. We thus compared the effects of erlotinib with the inhibition of AKT/PKB, LY-294002, and wortmannin, and the inhibitors of ERK/MAP kinase, PD98059 on the activation of BAX and BAK. We found that pharmacological concentrations, AKT/PKB inhibitors, but not ERK/MAP kinase inhibitors cause the activation of BAX and BAK. These results suggest that erlotinib-induced activation of BAX and BAK is associated with the inhibition of AKT/PKB rather than with the inhibition of ERK/MAP kinase pathway (Supplemental Fig. S2). Indeed, a recent study showed that the inhibition of AKT/PKB signal pathway by either growth factor deprivation or glucose deprivation resulted in the abrogation of erlotinib induced BAX and BAK activation in mitochondria (Steffen et al. 2004).

Tomiyama et al. (2006) have demonstrated that cotreatment with inhibitors of mitochondrial oxidative phosphorylation markedly prevented the oligomerization of BAX and BAK and cell death in rat-1 fibroblasts and human cancer cells subjected to apoptotic stimuli such as DNA damage, endoplasmic reticulum stress, and tumor necrosis factor-α (Tomiyama et al., 2006). These results also demonstrate consistently that treatment with a variety of inhibitors of mitochondrial oxidative phosphorylation, including rotenone, antimycin A, and oligomycin, effectively blocked erlotinib-induced the formation of active BAX and BAK and oligomerization, and cytochrome c release as well as cell death. These data indicate that BAX and BAK activation by erlotinib may be regulated by mitochondrial oxidative phosphorylation metabolism with the modulation of mitochondrial membrane permeability. The other possibility may be that erlotinib-induced treatment could alter mitochondrial phosphorylation metabolic pathways and metabolites such as generation in the glycolysis for ATP generation and/or changes in NADPH oxidase in the membrane and the mitochondrial electron transport system (Harris and Daniel, 1989).

In summary, our results demonstrate that erlotinib-induced apoptosis in H3255 cells is associated with activation of caspases at both stage and execution stages. Erlotinib-induced apoptosis is dependent on the mitochondrial-mediated path-

![Fig. 10. Down-regulation of BAX and BAK expression by siRNA attenuates erlotinib-induced apoptosis in H3255 cells. Cells with 75% confluency were transiently transfected with BAX and BAK siRNA or with nonspecific siRNA, or with the same volume of medium as a nontransfection as described under Materials and Methods. After transfection, cells were incubated in the presence of 0.1 μM erlotinib (E) or the same volume of medium as a control (C). After 24 h of incubation, cells were taken from culture, and cell pellets were divided into two aliquots. A, one of the aliquots was used for determination of BAX and BAK expression by immunoblots using anti-BAX and BAK antibodies. β-Actin was used as a loading control. B, the other aliquot was used for examination of apoptotic cells by counting the condensed and fragmented nuclei after staining with DAPI as described above. Data represent the mean ± S.D. of three independent experiments; **, p < 0.01 compared with that in nontransfected cells, and *, p < 0.05 versus cells transfected with single siRNA.](https://molpharm.aspetjournals.org/article/S1535-7597(15)00316-1/10.1124/mol.115.105705)}
way, but independent of extrinsic pathway. Furthermore, the activation of BAX and BAK, including BAX translocation, BAX and BAK conformational changes, and oligomerization, plays a crucial role in the initiation of erlotinib-induced apoptosis. In addition, the activation of BAX and BAK is dependent on the mitochondrial oxidative phosphorylation, but independent of ROS generation or redox signals. Overexpression of BCL-2 or inhibition of caspase activity by Z-VAD-fmk did not markedly affect the activation of BAX and BAK, but it inhibited erlotinib-induced apoptosis. Moreover, down-regulation of BAX and BAK protein expression by siRNA led to the attenuation of erlotinib-induced apoptosis. In addition, recent investigation by Gong et al. (2007) indicated that erlotinib-induced apoptosis through the alteration in the subcellular localization of BAX from nuclei to cytoplasm in PC-9 and H3255 cells. All findings suggest that the activation of proapoptotic BCL-2 proteins, including BAX, BAK, and BIM, is essential for the triggering of EGFR TKI-induced intrinsic apoptotic pathway. Overall, the characterization of the molecular sequences of events leading to erlotinib-induced apoptosis has yielded important information toward understanding the mechanisms of action of EGFR TKIs in lung cancer cells. These findings provide a better elucidation of the mechanisms involved in erlotinib-induced apoptosis and can help in optimizing the use of this compound in the clinic in combination with other agents to improve its efficacy.

References

Bak, Bax, and BH3-only proteins in the apoptotic response to doxorubicin. J Pharmacol Exp Ther 322:2197–2203.
Bak, Bax, and BH3-only proteins in the apoptotic response to doxorubicin. J Pharmacol Exp Ther 322:2197–2203.
Bak, Bax, and BH3-only proteins in the apoptotic response to doxorubicin. J Pharmacol Exp Ther 322:2197–2203.