Functional Role of Arginine 375 in Transmembrane Helix 6 of Multidrug Resistance Protein 4 (MRP4/ABCC4)

Department of Pharmacology and Toxicology (A.A.K.E., J.J.M.W.v.d.H., F.G.M.R., J.B.K.) and Centre for Molecular and Biomolecular Informatics (E.K.), Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands

Received November 20, 2007; accepted July 8, 2008

ABSTRACT
Multidrug resistance protein (MRP) 4 transports a variety of endogenous and xenobiotic organic anions. MRP4 is widely expressed in the body and specifically localized to the renal apical proximal tubule cell membrane, where it mediates the excretion of these compounds into urine. To characterize the MRP4 substrate-binding site, the amino acids Phe368, Phe369, Glu374, Arg375, and Glu378 of transmembrane helix 6, and Arg998 of helix 12, localized in the intracellular half of the central pore, were mutated into the corresponding amino acids of MRP1 and MRP2. Membrane vesicles isolated from human embryonic kidney 293 cells overexpressing these mutants showed significantly reduced methotrexate (MTX) and cGMP transport activity compared with vesicles that expressed wild-type MRP4. The only exception was substitution of Arg375 with serine, which had no effect on cGMP transport but significantly decreased the affinity of MTX. Substitution of the same amino acid with a positively charged lysine returned the MTX affinity to that of the wild type. Furthermore, MTX inhibition of MRP4-mediated cGMP transport was noncompetitive, and the inhibition constant was increased by introduction of the R375S mutation. A homology model of MRP4 showed that Arg375 and Arg998 face right into the central aqueous pore of MRP4. We conclude that positively charged amino acids in transmembrane helices 6 and 12 contribute to the MRP4 substrate-binding pocket.

Proteins belonging to the ATP-binding cassette (ABC) superfamily play a crucial role in human physiology, pharmacology, and toxicology, as well as numerous pathological conditions. To date, 48 human ABC transporter proteins have been identified, including nine multidrug resistance proteins (MRPs) belonging to the C subfamily (van de Water et al., 2005). MRPs are not only important for the tumor cell resistance they confer to chemotherapeutic drugs but also for their endogenous expression in normal human tissues. MRP4/ABCC4 is widely distributed in epithelial tissue and blood cells, and highest expression has been found in kidney, lung, prostate, liver, tonsils, and bladder (Borst et al., 2007). MRP4 is located at the basolateral membrane, except for the renal proximal tubular cell where it is expressed apically (van Aubel et al., 2002). Structurally, the human MRP4 protein consists of 1325 amino acids composed of two membrane-spanning domains each consisting of six transmembrane α-helices (TM), with two cytosolic ATP-binding domains. MRP4 mediates ATP-dependent transport of various organic anions from the intracellular to the extracellular side (Russel et al., 2008). Substrates include endogenous compounds such as the cAMP and cGMP monophosphate (van Aubel et al., 2002), folate (Chen et al., 2002), and uric acid (Van Aubel et al., 2005), as well as drugs such as the antiviral nucleoside monophosphate analog 9-(2-phosphonylmethoxyethyl)adenine (Schuetz et al., 1999) and the nucleobase analogs 6-mercaptopurine (Wielinga et al., 2002) and methotrexate (MTX) (Chen et al., 2002).

The mode by which MRPs transport their substrates has still to be identified. Among the different MRPs, the structure-function relationship of MRP1 has been investigated most extensively (Deeley et al., 2006). Several mutational studies have shown that polar amino acids in transmembrane helix 6 of MRP1 contribute to the substrate-binding pocket.
brane helices 11 and 17 of MRP1 are involved in substrate binding (Ito et al., 2001a,b; Zhang et al., 2001, 2006; Koike et al., 2004). In a model, most of their side chains were found to line the “pore” adjacent to the membrane cytosol interface. In contrast with MRP1, limited knowledge regarding the amino acids involved in substrate specificity of MRP2 (Ito et al., 2001a) and MRP3 (Zhang et al., 2003b) is available.

To date, no attempt has been made to characterize the MRP4 substrate-binding site(s). In the present study, we investigated the role of Phe368, Phe369, Glu374, Arg375, and Glu378 present in transmembrane helix 6 (TM11 in MRP1) and Arg398 in transmembrane helix 12 (TM17 in MRP1) in transport of cGMP and MTX. These amino acids are highly conserved in MRP4 among different species (Chen and Klaassen, 2004), but there is a large variety within the MRP subfamily (Fig. 1) that might point to a specific mechanistic importance of these amino acids. When they were substituted by their analogs from MRP1/MRP2, most mutations abolished MRP4 transport activity, except for Arg375 in which cGMP transport was preserved, whereas the affinity for MTX was reduced. We studied this mutation in more detail and developed a homology model of MRP4 to explain the results.

Materials and Methods

Materials. [3',5',7'.3H(N)]Methotrexate sodium salt (specific activity, 51.5 Ci/mmol) and [8-14C]guanosine-3',5'-cyclic phosphate NH4 salt (specific activity, 7.7 Ci/mmol) were purchased from Moravek Biochemicals (Brea, CA). The Bac-to-Bac Gateway system, culture medium, and Alexa Fluor 680 goat anti-rabbit IgG secondary antibody were purchased from Invitrogen (Breda, The Netherlands). Methotrexate, guanosine 3',5'-cyclic monophosphate, and GenElute Plasmid Mini-Prep kit were purchased from Sigma (Zwijndrecht, The Netherlands). Fetal bovine serum was purchased from MP Biomedicals (Auburn, CA). Multiscreen HTS-HV 0.45-μm, 96-well filters were obtained from Millipore (Etten-Leur, The Netherlands). Protein concentrations were determined with an assay kit from Bio-Rad Laboratories (Veenendaal, The Netherlands). Rat, mouse, and human MRP4 cDNAs were cloned into pFastBacDual vector using two primers (forward and reverse) produced by Biolegio (Nijmegen, The Netherlands) bearing one or more mismatched bases at the site of residues to be mutated. In this PCR reaction, PfuUltra II fusion HS DNA polymerase with the supplied reaction buffer, and dNTP mix (12.5 mM), each completed to 50-μl end volume, were used. PCR amplification consisted of initial denaturation at 94°C, followed by 20 cycles of denaturation at 94°C, annealing at 58°C, and elongation at 72°C for 14 min. The PCR product was cut by DpnI for 2 h at 37°C and finally transformed into E. coli DH5α.

Generation of Human MRP4 Baculovirus. Full-length human MRP4 cDNA was generated as described previously (El-Sheikh et al., 2007). Briefly, the Bac-to-Bac system, normally used for protein production in insect cells, was modified for protein expression in mammalian cells by introduction of the cytomegalovirus promoter and Gateway destination elements (cassette that contains the chloramphenicol resistance gene and the ccdB gene flanked by attR1 and attR2 sites) in the pFastBacDual vector. In addition, the vesicular stomatitis virus G protein cDNA was cloned behind the P10 promoter of the pFastBacDual vector. The human MRP4 was cloned into the Gateway entry vector and transferred to the newly constructed Bac-to-Bac vector with the gateway LR reaction. Baculoviruses were produced as described in the Bac-to-Bac manual. As a negative control, enhanced yellow fluorescent protein (EYFP) was also introduced into the Baculovirus expression system (Invitrogen).

Site-Directed Mutagenesis. PCR was performed on a template pENTR-MRP4 vector using two primers (forward and reverse) produced by Biologen (Nijmegen, The Netherlands) bearing one or more mismatched bases at the site of residues to be mutated. In this PCR reaction, PfuUltra II fusion HS DNA polymerase with the supplied reaction buffer, and dNTP mix (12.5 mM), each completed to 50-μl end volume, were used. PCR amplification consisted of initial denaturation at 94°C, followed by 20 cycles of denaturation at 94°C, annealing at 58°C, and elongation at 72°C for 14 min. The PCR product was cut by DpnI for 2 h at 37°C and finally transformed into E. coli DH5α.

Fig. 2. Western blot analysis (A), 0.5 μM [3H]MTX (B), and 1 μM [3H]cGMP (C) transport activity of wild-type, FF/L-, ERE/SSQ, and FFERE/L-SSQ MRP4 transporter proteins. Top (A) represents a Western blot of membrane vesicles isolated from HEK293 cells overexpressing MRP4 or MRP4 mutants FF/L-, ERE/SSQ, and FFERE/L-SSQ as well as a negative control detected by polyclonal anti-human MRP4 (representative of three). The MRP4 wild-type transport activity for [3H]MTX (950 ± 60 fmol/mg protein/min) and [3H]cGMP (114 ± 7 fmol/mg protein/min) was set at 100%.
Escherichia coli DH5α cells. pENTR-MRP4 mutant plasmids were isolated using the GenElute Plasmid Mini-Prep kit (Sigma) from kanamycin-resistant colonies. All mutations were confirmed by sequencing of the full-length MRP4/ABCC4 DNA. Twelve mutants of the human MRP4 were generated: FF/L- (F368L and F369-), FERE/SSQ (E374S, R375S, and E378Q), FFERE/L-SSQ (F368L, F369-, E374S, R375S, and E378Q), F368L, F369-, E374S, R375S, R375A, R375K, R375E, E378Q, and R998A.

Transduction of MRP4 and Mutants Expression Vectors in HEK293 Cells. HEK293 cells were cultured in 182-cm² flasks until 40% confluent, after which the culture medium was removed and 3.5 ml of fresh medium and 1.5 ml of control EYFP, MRP4, or MRP4-mutant baculovirus was added. The cells were incubated for 15 min at 37°C, after which 20 ml of medium was added. After 24 h of transduction, 5 mM sodium butyrate was added. Three days after transduction, the cells were harvested.

Isolation of Membrane Vesicles and Protein Analysis. Cells were harvested by centrifugation at 3000g for 30 min. The pellets were re suspended in ice-cold homogenization buffer (0.5 mM sodium phosphate and 0.1 mM EDTA, pH 7.4) supplemented with protease inhibitors (100 μM phenylmethylsulfonyl fluoride, 5 μg/ml aprotinin, 5 μg/ml leupeptin, 1 μM pepstatin, and 1 μM E-64) and shaken at 4°C for 60 min. Lysed cells were centrifuged at 4°C at 100,000 g for 30 min, and the pellets were homogenized in ice-cold TS buffer (10 mM Tris-HEPES and 250 mM sucrose, pH 7.4) using a tight-fitting Dounce homogenizer for 30 strokes. After centrifugation at 500g at 4°C for 20 min, the supernatant was centrifuged at 4°C at 100,000 g for 30 min. The resulting pellet was re suspended in TS buffer and passed through a 27-gauge needle 30 times. Protein concentration was determined by Bio-Rad protein assay kit. Crude membrane vesicles were dispensed in aliquots, frozen in liquid nitrogen, and stored at −80°C until use.

Western Blotting. The membrane vesicle preparations (15 μg of protein) were solubilized in SDS-polyacrylamide gel electrophoresis sample buffer and separated on SDS gels containing 7.5% acrylamide according to Laemmli (1970). Subsequently, they were blotted on nitrocellulose membrane using the iBlot dry blotting system (Invitrogen). Polyclonal anti-human MRP4 rabbit serum antibody (van Aubel et al., 2002) was used to detect human MRP4 and MRP4 mutants. The secondary antibody used was the fluorescent Alexa Fluor 680 (Invitrogen). Signals were visualized with a fluorescent method, using Odyssey infrared imaging system (Li-Cor Biosciences, Lincoln, NE).

Vesicular Transport Assays. Uptake of [3H]MTX or [3H]cGMP into membrane vesicles was performed using a rapid filtration technique. TSB buffer (TS buffer with 0.2 mg/ml bovine serum albumin) supplemented with a mixture of 4 mM ATP and 10 mM MgCl₂ was added to the membrane vesicles in a final volume of 30 μl. The reaction was started when the mixture was incubated at 37°C. After 15 min, the reaction was stopped by placing samples on ice. After 1 min, 150 μl of ice-cold TSB buffer was added to each reaction well. Diluted samples were filtered by a Multiscreen HTS-Vacuum Manifold filtration device (Millipore, Etten-Leur, The Netherlands) through 0.45-μm pore, 96-well Millipore filters that were preincubated with TSB buffer. After adding 4 ml of scintillation fluid to each filter and subsequent liquid scintillation counting, uptake of [3H]MTX or [3H]cGMP into membrane vesicles was studied by measuring radioactivity associated with the filters. In control experiments, ATP was substituted with AMP. Net ATP-dependent transport was calculated by subtracting values measured in the presence of AMP from those measured in the presence of ATP. Each experi-

![Fig. 3. Western blot analysis (A), 0.5 μM [3H]MTX (B), and 1 μM [3H]cGMP (C) transport activity of wild-type, F368L, F369-, E374S, R375S, and E378Q MRP4 transporter proteins. A, top, Western blot of membrane vesicles expressing human MRP4 mutants. Control (●), wild-type (○), F368L (●), F369- (□), E374S (●), R375S (□), and E378Q (x) MRP4 membrane vesicles were incubated with [3H]MTX (top) or [3H]cGMP (bottom) concentrations indicated in the figure. ATP-dependent uptake was measured by subtracting uptake in the presence of AMP from that measured in the presence of ATP. Mean values ± S.E. of three enzyme preparations are shown.](https://aspetjournals.org/doi/10.1124/mol.117.100620)
ment was performed in triplicate using three different batches of membrane vesicles.

Vesicular Inhibition Assays. To evaluate the inhibitory effects of MTX on \[^{3}	ext{H}]	ext{cGMP}\) uptake in MRP4 and MRP4-R375S membrane vesicles, the previously mentioned transport assay was performed using 1, 10, and 100 \(\mu\text{M}\) cGMP, in the absence or presence of MTX concentrations ranging from 1 to 600 \(\mu\text{M}\). Net MRP4- or MRP4 mutant-dependent transport was calculated by subtracting background values measured in EYFP-transfected control vesicles.

Kinetic Analysis. All data were expressed as means \(\pm\) S.D. Curve fitting of the resulting concentration-dependent transport curves was performed by nonlinear regression analysis using GraphPad Prism software, version 4.03 (GraphPad Software Inc., San Diego, CA). Results of the inhibition assays were analyzed using Dixon’s method, to estimate the inhibitory potency \((K_i)\).

Immunoprecipitation and Photoaffinity Labeling. Wild-type MRP4, negative (EYFP) control, and mutants (300 \(\mu\text{g}\) of protein vesicles) were incubated with 5 mM MgCl\(_2\) and 100 \(\mu\text{M}\) 8-azido-ATP-biotin (Schäfer et al., 2001) for 5 min on ice. The mixture was photolinked using UV light for 10 min. Immunoprecipitation of the photolinked sample was performed using MRP4 polyclonal antibody (10 \(\mu\text{l/sample}\)) (van Aubel et al., 2002) linked to protein A immobilized on agarose [50% (w/v); KemEnTec, Copenhagen, Denmark] (30 \(\mu\text{l/sample}\)). The immunoprecipitated protein was blotted (see Western Blotting) and visualized with streptavidin horseradish peroxidase.

Molecular Modeling of MRP4. The homology model of MRP4 was built with the YASARA molecular modeling program (Krieger et al., 2002). A common problem when building models of membrane proteins is the limited availability of experimental data. For MRP4, the related X-ray structure of MsbA seemed to be incorrect and was retracted, which left the structure of the bacterial ABC transporter Sav1866 from *Staphylococcus aureus* solved at 3.0-Å resolution (Dawson and Locher, 2006) as the only available template for the transmembrane domain (PDB entry 2HYD). The cytosolic ATP-binding domain is, in contrast, well represented in the PDB. We therefore selected the more closely related ATP-binding domain from human MDR1 solved at 1.5-Å resolution (Ramaen et al., 2006), aligned it to Sav1866 with YASARA’s MUSTANG module (Konagurthu et al., 2004, 2006), and then fused it with the Sav1866 transmembrane domain to create a hybrid-template. The alignment of the MRP4 sequence against this template was created with the T-Coffee multiple alignment algorithm (Notredame et al., 2000), using an additional 48 intermediate sequences to guide the alignment. These 48 sequences were randomly selected from Swissprot/Trembl, with the requirement that their transmembrane domains be closer to both the template and MRP4, than the template is to MRP4. The resulting alignment was manually tuned to account for single residue insertions and deletions in the membrane helices, which contain several Gly/Pro-mediated deviations from ideality in the Sav1866 template. Loops were modeled by scanning a nonredundant subset of the PDB (\(>8000\) structures) for fragments with matching anchor points, a minimal number of bumps, and maximal sequence similarity. Side chains were added with YASARA’s implementation of SCWRL (Cauterucci et al., 2003), and then the model was subjected to an energy minimization with the YAMBER force field as described previously (Krieger et al., 2004, 2006). Since no membrane was present during this minimization, the backbone of residues copied from the template was kept fixed. Validation of the model with WHAT_CHECK (Hooft et al., 1996) yielded an average quality Z-score of \(-2.2\), which is

![Fig. 5. Dixon plot showing the MTX inhibition of cGMP transport by human MRP4 and mutant R375S.](image)

Fig. 5. Dixon plot showing the MTX inhibition of cGMP transport by human MRP4 and mutant R375S. Membrane vesicles were incubated with 1 \(\mu\text{M}\) (open circles), 10 \(\mu\text{M}\) (closed triangles), or 100 \(\mu\text{M}\) (open squares) \[^{3}	ext{H}\]cGMP in the presence or absence of MTX concentrations ranging from 1 to 600 \(\mu\text{M}\). Specific uptake of MRP4 (top) and mutant R375S (bottom) was determined after subtraction of the negative control. The inhibition constant \((K_i)\) can be estimated from the intersection point of the three lines with the x-axis. Mean values \(\pm\) S.E. of three enzyme preparations are shown.

![Fig. 6. Western blot analysis](image)

Fig. 6. Western blot analysis (A), 0.5 \(\mu\text{M}\) \[^{3}	ext{H}\]MTX (B), and 1 \(\mu\text{M}\) \[^{3}	ext{H}\]cGMP (C) transport activity of wild-type, R375A, R375K, R375E, and R998A MRP4 transporter proteins. A, top, Western blot of membrane vesicles isolated from HEK293 cells overexpressing MRP4 or MRP4 mutants R375A, R375K, R375E, and R998A, as well as negative control detected by polyclonal anti-human MRP4 (representative of three). The MRP4 wild-type transport activity for \[^{3}	ext{H}\]MTX (960 \(\pm\) 20 fmol/mg protein/min) and \[^{3}	ext{H}\]cGMP (125 \(\pm\) 13 fmol/mg protein/min) was set at 100%.
better than the template (−2.9). A PDB file of the model and the alignment is available from us upon request.

Results

Three mutants of human MRP4 were generated and expressed in HEK293 cells. In mutant FF/L-, Phe\(^{269}\) and Phe\(^{269}\) in TM6 were replaced by their analogs in MRP1/MRP2 (Leu and nothing, respectively). In the second mutant, ERE/SSQ, Glu\(^{374}\), Arg\(^{375}\), and Glu\(^{378}\) in TM6 were also replaced by their analogs in MRP1/MRP2 (Ser, Ser, and Gln, respectively). The final mutant FFERE/L-SSQ was a combination of mutant FF/L- and mutant ERE/SSQ. Western blot analysis of membrane vesicles prepared from HEK293 cells overexpressing wild-type MRP4, and the three mutants showed comparable expression levels (Fig. 2A). Often two bands are visible, of which the mutual ratio varies in different preparations.

![Fig. 7. Concentration-dependent uptake of \(^{3}H\)MTX and \(^{3}H\)cGMP in membrane vesicles expressing human MRP4 mutants. Control (), wild-type (), R375A (), R375K (), R375E (), R998A (), and R375S mutant were 280 ± 60 and 270 ± 120 pmol/mg protein/min for MTX and 370 ± 30 and 270 ± 70 pmol/mg protein/min for cGMP, respectively. The apparent affinity (\(K_m\)) values of wild-type MRP4 and mutant R375S were 230 ± 90 and 720 ± 320 μM for MTX and 610 ± 70 and 610 ± 80 μM for cGMP, respectively.](image)

![Fig. 8. Western blot of immunoprecipitated 8-azido-ATP-biotin photolabeled wild-type and mutant transporter proteins. We labeled 300 μg of protein vesicles with 100 μM 8-azido-ATP-biotin, and the MRP4 proteins were immunoprecipitated with MRP4 polyclonal antibody linked to agarose protein A beads. The immunoprecipitated protein was blotted and visualized with streptavidin horseradish peroxidase. The addition of 5 mM ATP prevented photolabeling (data not shown).](image)
of the positively charged arginine. In the next experiment, we replaced arginine with alanine, lysine, and glutamic acid. Furthermore, we substituted the arginine present in TM12 for alanine. Figure 6A shows an equal level of protein expression of wild type as well as R375A, R375K, R375E, and R988A mutants. The MTX and cGMP transport activity of the wild-type and mutants was measured and shown in Fig. 6B. Mutating the Arg375 residue into alanine or glutamic acid significantly decreased the transport activity for both MTX and cGMP, whereas mutating it into lysine retained the transport activity (96 ± 12% for MTX and 97 ± 16% for cGMP). In addition, the transport levels of R988A showed no significant difference from the negative control.

To determine the K_m values of the different mutants for MTX and cGMP, concentration-dependent transport experiments were performed (Fig. 7). The transport activities of R375A, R375E, and R988A for MTX and cGMP did not differ from that of the negative control. The V_{max} values for MTX were 250 ± 20 and 190 ± 10 pmol/mg protein/min and those for cGMP were 420 ± 10 and 420 ± 20 pmol/mg protein/min for wild type and R375S mutant, respectively. The K_m values of wild-type MRP4 and R375K were 230 ± 90 and 250 ± 20 μM for MTX and 610 ± 70 and 640 ± 60 μM for cGMP, respectively. Thus, R375K retained substrate affinity comparable with the wild type for both MTX and cGMP.

To determine whether the MRP4 mutants showed normal ATP binding, 8-azido-ATP-biotin photolabeling of mutants was compared with that of the wild type and negative control (Fig. 8). The vesicles of MRP4 wild type and mutants showed increased 8-azido-ATP-biotin binding compared with the negative control. In all mutant preparations, the 8-azido-ATP-biotin binding was comparable with that of the wild type. Moreover, the binding of 8-azido-ATP-biotin was almost completely diminished when ATP was added.

To link the functional consequences of the mutations back to their structural basis, we built a homology model of MRP4 using the known X-ray structures of the bacterial ABC transporter Sav1866 from Staphylococcus aureus (Dawson and Locher, 2006) and the ATP-binding domain of human P-glycoprotein/MDR1 as templates (Ramaen et al., 2006) (Fig. 9A). Sav1866 forms a dimer, whereas MRP4 encodes both copies in a single sequence. The predicted location of the mutated residues is shown in Fig. 9B. Based on this model, one can postulate that Arg375 and Arg998 face right into the pore and are thus very likely to interact directly with MTX and cGMP.

Discussion

To characterize the MRP4 substrate-binding site, we investigated the influence of Phe368, Phe369, Glu374, Arg375, and Glu378 of transmembrane helix 6 and the influence of Arg998 of helix 12 on cGMP and MTX transport. These amino acids were substituted by their corresponding amino acids of MRP1 and MRP2. Most mutations abolished MRP4 transport activity. The only exception was substitution of Arg375 with serine, which had no effect on cGMP transport, but significantly decreased the affinity for MTX. Substitution of the same amino acid with a positively charged lysine returned the MRP4 affinity to that of the wild type. A homology model of MRP4 confirmed the crucial role of Arg375 and showed that it faced right into the central pore.

Wild-type MRP4 and all mutants were equally expressed in vesicles isolated from transduced HEK293 cells. Nevertheless, several MRP4 mutants (FF/L-, ERE/SSQ, FFERE/L-SSQ, F368L, F369-, E374S, R375A, R375E, E378Q, and R998A) showed significantly diminished transport activity of either MTX or cGMP compared with that of wild-type MRP4. This indicates that Phe368, Phe369, Glu374, Arg375, and Glu378, present in TM6, and Arg998, present in TM12, might comprise an important part of MRP4 substrate-binding site. Indeed, studies with LmrA, a bacterial ATP-dependent multidrug transporter, show that TM3, TM5, and TM6 (also TM9, TM11, and TM12) are involved in substrate binding (Ecker et al., 2004). These TMs have one face of the helix exposed to the pore, which forms a pathway for substrates through the membrane. Experimental evidence has shown...
that conformational changes of the nucleotide-binding domains (NBD) of P-glycoprotein/MDR1, leads to reorientation of the TM helices (Loo et al., 2007). TM6 is connected to NBD1 and changes in the position or orientation of TM6 resulting from mutations, may cause a conformational or positional change in NBD1 leading to diminished binding of ATP and transport activity (Zhang et al., 2004). We tested whether the mutants were able to bind 8-azido-ATP-biotin and observed no difference in binding between MRP4 and the mutants.

All the amino acids mutated in the present study are highly conserved in MRP4 among different species (Chen and Klaassen, 2004). There is, however, a big difference within the MRP subfamily that might point to a specific mechanistic importance of these amino acids. The two phenylalanines at position 368 and 369 in MRP4 are unique and absent in other MRPs. Replacement of these two amino acids by a single leucine (their counterpart in MRP1, -2, -3, and -5) resulted in the lack of MTX and cGMP transport. The Phe368, predicted to face outside the central pore and attach helix 6 to helix 3, most likely has a role in maintaining the structural integrity of the transporter. Phe368 faces into the pore and could mediate stacking interactions with the planar rings of cGMP and MTX. The negatively charged glutamic acid residues at position 374 and 378 of MRP4 correspond to a serine and glutamine, respectively, in MRP1, -2, and -6. The replacement of these two MRP4 amino acids by serine and glutamine also resulted in the lack of MTX and cGMP transport. Zhang et al. (2004) showed that replacement of MRP1 Ser604 (corresponding to E374S in MRP4) with alanine selectively decreased transport activity for either MTX or cGMP. It was reported that the corresponding amino acid Arg1257 in MRP2 showed decreased transport activity of glutathione-methylfluorescein when substituted with alanine (Ryu et al., 2000). Moreover, alanine substitution of Arg1249 in MRP1 (also corresponding to R998A) impaired MRP1-mediated LTC4 transport and reduced vincristine resistance (Ren et al., 2002). This indicates the participation of TM12 to the MRP4 binding pocket and emphasizes the importance of positively charged amino acids for MRP4 transport activity.

Photolabeling and mutational studies aimed at predicting regions of MRP1 protein that contribute to the substrate-binding sites have outlined the possible role of TM17 (Daoud et al., 2001; Deeley et al., 2006), which corresponds to TM12 in MRP4. In the present work, we mutated Arg998 located at MRP4 TM12 into alanine. Substitution of this positively charged amino acid resulted in near abolition of transport activity for either MTX or cGMP. It was reported that the corresponding amino acid Arg1257 in MRP2 showed decreased transport activity of glutathione-methylfluorescein when substituted with alanine (Ryu et al., 2000). Moreover, alanine substitution of Arg1249 in MRP1 (also corresponding to R998A) impaired MRP1-mediated LTC4 transport and reduced vincristine resistance (Ren et al., 2002). This indicates the participation of TM12 to the MRP4 binding pocket and emphasizes the importance of positively charged amino acids for MRP4 transport activity. Although mutagenesis studies confirm the functional requirement of a positive charge at Arg998, this has not been confirmed for Arg998 in Glutamic acid (R998E) and lysine (R998K) mutants would be needed to strengthen this conclusion.

Complex substrate-transporter interactions have been described previously for ABC transporters such as P-glycoprotein/MDR1 (Martin et al., 2000), MRP1 (Leslie et al., 2001), MRP2 (Zelcer et al., 2003), and MRP4 (Van Aubel et al., 2005). These complexities were attributed to multiple allosteric-binding sites. Here, we encountered similar complex transport inhibition patterns. Mutant R375S and wild-type MRP4 possessed similar affinities for cGMP, but the MTX affinity of this mutant was nearly 3-fold lower than that of the wild type. This implicates that these two MRP4 substrates do not share the same substrate-binding site. This was also implied by the noncompetitive inhibitory effect of MTX on MRP4-mediated cGMP transport. Therefore, we propose that MRP4 can bind two substrates at different regions within the aqueous cavity involving overlapping amino acids. This could partly explain the complex inhibitory and stimulatory kinetics that we encountered in previous studies (Van Aubel et al., 2005; El-Sheikh et al., 2007). Our data are indicative; they are nonetheless based on a homology model and mutagenesis studies, both of which contain certain experimental caveats.

We conclude that amino acids in the transmembrane helices 6 and 12 may comprise a crucial part of the MRP4

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>Transporter kinetic values and inhibition constants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MTX</td>
</tr>
<tr>
<td></td>
<td>K_m (µM)</td>
</tr>
<tr>
<td>Data from Figs. 3 and 4</td>
<td></td>
</tr>
<tr>
<td>MRP4</td>
<td>230 ± 90</td>
</tr>
<tr>
<td>R375S</td>
<td>720 ± 320</td>
</tr>
<tr>
<td>Data from Fig. 4</td>
<td></td>
</tr>
<tr>
<td>MRP4</td>
<td>230 ± 90</td>
</tr>
<tr>
<td>R375K</td>
<td>250 ± 20</td>
</tr>
</tbody>
</table>
substrate-binding site. The importance of a positive charge at residue 375 seems evident for MTX transport, but not for cGMP. This residue, which is predicted to be in the aqueous cavity of the inner leaflet of the membrane, clearly affects substrate specificity. Furthermore, a noncompetitive inhibition between MTX and cGMP has been revealed, indicating separate MRP4 substrate-binding sites.

Acknowledgments

We thank M. van Hout for technical assistance in the vesicular transport assays.

References

El-Shikh AA, van den Heuvel JJ, Koenderink JB, and Russel FG (2007) interaction between MTX and cGMP has been revealed, indicating substrate specificity. Furthermore, a noncompetitive inhibition between MTX and cGMP has been revealed, indicating separate MRP4 substrate-binding sites.
Functional Role of Arg375 in TM6 of MRP4

Address correspondence to: Dr. J. B. Koenderink, Department of Pharmacology and Toxicology (149), Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands. E-mail: jkoenderink@ncmls.ru.nl.