Expression and 1,4-Dihydropyridine-Binding Properties of Brain L-Type Calcium Channel Isoforms

Martina J. Sinneger-Brauns, Irene G. Huber, Alexandra Koschak, Claudia Wild, Gerald J. Obermair, Ursula Einzinger, Jean-Charles Hoda, Simone B. Sartori, and Jörg Striessnig

Department of Pharmacology and Toxicology, Institute of Pharmacy, and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria (M.J.S.-B., I.G.H., A.K., C.W., U.E., J.-C.H., S.B.S., J.S.); and Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria (G.J.O.)

Received June 30, 2008; accepted November 24, 2008

ABSTRACT

The L-type calcium channel (LTCC) isoforms Ca\(_{\alpha}1.2\) and Ca\(_{\alpha}1.3\) display similar 1,4-dihydropyridine (DHP) binding properties and are both expressed in mammalian brain. Recent work implicates Ca\(_{\alpha}1.3\) channels as interesting drug targets, but no isoform-selective modulators exist. It is also unknown to what extent Ca\(_{\alpha}1.1\) and Ca\(_{\alpha}1.4\) contribute to L-type-specific DHP binding activity in brain. To address this question and to determine whether DHPs can discriminate between Ca\(_{\alpha}1.2\) and Ca\(_{\alpha}1.3\) binding pockets, we combined radioreceptor assays and quantitative polymerase chain reaction (qPCR). We bred double mutants (Ca\(_{\alpha}1.2\)-DM) from mice expressing mutant Ca\(_{\alpha}1.2\) channels [Ca\(_{\alpha}1.2\)DHP\(\text{(-/-)}\)] lacking high affinity for DHPs and from Ca\(_{\alpha}1.3\) knockouts [Ca\(_{\alpha}1.3\)(/-/-)]. (+)[\(^3\)H]isradipine binding to Ca\(_{\alpha}1.2\)DHP\(\text{(-/-)}\) and Ca\(_{\alpha}1.3\)-DM brains was reduced to 15.1 and 4.4\% of wild type, respectively, indicating that Ca\(_{\alpha}1.3\) accounts for 10.7\% of brain LTCCs. qPCR revealed that Ca\(_{\alpha}1.1\) and Ca\(_{\alpha}1.4\) \(\alpha_1\) subunits comprised 0.08\% of the LTCC transcripts in mouse whole brain, suggesting that they cannot account for the residual binding. Instead, this could be explained by low-affinity binding (127-fold \(K_i\) increase) to the mutated Ca\(_{\alpha}1.2\) channels. Inhibition of (+)[\(^3\)H]isradipine binding to Ca\(_{\alpha}1.2\)DHP\(\text{(-/-)}\) (predominantly Ca\(_{\alpha}1.3\)) and wild-type (predominantly Ca\(_{\alpha}1.2\)) brain membranes by unlabeled DHPs revealed a 5- to 4-fold selectivity of nitrendipine and nifedipine for the Ca\(_{\alpha}1.2\) binding pocket, a finding further confirmed with heterologously expressed channels. This suggests that small differences in their binding pockets may allow development of isoform-selective modulators for LTCCs and that, because of their very low expression, Ca\(_{\alpha}1.1\) and Ca\(_{\alpha}1.4\) are unlikely to serve as drug targets to treat CNS diseases.

Depolarization-induced Ca\(^{2+}\) entry through voltage-gated Ca\(^{2+}\) channels controls a number of important physiological properties, including muscle contraction, cardiac pacemaking, hormone secretion, neurotransmitter release, and neuronal plasticity. Several subfamilies of voltage-gated Ca\(^{2+}\) channels with different pharmacological and biophysical properties evolved to serve these different physiological functions. Of these, the family of L-type Ca\(^{2+}\) channels (LTCCs) is characterized by high sensitivity to organic Ca\(^{2+}\) channel blockers (Catterall et al., 2005). Four LTCC isoforms exist, containing either Ca\(_{\alpha}1.1\), Ca\(_{\alpha}1.2\), Ca\(_{\alpha}1.3\), or Ca\(_{\alpha}1.4\) pore-forming \(\alpha_2\) subunits (Catterall et al., 2005). Ca\(_{\alpha}1.2\) and Ca\(_{\alpha}1.3\) LTCCs display very similar pharmacological properties, and they exhibit an overlapping expression pattern in the cardiovascular system, endocrine cells (e.g., pancreatic \(\beta\)-cells), and neurons (Hell et al., 1993; Sinneger-Brauns et al., 2004). This has impeded distinction of their respective physiological roles. We have recently generated suitable mouse models to distinguish their contribution to different physiological processes. Whereas Ca\(_{\alpha}1.2\) channels regulate vascular tone and cardiac inotropy, Ca\(_{\alpha}1.3\) channels are crucial for pacemaking in sinoatrial node cells and atrioventricular conduction (Platzer et al., 2000; Sinneger-Brauns et al., 2004). In mice, fast insulin secretion is closely coupled to Ca\(_{\alpha}1.2\) function (Schulla et al., 2003; Sinneger-Brauns et al., 2004), whereas inner hair cell signaling and hearing depend on Ca\(_{\alpha}1.3\) (Platzer et al., 2000). The central nervous system employs Ca\(_{\alpha}1.2\) channels for late-phase long-term potentiation in hippocampal neurons.
and for spatial memory (Moosmang et al., 2005), whereas Ca,1.3 channels, which can activate at more negative voltages (Platzer et al., 2000; Koschak et al., 2001; Lipscombe et al., 2004), seem to serve predominantly as modulators of neuronal spiking behavior and pacemaking (Olson et al., 2005; Chan et al., 2007).

Ca,1.3-deficient mice lack amphetamine-sensitized locomotor activity (Giorlando et al., 2006) and exhibit an anti-depressant-like phenotype (Striessnig et al., 2006). Ca,1.3 channels may also play an important pathophysiological role in Parkinson disease (Chan et al., 2007). Because presently available potent Ca,2+ channel blockers such as the 1,4-dihydropyridines (DHPs) inhibit both Ca,1.2 and Ca,1.3 (Koschak et al., 2001; Helton et al., 2005), development of selective modulators of Ca,1.3 channels would be required to determine whether they represent suitable targets to treat Parkinson disease, depression, and drug abuse. At present, it is unclear whether the highly conserved drug binding pockets (such as for the DHPs) of Ca,1.2 and Ca,1.3 channels offer enough structural heterogeneity to be exploited for that purpose. It also is still unresolved to what extent other LTCC isoforms (Ca,1.1 and Ca,1.4) can contribute to high-affinity drug binding in the central nervous system (Takahashi et al., 2003; Hemara-Wahanui et al., 2005) and could thus mediate pharmacological effects. These considerations raise two questions: 1) What are the expression levels of other LTCC isoforms (Ca,1.1 and Ca,1.4) in brain? 2) Does structural heterogeneity between the DHP binding pockets of Ca,1.2 and Ca,1.3 channels result in affinity differences that could be exploited for the development of isoform-selective modulators? This also raises a methodological issue, because although Ca,1.3 channel complexes can be expressed for pharmacological analysis in mammalian cells, a native source of Ca,1.3 channels is needed to validate data obtained with recombinant channels.

We employed a biochemical approach to address these questions, using a novel double-mutant mouse generated from previously established mouse models, radioligand binding assays, and extensive qPCR experiments.

Materials and Methods

Animals. The generation and detailed characterization of Ca,1.2DHP(−/−) and Ca,1.3(−/−) mice has been reported previously (Platzer et al., 2000; Sinnegger-Brauns et al., 2004). Double mutant Ca,1.2DHP(−/−) × Ca,1.3(−/−) mice were generated by crossing Ca,1.3(−/−) male mice with Ca,1.2DHP(−/−) female mice previously backcrossed into C57BL/6N background in five genera-
tions. Animals heterozygous for both mutant alleles were then crossed to obtain homozygous double mutants (referred to as Cav-
chak et al., 2001; Helton et al., 2005) to obtain Cav1.3 channel complexes can be expressed for phar-
maceutical analysis in mammalian cells, a native source of Ca,1.3 channels is needed to validate data obtained with recombinant channels.

Replacement of phenylalanine by tyrosine at position 1414 in the human Ca,1.4 (variant of NM_005183; Koschak et al., 2003). Expression plasmids were combined at equimolar concentrations with a total subunit cDNA amount of 10.5 μg per 10-cm culture dish. Cells were transfected by calcium phosphate precipitation of DNA according to standard protocols. Medium was refreshed 8 to 12 h after transfection. Cells were harvested after two more days of incubation.

Membrane Preparation and Immunoblot Analysis. Microsoma-
mal membranes from brain tissue and tsA201 cells were prepared as described previously (Glossmann and Ferry, 1985; Reimer et al., 2000; Sinnegger-Brauns et al., 2004). Membrane protein concentra-
tions were determined by Lowry or Bradford assays (Lowry et al., 1951; Bradford, 1976) with bovine serum albumin as a standard. Expression of recombinant proteins was monitored using Western Blot analysis as described previously (Hoda et al., 2005).

Radioreceptor Assay. (+)-[3H]Isradipine (75–80 Ci/mmol) was purchased from PerkinElmer Life and Analytical Sciences (Vienna, Austria). Unlabeled racemic isradipine and (−)-isradipine were a gift from Novartis (Basel, Switzerland). (+)-Tetradrine was a gift from MSD Sharp and Dohme (Rahway, N.J.). (+)-cis-Diltiazem was from Gödecke (Freiburg, Germany). Mibebradil was provided by Roche (Basel, Switzerland). Azidipine was purchased from GE Healthcare (Chalfont St. Giles, Buckinghamshire, UK). Racemic nitrendipine and amiodipine as well as nifedipine were purchased from Sigma-Aldrich (Vienna, Austria). Stock solutions of all unlabeled drugs were prepared in dimethyl sulfoxide. Binding experiments were performed in binding buffer (50 mM Tris-HCl, pH 7.4, 0.1 mM phenyl-
methyl sulfonyl fluoride, and 1 mM CaCl2) in a final assay volume of 0.5 (brain microsomes) or 1 ml (tsA201 cell microsomes), respec-
tively. Nonspecific binding was determined in the presence of 1 μM unlabeled isradipine. After incubation for 90 to 120 min at 22°C or 60 min at 37°C (binding stimulation) in a water bath, free ligand was removed by rapid filtration of the assay mixture over GF/C Whatman glass fiber filters (Sigma-Aldrich, Vienna, Austria), which had been pretreated with 0.25% (v/v) polyethyleneimine for 30 min at 22°C. Filters were washed three times with ice-cold buffer (50 mM Tris-
HCl, pH 7.4) and then counted for radioactivity to quantify bound ligand.

RNA Isolation and Reverse Transcription. Animals were euthanized by CO2 exposure, and brains were excised after decapita-
tion. Brain regions were dissected on ice with the help of a stereo-
taxic atlas (Franklin and Paxinos, 1997). Tissue was shock-frozen in liquid nitrogen and stored at −80°C until further processing. Total RNA was isolated using the RNAqueous-4PCR Kit (Ambion, Austin, TX; for brain tissues) or the E.Z.N.A. Total RNA Kit (Omega Bio-tek, Doraville, GA; for skeletal muscle and eye) according to the manu-
facturers’ instructions. Total RNA was treated with DNase I (RNAqueous-4PCR Kit; Ambion), which effectively removed genomic contamination. RNA integrity was routinely checked for the presence of distinct 28S and 18S rRNA bands after loading 1 to 2 μg of RNA on a denaturing gel (formaldehyde SeaKem agarose gel, 1%). Total RNA (1 μg) was reverse-transcribed using RevertAid H Minus first-strand cDNA Synthesis Kit with random hexamer primers (MBI Fermentas, St. Leon-Rot, Germany). RNA and cDNA concen-
trations were determined photometrically.

Quantitative Real-Time PCR. The relative abundance of differ-
ent LTCC transcripts was assessed by TaqMan quantitative PCR using a standard curve method as described previously (Koschak et al., 2007). Specific TaqMan Gene Expression Assays, designed to span exon-exon boundaries, were purchased from Applied Biosys-
tems (Foster City, CA). The following primers (MWG Biotech) were

Transfection and Cell Culture. tsA201 cells were maintained in DMEM/F-12 medium (Invitrogen, Carlsbad, CA) enriched with 10% (v/v) fetal calf serum (SEBAK, Suben, Austria) and 2 mM L-glutamine and containing 44 mM NaHCO3. Cells were incubated at 5% CO2/37°C, plated on 10-cm culture dishes, and grown to approximately 70% confluence for transfection. α1 subunits were transiently expressed together with α2δ1 (Genbank accession num-
ber NM_001092276) and β1, (M25817) subunits in pcDNA3 (Invitro-
gen). Expression plasmids were combined at equimolar concentra-
tions with a total subunit cDNA amount of 10.5 μg per 10-cm culture dish. Cells were transfected by calcium phosphate precipitation of DNA according to standard protocols. Medium was refreshed 8 to 12 h after transfection. Cells were harvested after two more days of incubation.
used for PCR amplification of assay-specific fragments using whole brain cDNA as a template. Mouse: Ca, 1.1 forward, 5'-GGTACAT-GAGCGTGATGATCAG-3'; reverse, 5'-ATGAGGATTTGTCTGATGGTGAAAG-3'. Ca, 1.2 forward, 5'-CCTCACACCGTGAAATGTGCTGCACTAC-3'; reverse, 5'-GTTACAGCTCTGCTCTGCTCTG-3'. Ca, 1.3 forward, 5'-ACATCTCAGATGATCTCAGCAG-3'; reverse, 5'-AGGACCTGAAAGGCTTCACAG-3'. Ca, 1.4 forward, 5'-CTTCTACATCTGAAATGTGCTGCACTAC-3'; reverse, 5'-GTTACAGCTCTGCTCTGCTCTG-3'. Ca, 1.5 forward, 5'-GAATCATGAGGATTTGTCTGATGGTGAAAG-3'; reverse, 5'-GAACCAGCTCATGACTGACTGAC-3'; reverse, 5'-AAGGCCGATGATGATGATGAC-3'.

The integrity of the obtained fragments was confirmed by sequencing (MWG Biotech). Fragment concentrations were determined in a Wallac 1420 Multi-label Counter (PerkinElmer Life and Analytical Sciences) using the Quant-IT PicoGreen dsDNA Reagent (Invitrogen) according to the manufacturer's instructions, and standard curve dilutions were calculated subsequently. Four to five standard curves with 10-fold serial dilutions from 10^2 to 10 molecules of the respective fragment were generated for each assay. Assay efficiencies were calculated from the slope of the resulting average standard curve equation. Limits of quantification in the linear range of the individual standard curves were determined by calculating the relative S.D. of the replicate values obtained for each amount of fragment. The reliable quantification range was then defined by the fragment quanta at which measurements showed relative S.D. values of less than 10%. Assay IDs, their efficiency (E), and reliable quantification range (molecules) were as follows: Mouse: Ca, 1.1 α1, Mm00489257_m1, E = 94.9%, 10^2 to 10^3; Ca, 1.2 α1, Mm00437917_m1, E = 93.4%, 10^2 to 10^3; Ca, 1.3 α1, Mm01209919_m1, E = 97.0%, 10^2 to 10^3; Ca, 1.4 α1, Mm00490443_m1, E = 94.3%, 10^1 to 10^3. Rat: Ca, 1.1 α1, customized (target base 2302 according to GenBank accession number L04684), E = 95.8%, 3 x 10^2 to 2 x 10^3; Ca, 1.2 α1, Rn00709287_m1, E = 95.6%, 10^2 to 10^3; Ca, 1.3 α1, Rn01453378_m1, E = 90.1%, 3 x 10^2 to 10^2; Ca, 1.4 α1, Rn00586734_m1, E = 98.1%, 10^2 to 7 x 10^3.

qPCR was performed in triplicate measurements using 20 ng of total RNA equivalents of cDNA and the specific TaqMan Gene Expression Assay in a final volume of 20 μl in TaqMan Universal PCR Master Mix (Applied Biosystems). Samples were obtained from at least two independent reverse transcriptions of at least two independent RNA preparations from each species and strain examined (with the exception of muscle and eye controls, where only one reverse transcription of the respective preparations was performed). β-Actin transcript monitoring served to control the quality of RNA preparations and reverse transcriptions (mouse, Mm00607939_s1; rat, Rn01412977_g1). Samples containing RNA and samples without templates served as negative controls. Analysis was performed using the ABI PRISM 7500 Sequence Detector (Applied Biosystems). The relative abundance of each of the four different LTCC RNAs was expressed as the percentage of the sum of LTCC molecules per experiment.

Data Analysis and Statistics. Data were analyzed using Origin 6.1 (OriginLab Corp., Northampton, MA) and Prism 4.03 (GraphPad, San Diego, CA) employing the statistical tests indicated in the text and figure legends. P values < 0.05 were considered statistically significant. Data are expressed as means ± S.E.M.—except where indicated otherwise—for the given number of experiments.

Results

Residual LTCC Binding Activity in Ca, 1.3(−/−)/Ca, 1.2DHP(−/−) Double Mutant Mice. We have previously shown that elimination of high DHP sensitivity of Ca, 1.2 channels in Ca, 1.2DHP(−/−) mutant mice reduced (+)[3H]isradipine binding activity to 15% of wild-type (WT) levels in brain (Sinneberger-Brauns et al., 2004). This residual activity was concluded to be associated with Ca, 1.3 channels, but the possibility of contribution by other LTCC isoforms has never been investigated. To quantify the contribution by LTCCs other than Ca, 1.2 and Ca, 1.3 to high-affinity DHP binding in mouse brain, we generated Ca, 1.3(−/−) × Ca, 1.2DHP(−/−) (CA, DM) double mutant mice. In these mice, high-affinity DHP binding to Ca, 1.2 LTCCs is prevented by a missense mutation in Ca, 1.2 (Sinneberger-Brauns et al., 2004), and high-affinity binding to Ca, 1.3 is eliminated by Ca, 1.3 deficiency (Platzer et al., 2000). As a consequence, any residual binding in these mice should prompt a further biochemical analysis to determine a possible expression of other LTCCs. As expected, homozygous Ca, 1.3D mice were viable and their phenotype was indistinguishable from that of Ca, 1.3(−/−) mice (Platzer et al., 2000).

In whole-brain microsomal membranes of Ca, 1.2DHP(−/−) mice, specific binding of the LTCC-selective high affinity probe (+)[3H]isradipine decreased to 15.1 ± 1.9% (mean ± S.E.M., n = 5) of WT values (Fig. 1A). A significant further reduction to 4.4 ± 0.5% (p = 0.0006, unpaired t test, n = 5) of WT values was observed in Ca, 1.2D mice. Depending on experimental conditions [membrane protein concentration, presence of (+)-cis-diltiazem, see Fig. 1 and Table 1], this residual specific binding corresponded to 100 to 700 dpm and was reproducible in three individual preparations. These data demonstrate that more than 95% of LTCC-associated DHP binding in mouse brain occurs at Ca, 1.2 and Ca, 1.3, the latter participating in 10.7% of (+)[3H]isradipine binding activity.

To determine whether the remaining activity is linked to LTCCs or represents specific binding to other proteins, we further examined its properties. A hallmark of DHP interaction with LTCC α1-subunits is the specific stimulation by the structurally unrelated benzothiazepine (+)-cis-diltiazem through a noncompetitive interaction mechanism (Brauns et al., 1997). As illustrated in Fig. 1B, 10 μM (+)-cis-diltiazem significantly enhanced (+)[3H]isradipine binding to Ca, 1.2DMP brain membranes to 323 ± 31% (n = 3) of control. Furthermore, binding was abolished by 300 nM unlabeled racemic isradipine (corresponding to a 150 nM concentration of the active (+)-enantiomer), which indicates that the Kd of the residual binding was in the low nanomolar range. Based on Data were analyzed using Origin 6.1 (OriginLab Corp., Northampton, MA) and Prism 4.03 (GraphPad, San Diego, CA) employing the statistical tests indicated in the text and figure legends. P values < 0.05 were considered statistically significant. Data are expressed as means ± S.E.M.—except where indicated otherwise—for the given number of experiments.

Fig. 1. Properties of (+)[3H]isradipine binding to mouse brain membranes. A, residual binding in Ca, 1.2DHP(−/−) and Ca, 1.3D brains was determined at radioligand concentrations (0.43 ± 0.07 nM, mean ± S.D., n = 5) known to cause high occupancy of high-affinity sites on Ca, 1.2 and Ca, 1.3 α1 subunits; protein concentrations were 0.16 to 0.32 μg/ml protein. Data are means ± S.E.M. (n = 5). B, inhibition of (+)[3H]isradipine binding by 150 nM unlabeled (+)-isradipine (ISR, employed as 300 nM (-)-isradipine) and enhancement of (+)[3H]isradipine (0.5 nM) binding by 10 μM diltiazem (DILTI). Data are means ± S.E.M. (n = 3). Statistical difference from control is indicated (one-way ANOVA, Bonferroni post-test): * p < 0.05; ** p < 0.01; *** p < 0.001.
these characteristics, we conclude that the residual (+)-[^3]H]isradipine binding in Ca$_{1.1}$-DM brains occurs at LTCCs and could therefore be associated with Ca$_{1.1}$ and/or Ca$_{1.4}$ channels. Alternatively, it could reflect residual (lower affinity) binding to the mutant Ca$_{1.2}$ a$_1$ subunit.

Lack of High-Affinity DHP Binding to Recombinant Ca$_{1.4}$ and Ca$_{1.4F1414Y}$ LTCCs. To distinguish between these possibilities, we first tested whether Ca$_{1.4}$ channels can be detected in radioligand binding experiments. Expression of Ca$_{1.4}$ together with auxiliary subunits in tsA201 cells did not yield specific, protein-concentration-dependent high-affinity (+)-[^3]H]isradipine binding above background levels. Representative results obtained from three different membrane preparations are illustrated in Fig. 2B. Protein-concentration-dependent specific binding was also missing at higher (1.3–3 nM, n = 3) or lower (n = 5) (+)-[^3]H]isradipine concentrations. Western blot experiments revealed that the absence of Ca$_{1.4}$ binding activity was not due to a failure of transient Ca$_{1.4}$ a$_1$ protein expression (Fig. 2A) (Koschak et al., 2003; Hoda et al., 2005). In comparison, membrane preparations from Ca$_{1.2}$-transfected cells obtained in parallel experiments showed a robust signal with the expected binding densities (220 ± 31 fmol/mg of protein; Fig. 2B). Furthermore, specific binding could not be induced in the presence of 1, 3, and 10 µM concentrations of the non-DHP Ca$_{1.1}$ channel blockers (+)-cis-diltiazem, (+)-tetrindrine, and mibebradil (Table 1), which caused a robust stimulation of (+)-[^3]H]isradipine binding to Ca$_{1.2}$ (all three drugs) and Ca$_{1.3}$ LTCCs [only tetrindrine and (+)-cis-diltiazem; see legend to Table 1] expressed under identical experimental conditions. In summary, our data suggest that, contrary to other LTCCs, the expression of Ca$_{1.4}$ channels cannot be quantified using radioreceptor assays, despite their sensitivity to LTCC modulators in electrophysiological studies (Koschak et al., 2003).

This could be due to a slightly higher K_d (which would reduce occupancy below levels detectable under our experimental conditions) and/or to very fast binding kinetics that cause dissociation of labeled channel complexes during filter washes. Alignment of the amino acid residues critical for DHP interaction in Ca$_{1.2}$ a$_1$ subunits revealed that a tyrosine critical for DHP binding (present in Ca$_{1.1}$, Ca$_{1.2}$, and Ca$_{1.3}$ a$_1$-subunits) is replaced by phenylalanine in Ca$_{1.4}$ a$_1$ (Phe1414). We therefore generated the Ca$_{1.4}$ mutant F1414Y to test whether a tyrosine at this position could restore high affinity binding. The exchange did not yield measurable specific DHP binding (Fig. 2B), despite efficient expression on the protein level (Fig. 2A). The failure of Ca$_{1.4}$ detection by radioligand binding in our recombinant system implies that our DHP binding experiments with Ca$_{1.1}$-DM membranes do not permit predictions about Ca$_{1.4}$ expression in mouse brain.

Ca$_{1.1}$ and Ca$_{1.4}$ RNA Transcripts Are Expressed at Very Low Levels in Mouse Brain. Because Ca$_{1.4}$ quantification by radioligand binding was not feasible, we used qPCR to determine the relative magnitude of Ca$_{1.4}$ and Ca$_{1.1}$ a$_1$ transcript expression compared with Ca$_{1.2}$ and Ca$_{1.3}$ in both mouse and rat brain. In mouse, Ca$_{1.2}$ was expressed at significantly ($p < 0.001, n = 9$; one-way ANOVA, Bonferroni post-test) higher densities than Ca$_{1.3}$ in whole-brain preparations and all brain regions investigated (Fig. 3). Ca$_{1.3}$ contributed 19.4 ± 1.6% (mean, ± S.E.M.) of total LTCC a$_1$-subunit transcripts in whole brain (Fig. 3; 7595 median number of molecules/20-ng RNA equivalent), in accordance with our biochemical estimate. The relative abundance of Ca$_{1.3}$ transcripts was higher in rat than in mouse brain, where Ca$_{1.3}$ significantly exceeded Ca$_{1.2}$ a$_1$ RNA expression in all regions examined (Fig. 4).

Ca$_{1.4}$ comprised 0.03 ± 0.01% of L-type transcripts in mouse whole brain, which corresponds to only 3 to 30 molecules/20-ng RNA equivalent. Although the Ca$_{1.4}$ transcript number was within our quantification range (>10 molecules/20 ng; see Materials and Methods) in cerebral cortex and nucleus accumbens, the relative abundance and absolute

TABLE 1

<table>
<thead>
<tr>
<th>Calcium Channel Blockers</th>
<th>1 µM</th>
<th>3 µM</th>
<th>10 µM</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+)-Tetrandrine</td>
<td>N.S.B.</td>
<td>N.S.B.</td>
<td>N.S.B.</td>
<td>2</td>
</tr>
<tr>
<td>Ca$_{1.4}$</td>
<td>236 ± 21</td>
<td>277 ± 22</td>
<td>290 ± 18</td>
<td>3</td>
</tr>
<tr>
<td>Ca$_{1.2}$</td>
<td>218 ± 9</td>
<td>248 ± 12</td>
<td>249 ± 9</td>
<td>6</td>
</tr>
<tr>
<td>(+)-Cis-Diltiazem</td>
<td>N.S.B.</td>
<td>N.S.B.</td>
<td>N.S.B.</td>
<td>2</td>
</tr>
<tr>
<td>Ca$_{1.4}$</td>
<td>116 ± 5</td>
<td>134 ± 6</td>
<td>171 ± 6</td>
<td>4</td>
</tr>
<tr>
<td>Ca$_{1.2}$</td>
<td>136 ± 3</td>
<td>154 ± 5</td>
<td>179 ± 6</td>
<td>6</td>
</tr>
<tr>
<td>Mibebradil</td>
<td>N.S.B.</td>
<td>N.S.B.</td>
<td>N.S.B.</td>
<td>2</td>
</tr>
<tr>
<td>Ca$_{1.4}$</td>
<td>93 ± 18</td>
<td>155 ± 5</td>
<td>164 ± 6</td>
<td>4</td>
</tr>
<tr>
<td>Ca$_{1.2}$</td>
<td>42 ± 4</td>
<td>63 ± 2</td>
<td>71 ± 3</td>
<td>6</td>
</tr>
</tbody>
</table>

N.S.B., no specific binding was observed in the absence or presence of the indicated concentrations of (+)-tetrindrine, (+)-cis-diltiazem, and mibebradil in membrane preparations of two independent transfections.
numbers were extremely low in these regions (cerebral cortex, 0.06 ± 0.02%, 20–120 copies/20 ng; nucleus accumbens, 0.03 ± 0.01%, 20–50 copies/20 ng).

Relative abundance (< 0.07%) and copy numbers (5–80, range in all brain regions) of Ca,1.4 were similarly low in whole brain and all regions investigated in rat brain, where the assay was designed against a different region of the Ca,1.4 gene (see Materials and Methods). However, up to 8600 copies/20 ng (rat) and 17,000 copies/20 ng (mouse) of Ca,1.4 transcripts were detected in eye RNA preparations serving as positive controls (Figs. 3 and 4). This confirmed that our assay was able to efficiently detect Ca,1.4 α₁-subunit RNA.

Like for Ca,1.4, the relative abundance of Ca,1.1 transcripts was also very low in mouse brain (0.05 ± 0.01% in whole brain), with the highest contribution in mouse cerebral cortex (0.12 ± 0.05%). Relative Ca,1.1 expression was higher in the rat with transcript numbers within our quantification range (i.e., 300 copies/20 ng) in cortex (500–2700 copies/20 ng, 2.39 ± 0.36% of total LTCC α₁ transcripts) and nucleus accumbens (390–760 copies/20 ng, 0.62 ± 0.08%). As expected, Ca,1.1 α₁ RNA was heavily expressed in skeletal muscle preparations (up to 390,000 copies/20 ng in mouse and 860,000 copies/20 ng in rat), which served as positive controls (Figs. 3 and 4).

It is noteworthy that the relative transcript abundance of Ca,1.1 and Ca,1.4 did not change in whole-brain preparations of Ca,1.3(−/−) (Ca,1.4, 0.07 ± 0.01%; Ca,1.1, 0.06 ± 0.01%, n = 13) and Ca,1.2DHP(−/−) (Ca,1.4, 0.05 ± 0.003%; Ca,1.1, 0.06 ± 0.003%, n = 13) mice, suggesting that the residual DHP binding in Ca,1.2DHP whole brain is unlikely to result from compensatory expression of Ca,1.1 and/or Ca,1.4.

Residual Binding Activity of Ca,1.2. Our results suggested that neither Ca,1.1 nor Ca,1.4 is expressed at levels that could sufficiently support the residual LTCC-associated binding activity detected in homozygous Ca,1.2DHP mice. Therefore, the mutated Ca,1.2 α₁ subunit resulting from their Ca,1.2DHP genotype remained as the most likely explanation for the residual binding. We estimated the lower affinity of the mutant Ca,1.2 α₁ subunit as follows: for the experiments in Fig. 1A, we employed (−)-[³H]isradipine concentrations (legend to Fig. 1) that cause similarly high occupancy of

Fig. 3. Quantitative comparison of different LTCC isoform RNA transcripts in whole brain, brain regions, and control tissues of wild-type mice. qPCR assay results for Ca,1.1 (1.1), Ca,1.2 (1.2), Ca,1.3 (1.3), and Ca,1.4 (1.4) α₁ subunit RNA transcripts are given as percentage of total amount of all LTCC α₁ transcripts in each experiment. The number of experiments is given in parentheses. Means ± S.E.M. (individual data points for eye preparations) are illustrated. Relative expression levels of individual isoforms differed significantly from each other (not indicated; one-way ANOVA, Bonferroni post-test), except for comparisons between Ca,1.1 and Ca,1.4. CP, caudate putamen; nAVP, nucleus accumbens and ventral pallidum; SN, substantia nigra; skm, skeletal muscle.

Fig. 4. Quantitative comparison of different LTCC isoform RNA transcripts in whole brain, brain regions, and control tissues of wild-type rats. qPCR assay results are illustrated as in Fig. 3. Relative expression levels of individual isoforms differed significantly from each other (not indicated; one-way ANOVA, Bonferroni post-test), except for comparisons between Ca,1.1 and Ca,1.4. Abbreviations are as in Fig. 3.
the high-affinity binding domains on both Ca1.2 and Ca1.3 LTCCs (Sinnegger-Brauns et al., 2004). From the difference in binding density between Ca1.2DHP(−/−) and Ca1.3-DH mice, the contribution of Ca1.3 could be calculated as 10.7% of the total binding activity (see Fig. 1A). Assuming that only Ca1.2 contributes to the remaining activity, 89.3% of binding in wild-type brains should be associated with Ca1.2; 4.4% of binding were retained in the Ca1.3-DH mice. If the latter represented lower affinity binding to the mutant Ca1.2 α1 subunit, it would correspond to a 20.3-fold decrease in occupancy. The higher \(K_d \) \((K_d^{2})_\mathrm{Ca1.2} \) accounting for this decrease can be estimated as \(K_d^{2} = ((K_d^{1})_\mathrm{WT} + F) \cdot 20.3 - F \), where \(K_d^{1} \) is the \(K_d \) for the wild-type Ca1.2 channel [0.078 nM as previously determined by us in mouse brain preparations under identical experimental conditions (Sinnegger-Brauns et al., 2004)] and \(F \) is the concentration of free ligand (essentially identical to total ligand, 0.43 nM; see legend to Fig. 1). The 20.3-fold decrease in occupancy therefore translates into a 127-fold increase in \(K_d \) from 0.078 nM for the wild-type Ca1.2 channel (Sinnegger-Brauns et al., 2004) to \(K_d^{2} = 9.88 \) nM for the mutant channel. This calculation is in agreement with the approximately 150-fold decrease in affinity previously estimated from electrophysiological data (Sinnegger-Brauns et al., 2004).

Selectivity of Some DHP Ca\(^{2+}\) Channel Blockers for the Ca1.2 DHP Binding Domain. As concluded from our binding data from Ca1.3-DH mouse brain, the majority (71%; 10.7% of 15.1% remaining binding activity) of the residual high-affinity \((+)-[^{3}H] \)isradipine sites in the \(Ca_{1.2}\) binding pocket \(Ca_{1.2DHP}(−)/− \) mutants is associated with \(Ca_{1.3} \). Therefore, \(Ca_{1.2DHP}(−)/− \) brain membranes should be suitable to determine the affinity of competitive inhibitors for native \(Ca_{1.3} \) channels. In contrast, having excluded \(Ca_{1.1} \) and \(Ca_{1.4} \) as likely contributors to \((+)-[^{3}H] \)isradipine binding, the majority (89.3%) of binding in WT brain membranes should occur at \(Ca_{1.2} \) and thus allow determination of drug binding affinities for native \(Ca_{1.2} \) channels. We therefore exploited the \(Ca_{1.2DHP}(−)/− \) model to test whether structurally different DHPs can discriminate between the native \(Ca_{1.2} \) and \(Ca_{1.3} \) binding pockets. WT and \(Ca_{1.2DHP}(−)/− \) brain membranes were labeled with \((+)-[^{3}H] \)isradipine in the absence and presence of increasing concentrations of unlabeled DHPs. The resulting IC\(_{50}\) values were similar for \((+)-[^{3}H] \)isradipine [mostly reflecting activity of the more active \((+)-\)enantiomer], its less active \((−)-\)enantiomer \([−]−[^{3}H] \)isradipine, amlodipine, and azidopine, but a 3- to 4-fold higher affinity was observed in WT brains for nifedipine and nitrendipine (Fig. 5, A and B; Table 2; both the means of IC\(_{50}\) values and the selectivity ratios were significantly different). This indicated that these compounds exhibit higher affinity for \(Ca_{1.2} \). To further confirm this finding, we repeated these experiments in membranes prepared from \(tsA201 \) cells transiently transfected with \(Ca_{1.2} \) and \(Ca_{1.3} \) \(α1 \), subunits (Fig. 5, C and D; Table 3). Again, nitrendipine and nifedipine were 3- to 4-fold selective for \(Ca_{1.2} \). Selectivity (albeit weaker, 2-fold or less) of amlodipine, isradipine (selectivity ratio differences), and azidopine (mean IC\(_{50}\) difference) was observed also in the recombinant system (Table 3). Our data demonstrate that some DHPs bind to LTCCs in an isoform-selective manner.

Discussion

Our data provide novel biochemical and pharmacological information about neuronal LTCCs in mammalian brain. By generating the double mutant strain \(Ca_{1.3}−/− \) from \(Ca_{1.2DHP}(−)/− \) and \(Ca_{1.3}(−)/− \) mice, we demonstrated the existence of a residual \((+)-[^{3}H] \)isradipine binding com-

Fig. 5. Inhibition of \((+)-[^{3}H] \)isradipine binding to native LTCCs in mouse brain membranes and to recombinant Ca1.2 and Ca1.3 LTCCs expressed in \(tsA201 \) cells by unlabeled DHPs. A and B, inhibition of \((+)-[^{3}H] \)isradipine binding to native LTCCs in mouse brain membranes isolated from WT (filled symbols) or \(Ca_{1.2DHP}(−)/− \) mice (open symbols) by the indicated DHPs. Radioligand concentrations were 0.14–0.18 nM; membrane protein concentrations were 0.3 mg/ml. Binding parameters and number of experiments are given in Table 2. Data are means ± S.E.M. C and D, inhibition of \((+)-[^{3}H] \)isradipine binding to recombinant Ca1.2 and Ca1.3 LTCCs expressed in \(tsA201 \) cells together with \(α_{2}β_{1} \) and \(β_{1}α_{1} \) subunits by the indicated DHPs. Radioligand concentrations were 0.13–0.15 nM; membrane protein concentrations were 0.04 to 0.1 mg/ml. Binding parameters and number of experiments are given in Table 3. Data are means ± S.E.M.
ponent, which not only allowed us to obtain a more precise estimate for the contribution by the Ca\textsubscript{1.3} channel (of approximately 11%) but also prompted us to investigate possible contribution by Ca\textsubscript{1.1} and Ca\textsubscript{1.4} LTCCs. Using qPCR, we show that Ca\textsubscript{1.1} and Ca\textsubscript{1.4} are expressed at very low levels and therefore cannot represent the residual binding component in mouse brain, which we instead explain by low-affinity binding to the mutated Ca\textsubscript{1.2} subunit in Ca\textsubscript{1.2}DHP\textsubscript{(-/-)} mice. By excluding Ca\textsubscript{1.1} and Ca\textsubscript{1.4} as the relevant contributors to the residual binding component, we exploited Ca\textsubscript{1.2}DHP\textsubscript{(-/-)} mouse brains (predominant expression of Ca\textsubscript{1.3}) as an assay for native Ca\textsubscript{1.3} channels. Our data demonstrate that some DHPs such as nifedipine and nitrendipine show substantial selectivity for Ca\textsubscript{1.2} channels, which can explain some of the Ca\textsubscript{1.2}-selectivity observed also in functional experiments (Koschak et al., 2001; Helton et al., 2005).

We have previously obtained a higher estimate for the contribution of Ca\textsubscript{1.3} channels to high affinity (+)[3H]isradipine binding activity (20–25%) using Ca\textsubscript{1.3}(–/-) mice (Clark et al., 2003) compared with the estimate obtained in this study. Although we found no evidence for changes of Ca\textsubscript{1.2} IC\textsubscript{50} compared with the estimate obtained in this study. An IC\textsubscript{50} calculated from individual experiments carried out in parallel for both channel genotypes.

<table>
<thead>
<tr>
<th>Dihydropyridine</th>
<th>Ca\textsubscript{1.2}DHP\textsubscript{(-/-)}</th>
<th>IC\textsubscript{50} WT:MUT</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+)-Isradipine</td>
<td>0.43 ± 0.03</td>
<td>0.59 ± 0.12</td>
<td>3</td>
</tr>
<tr>
<td>IC\textsubscript{50} (nM)</td>
<td>0.95 ± 0.10</td>
<td>0.98 ± 0.08</td>
<td></td>
</tr>
<tr>
<td>Azidopine</td>
<td>1.23 ± 0.71</td>
<td>1.08 ± 0.56</td>
<td>3</td>
</tr>
<tr>
<td>IC\textsubscript{50} (nM)</td>
<td>0.94 ± 0.04</td>
<td>0.95 ± 0.04</td>
<td></td>
</tr>
<tr>
<td>Nitrendipine</td>
<td>0.97 ± 0.11</td>
<td>2.79 ± 0.80</td>
<td>4</td>
</tr>
<tr>
<td>IC\textsubscript{50} (nM)</td>
<td>0.89 ± 0.08</td>
<td>0.96 ± 0.10</td>
<td></td>
</tr>
<tr>
<td>Nifedipine</td>
<td>3.42 ± 0.55</td>
<td>13.21 ± 1.05</td>
<td>3</td>
</tr>
<tr>
<td>IC\textsubscript{50} (nM)</td>
<td>0.85 ± 0.04</td>
<td>0.87 ± 0.11</td>
<td></td>
</tr>
<tr>
<td>Slope factor (+)-Isradipine</td>
<td>35.2 ± 7.4</td>
<td>35.5 ± 5.2</td>
<td>3</td>
</tr>
<tr>
<td>Slope factor Nifedipine</td>
<td>0.95 ± 0.01</td>
<td>0.86 ± 0.07</td>
<td></td>
</tr>
<tr>
<td>Amlodipine</td>
<td>41.1 ± 1.2</td>
<td>39.2 ± 4.6</td>
<td>3</td>
</tr>
<tr>
<td>IC\textsubscript{50} (nM)</td>
<td>0.95 ± 0.04</td>
<td>1.01 ± 0.02</td>
<td></td>
</tr>
</tbody>
</table>

**P < 0.001; unpaired student's t test.
**P < 0.01, for difference from unity, one-sample t test.

We found that one of the most sensitive detection methods, reversible labeling with (+)[3H]isradipine, failed to detect Ca\textsubscript{1.4} LTCCs after expression in tsA201 cells under conditions that reliably yield Ca\textsubscript{1.4} protein in Western blots, give rise to Ca\textsubscript{1.4}-mediated currents (Koschak et al., 2003; Hoda et al., 2005) and allow robust detection of recombinant Ca\textsubscript{1.2} and Ca\textsubscript{1.3} LTCCs by this radioligand (Fig. 2, Tables 1 and 3). We show that this is not due to the phenylalanine substitution of a tyrosine in position 1414 in the Ca\textsubscript{1.4} α\textsubscript{1} subunit, a residue contributing to the DHP sensitivity of other LTCCs and present in all other LTCC α1 subunits. In Ca\textsubscript{1.1} channels, replacement of the homologous tyrosine by a phenylalanine results in an about 3-fold increase in the K\textsubscript{d} for (+)[3H]isradipine (Peterson et al., 1996). Substituting Ca\textsubscript{1.4} Phe1414 by tyrosine did not result in detectable bind-

TABLE 2

Affinities of different DHPs for brain membranes of Ca\textsubscript{1.2}DHP\textsubscript{(-/-)} and wild-type mice

Ligand concentration was 0.14–0.18 nM. Membrane protein concentration was 0.3 mg/ml. Data are given as means ± S.D. for the indicated number of experiments. Statistical significance of selectivity was determined from a direct comparison of IC\textsubscript{50} values and from the selectivity ratios (WT:MUT) calculated from individual experiments carried out in parallel for both genotypes.

<table>
<thead>
<tr>
<th>Dihydropyridine</th>
<th>Ca\textsubscript{1.2}</th>
<th>Ca\textsubscript{1.3}</th>
<th>IC\textsubscript{50} WT:MUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+)-Isradipine</td>
<td>0.40 ± 0.21</td>
<td>0.51 ± 0.20</td>
<td>0.76 ± 0.18</td>
</tr>
<tr>
<td>IC\textsubscript{50} (nM)</td>
<td>0.80 ± 0.04</td>
<td>0.96 ± 0.12</td>
<td></td>
</tr>
<tr>
<td>Azidopine</td>
<td>0.46 ± 0.10</td>
<td>0.65 ± 0.11</td>
<td>0.74 ± 0.23</td>
</tr>
<tr>
<td>IC\textsubscript{50} (nM)</td>
<td>0.85 ± 0.06</td>
<td>1.00 ± 0.11</td>
<td></td>
</tr>
<tr>
<td>Nitrendipine</td>
<td>1.08 ± 0.27</td>
<td>3.59 ± 0.66</td>
<td>0.31 ± 0.11</td>
</tr>
<tr>
<td>IC\textsubscript{50} (nM)</td>
<td>0.82 ± 0.10</td>
<td>0.96 ± 0.12</td>
<td></td>
</tr>
<tr>
<td>Nifedipine</td>
<td>4.45 ± 1.21</td>
<td>20.1 ± 4.78</td>
<td>0.22 ± 0.04</td>
</tr>
<tr>
<td>IC\textsubscript{50} (nM)</td>
<td>0.84 ± 0.12</td>
<td>0.92 ± 0.10</td>
<td></td>
</tr>
<tr>
<td>Slope factor (+)-Isradipine</td>
<td>29.7 ± 5.56</td>
<td>27.2 ± 3.67</td>
<td>1.09 ± 0.11</td>
</tr>
<tr>
<td>Slope factor Amlodipine</td>
<td>0.88 ± 0.13</td>
<td>0.86 ± 0.12</td>
<td></td>
</tr>
<tr>
<td>Amlodipine</td>
<td>28.4 ± 11.8</td>
<td>60.1 ± 28.3</td>
<td>0.48 ± 0.11</td>
</tr>
<tr>
<td>IC\textsubscript{50} (nM)</td>
<td>0.87 ± 0.11</td>
<td>0.94 ± 0.09</td>
<td></td>
</tr>
</tbody>
</table>

**P < 0.05.
**P < 0.001.
ing activity. It is noteworthy that there are also some other amino acid exchanges in the putative Ca_{1.4} DHP binding pocket that could cause a reduction in (+)-[3H]isradipine binding affinity (including proline-1037 and alanine-1087 in the IIIIS5-IIIIS6 pore loop). This may shift the K_D outside the detection range of our binding assay. A slightly lower affinity for the DHP binding pocket may also contribute to the lower sensitivity of Ca_{1.4} channel currents for isradipine compared with Ca_{1.3} and Ca_{1.2} (Koschak et al., 2003).

We demonstrated that nitrendipine and nifedipine exhibited 3- to 4-fold higher affinities for the Ca_{1.2} DHP binding pocket in the native membrane environment, a finding that was further confirmed employing recombinant channels. This represents the first comparison of the pharmacological properties of the DHP binding domains of native and recombinant Ca_{1.2} and Ca_{1.3} LTCC complexes. Nitrendipine and nifedipine are distinguished from the other DHPs tested by their K_D substituent at the 3' and 2' position of the phenyl ring, respectively. The existence of Ca_{1.2} selectivity was surprising given the very high sequence similarity within the DHP binding pocket of Ca_{1.2} and Ca_{1.3}. Our findings indicate that nitrendipine and nifedipine can sense differences in the molecular architectures of these two binding domains. It therefore seems likely that such differences may also allow development of molecules with higher affinity for the Ca_{1.3} binding pocket. This could aid in the development of Ca_{1.3} selective LTCC blockers, which, based on emerging knowledge about the physiological role of Ca_{1.3} channels (Platzer et al., 2006; Striessnig et al., 2006; Chan et al., 2007), could open novel therapeutic strategies for the treatment of depression and Parkinson disease.

Acknowledgments

We thank G. Pelster and S. Hasler for expert technical assistance, L. Glati and C. Bachmann for animal care, Bettina Schlick for helpful discussions, L. Glatzl and C. Bachmann for animal care, Bettina Schlick for help with qPCR, and Bernhard E. Flucher for helpful discussions.

References

Veng LM, Mesches MH, and Browning MD (2003) Age-related working memory impairment is correlated with increases in the L-type calcium channel protein alpha1D (Ca_{1.3}) in area CA1 of the hippocampus and both are ameliorated by chronic nimodipine treatment. Brain Res Mol Brain Res 110:193–202.

Address correspondence to: Jing Striessnig, Department of Pharmacology and Toxicology, Institute of Pharmacy, and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Peter-Mayr-Str. 1/1, A-6020 Innsbruck, Austria. E-mail: jorg.striessnig@uibk.ac.at